
HAL Id: hal-01265155
https://hal.science/hal-01265155

Submitted on 18 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Three-dimensional full waveform inversion of
short-period teleseismic wavefields based upon the

SEM-DSM hybrid method
Vadim Monteiller, Sébastien Chevrot, Dimitri Komatitsch, Yi Wang

To cite this version:
Vadim Monteiller, Sébastien Chevrot, Dimitri Komatitsch, Yi Wang. Three-dimensional full waveform
inversion of short-period teleseismic wavefields based upon the SEM-DSM hybrid method. Geophysical
Journal International, 2015, 202 (2), pp.811-827. �10.1093/gji/ggv189�. �hal-01265155�

https://hal.science/hal-01265155
https://hal.archives-ouvertes.fr


Geophysical Journal International
Geophys. J. Int. (2015) 202, 811–827 doi: 10.1093/gji/ggv189

GJI Seismology

Three-dimensional full waveform inversion of short-period
teleseismic wavefields based upon the SEM–DSM hybrid method
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S U M M A R Y
We present a method for high-resolution imaging of lithospheric structures based on full
waveform inversion of teleseismic waveforms. We model the propagation of seismic waves
using our recently developed direct solution method/spectral-element method hybrid tech-
nique, which allows us to simulate the propagation of short-period teleseismic waves through
a regional 3-D model. We implement an iterative quasi-Newton method based upon the L-
BFGS algorithm, where the gradient of the misfit function is computed using the adjoint-state
method. Compared to gradient or conjugate-gradient methods, the L-BFGS algorithm has a
much faster convergence rate. We illustrate the potential of this method on a synthetic test
case that consists of a crustal model with a crustal discontinuity at 25 km depth and a sharp
Moho jump. This model contains short- and long-wavelength heterogeneities along the lateral
and vertical directions. The iterative inversion starts from a smooth 1-D model derived from
the IASP91 reference Earth model. We invert both radial and vertical component waveforms,
starting from long-period signals filtered at 10 s and gradually decreasing the cut-off period
down to 1.25 s. This multiscale algorithm quickly converges towards a model that is very
close to the true model, in contrast to inversions involving short-period waveforms only, which
always get trapped into a local minimum of the cost function.

Key words: Numerical solutions; Inverse theory; Tomography; Seismic tomography; Com-
putational seismology; Wave propagation.

1 I N T RO D U C T I O N

Thanks to the densification of both permanent and temporary seis-
mic recording arrays, resolution in tomographic images of the con-
tinental lithosphere has been considerably refined in the last decade.
For example, the lateral resolution in the regional tomographic
model of the Pyrenees obtained from the use of both PYROPE
and IBERARRAY dense temporary deployments, quantified from
the analysis of the resolution matrix, is about 25 km (Chevrot et al.
2014). While such a resolution is sufficient to map major structural
units, it is insufficient to provide sharp images of lithospheric archi-
tecture, mainly because of strong vertical smearing of the velocity
anomalies. Indeed, that same study found that vertical resolution
is of the order of 80–100 km at lithospheric depths, and that it
quickly deteriorates at greater depth. Such poor vertical resolu-
tion in regional tomography stems from the subvertical incidence of
teleseismic body waves and from the fact that the sensitivity of trav-
eltimes to seismic velocities is broadly distributed along and around
the geometrical ray. A direct consequence of this poor vertical res-
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olution is that crustal structures can also significantly contaminate
tomographic models down to about 200 km depth (Chevrot et al.
2014). These fundamental limitations of traveltime tomography are
unavoidable, even if finite-frequency effects are taken into account.

Alternative imaging approaches that make a more thorough use of
the information contained in seismic records have been introduced.
For example, ray-based migration techniques have been developed
to exploit converted and multiply reflected phases that arrive in the
coda of teleseismic P waves in order to map seismic discontinuities
(Bostock & Rondenay 1999; Bostock et al. 2001; Rondenay 2009).
These approaches led to improved images of interfaces in subduc-
tion environments (e.g. Bostock 1998; Kawakatsu & Watada 2008;
Rondenay et al. 2008; Audet et al. 2009), providing crucial con-
straints on the dehydration of subducted materials and water trans-
portation in the mantle. These images are very efficient at mapping
small-scale structural variations of the subsurface, such as velocity
discontinuities, but in contrast to classical traveltime tomography
they lack the sensitivity to longer-wavelength structures. In order
to obtain tomographic images of the continental lithosphere, prone
to detailed geological interpretation, it will thus be necessary to
turn to methods that can constrain the full heterogeneity spectrum,
from a few tens of kilometres down to a few kilometres. Such a

C© The Authors 2015. Published by Oxford University Press on behalf of The Royal Astronomical Society. 811

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/202/2/811/590445 by guest on 18 June 2021

mailto:vadim.monteiller@geoazur.unice.fr


812 V. Monteiller et al.

breakthrough implies moving towards full waveform inversion (see,
e.g. Liu & Gu 2012, for a more detailed discussion), which has a
theoretical resolution limit of the order of half of the shortest wave-
length in the seismic wavefield (Virieux & Operto 2009). Imaging
the lithosphere with a resolution of the order of a few kilometres
will thus require to exploit records of teleseismic body waves in the
period range 1–10 s.

Nowadays, efficient numerical methods to simulate the propa-
gation of elastic waves based on full waveform modelling in a
3-D Earth model are available, for instance the finite-difference
method (see, e.g. Virieux & Operto 2009, for a review), the spectral-
element method (SEM; e.g. Komatitsch & Vilotte 1998; Komatitsch
& Tromp 1999; Vai et al. 1999; Komatitsch & Tromp 2002) or a
standard finite-element method (e.g. Kallivokas et al. 2013), but
they still suffer from a high computational cost in the context of
solving inverse problems, which currently limits their application
to periods larger than a few seconds in the case of the full Earth,
even on the largest supercomputers (Tsuboi et al. 2003; Peter et al.
2011). Another important aspect of waveform inversion is the non-
linear dependence of the waveforms on the velocity model. Wave-
form inversion problems are thus solved based on iterative methods,
which requires solving 3-D wave propagation problems a very large
number of times, making such imaging approaches even more pro-
hibitive. Various simplifications of the problem have been proposed
in order to reduce the computing power required to invert short-
period teleseismic P waveforms. Apart from simplifying the mod-
elling by using asymptotic approaches (e.g. Bostock et al. 2001) or
considering 2-D geometries only (e.g. Pageot et al. 2013; Nissen-
Meyer et al. 2014; Tong et al. 2014a), a possibility is to drastically
reduce the size of the 3-D computational domain (e.g. Monteiller
et al. 2013; Tong et al. 2014b). The forward problem then reduces
to injecting an incident wavefield, produced by a distant teleseismic
source, inside a regional 3-D domain. In other words, solving the
forward problem involves a hybrid method in which modelling of
short-period teleseismic waves is performed in two steps. The first
step involves propagating the seismic waves from the source to the
regional domain, and the second involves simulating the wavefield
in the regional domain located below the array of receivers. These
hybrid methods have received considerable attention over the last
decade, and several approaches have been used to model wave prop-
agation inside the regional domain: the SEM with the incidence of
plane waves or a normal-mode summation, direct solution method
(DSM) or frequency–wavenumber (F-K) wavefield (Vai et al. 1999;
Capdeville et al. 2003a,b; Chevrot et al. 2004; Godinho et al. 2009;
Monteiller et al. 2013; Tong et al. 2014a,b), the finite-difference
method (Chen et al. 2005; Zhao et al. 2008; Roecker et al. 2010) or
the frequency-domain discontinuous Galerkin method (Pageot et al.
2013). This is also true in other fields involving acoustic waves, for
instance ultrasonic non-destructive testing (Gengembre et al. 2004).
Many of these articles considered an incoming plane wave injected
into a Cartesian 2-D domain. While reducing the dimension of the
problem certainly allows for a drastic reduction of the computa-
tional cost, a 2-D geometry is of limited interest in practice because
earthquakes almost never occur along the azimuth of acquisition
profiles, which are also seldom rectilinear. In addition, as pointed
out by Rondenay (2009), assuming a planar teleseismic wavefront
is safe if the size of the domain is not too large (say smaller than
100 km), but this limits its application to rather local studies of
the shallow Earth. Applying full waveform inversion to teleseis-
mic wave records at the regional scale thus requires improving the
numerical solvers to address these shortcomings.

In Monteiller et al. (2013), we introduced the first high-frequency
3-D hybrid modelling method by matching an incident wavefield
computed in a spherically symmetric Earth model based on the
DSM (Geller & Ohminato 1994; Geller & Takeuchi 1995; Takeuchi
et al. 1996) with a regional wavefield computed based on the SEM
(Komatitsch & Vilotte 1998; Komatitsch & Tromp 1999; Vai et al.
1999) using the SPECFEM3D open-source software package. DSM
can provide accurate synthetic seismograms up to frequencies as
high as 2 Hz (Kawai et al. 2006) but at a cost that is signif-
icantly larger than that of the F-K method used for instance in
Tong et al. (2014a,b). However, computing the incident wavefield
in a spherical Earth based on DSM allows us to consider larger
and deeper regional domains, which more than compensates for
the additional computational cost compared to FK. Another moti-
vation for doing so is to later be able to consider a regional do-
main that can be located anywhere inside the Earth and not only
at its surface, as envisioned by Masson et al. (2014). Let us men-
tion that other options such as a calculation of the Green’s func-
tion of the Earth by Minor Integration (GEMINI; Friederich &
Dalkolmo 1995) or a combination of 2-D axisymmetric numeri-
cal simulations for elementary sources (Nissen-Meyer et al. 2014)
could be used instead of DSM for the incident field calculation,
but normal-mode summation could not because it cannot accu-
rately go below seismic periods of 5 s or so (e.g. Komatitsch et al.
2010). Eventually, 3-D computation of the incident wavefield with
SPECFEM will also become a viable alternative. In that case, our
hybrid approach would still present the advantage of drastically re-
ducing the cost of full waveform inversion inside the regional 3-D
domain.

It is important to mention that by definition of our one-way cou-
pling strategy, scattered waves generated by 3-D heterogeneities
superimposed to the 1-D background model cannot be further mod-
elled by this hybrid method when they travel out of the SEM domain
and are reflected back into that SEM domain off 1-D interfaces lo-
cated inside the DSM domain. This is by construction the main
limitation of the approach that we have chosen. However, the con-
tributions of such scattered waves is of second order compared to
the incident wavefield, and in most cases can safely be neglected.
For a more complete but also more involved, fully-coupled strat-
egy one can refer for instance to Capdeville et al. (2003a,b). It is
also worth mentioning that such code-coupling or method-coupling
strategies are successfully used in other fields (see, e.g. Formaggia
et al. 2001; Han et al. 2014; Mariotti et al. 2015).

In this paper, we therefore present a 3-D full waveform inver-
sion method that relies on such a hybrid method based on the
DSM/SEM hybrid technique of Monteiller et al. (2013). We give a
brief overview of that hybrid method in Section 2. We then recall the
waveform inversion problem and the computation of the gradient
kernel based on the adjoint method (Chavent 1974; Lailly 1983;
Tarantola 1984; Tromp et al. 2005; Fichtner et al. 2006; Plessix
2006; Tromp et al. 2008; Virieux & Operto 2009; Fichtner 2010) in
Section 3. Different iterative algorithms can be used to solve nonlin-
ear waveform inversion problems, from the simple gradient method
to the far more efficient but more involved Gauss–Newton method.
We discuss them in Section 4 in which we also recall the prin-
ciples of the Limited-Memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) algorithm, which allows for a practical implementation
of the quasi-Newton algorithm without the need to compute and
store the inverse Hessian kernel. Finally, we apply our full wave-
form inversion method to a synthetic test chequerboard case in
Section 5 and a sharp Moho jump in Section 6.
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2 F O RWA R D P RO B L E M : T H E D S M / S E M
H Y B R I D M E T H O D

To simulate the propagation of teleseismic waves at the regional
scale, we use the hybrid DSM/SEM method introduced in Mon-
teiller et al. (2013). Here we will only give a brief overview of the
method and refer the reader to that paper for further details. The
main advantage of the hybrid method is to restrict the costly 3-D
computations to a regional domain of limited size, which is a crucial
point in terms of calculation cost for iterative waveform inversion.
Each of the DSM and SEM methods provides very accurate solu-
tions of the wave equation in its own domain, and the problem is
thus to match the global and regional wavefields on the boundaries
of the regional mesh.

DSM is a Galerkin method that solves the weak form of the equa-
tion of motion in the frequency domain (e.g. Geller & Ohminato
1994; Geller & Takeuchi 1995). By carefully tuning the vertical grid
spacing, maximum angular order and cut-off depth, the calculations
can be made efficient while keeping high accuracy, even at frequen-
cies as high as 2 Hz (Kawai et al. 2006). This method is thus well
suited to model full short-period teleseismic wavefields. In the 3-D
regional domain, we use the SEM (e.g. Komatitsch & Vilotte 1998;
Komatitsch & Tromp 1999; Vai et al. 1999; Komatitsch et al. 2005;
Tromp et al. 2008), which is a highly accurate continuous Galerkin
technique to model seismic wave propagation in elastic or anelastic
(viscoelastic) media. The SEM is based upon the weak form of the
seismic wave equation solved in the time domain. Because it uses
high-degree polynomial basis functions, can handle very distorted
meshes and does not necessitate interpolation of material properties,
it is highly accurate and allows one to include all the complexity that
may affect the seismic wavefields: topography of the free surface
and of internal discontinuities, anelasticity, anisotropy and lateral
variations of elastic parameters and density. In Monteiller et al.
(2013), for instance, we showed that topography produces very sig-
nificant body-to-surface wave conversions, which are predominant
in the coda of teleseismic P waves. Using the DSM code, we com-
pute the tractions and velocities produced by each source at all the
SEM grid points located on the edges of the regional SEM mesh
and store them to disk. We then read them back at the beginning of
each SEM simulation. In the regional mesh, it is not necessary to
use a discontinuous (i.e. geometrically non-conforming) mesh and
thus a discontinuous Galerkin formulation because material prop-
erty contrasts are not drastic, therefore, resorting to a continuous
Galerkin formulation is sufficient.

3 F U L L WAV E F O R M I N V E R S I O N

Full waveform inversion means that one considers the observed
seismograms (possibly filtered) as the basic observables that one
wants to fit. One thus searches for the model that minimizes the mean
squared difference between observed and synthetic seismograms.
In other words, the goal is to find a structural model that can explain
a larger portion of seismological records, and not simply the phase
of a few seismic arrivals.

3.1 Principle

We want to minimize the classical waveform misfit function:

χ (m) =
N∑

s=1

M∑
r=1

∫ T

0

1

2
‖u(xr , xs ; t) − d(xr , xs ; t)‖2 dt. (1)

This functional quantifies the L2 difference between the observed
waveforms d(xr , xs ; t) at receivers xr , r = 1, . . . , M produced by
sources at xs , s = 1, . . . , N, and the corresponding synthetic seismo-
grams u(xr , xs ; t) computed in model m. While this misfit function
is indeed classical, it is worth mentioning that in the case of noisy
real data other norms could be used, since in the oil industry for
instance it is known that the L1 norm (Crase et al. 1990; Brossier
et al. 2010), hybrid L1 − L2 norms (Bube & Langan 1997), Hubert
norm (Ha et al. 2009), Student-t distribution (Aravkin et al. 2011;
Jeong et al. 2015), etc., can be more robust than the L2 norm used
here in the context of synthetic data with no noise. In the vicinity
of m, the misfit function can be expanded into a Taylor series:

χ (m + δm) ≈ χ (m) + g(m) · δm + δm · H(m) · δm , (2)

where g(m) is the gradient of the waveform misfit function:

g(m) = ∂χ (m)

∂m
, (3)

and H(m) the Hessian:

H(m) = ∂2χ (m)

∂m2
. (4)

In the following, for simplicity the dependence of the gradient and
Hessian on the model will be implicitly assumed and omitted in the
notations. The nearest minimum of χ in eq. (2) with respect to the
model perturbation δm is reached for

δm = −H−1 · g . (5)

The local minimum of eq. (1) is thus given by perturbing the model
in the direction of the gradient preconditioned by the inverse Hes-
sian.

3.2 Computation of the gradient based
on the adjoint method

A direct method to compute the gradient is to take the derivative of
eq. (1) with respect to model parameters:

∂χ (m)

∂m
= −

N∑
s=1

M∑
r=1

∫ T

0

∂u(xr , xs ; t)

∂m

· [u(xr , xs ; t) − d(xr , xs ; t)] dt . (6)

This equation can be reformulated as the matrix–vector product:

g = −J∗ · δd , (7)

where J∗ is the adjoint of the Jacobian matrix of the forward prob-
lem that contains the Fréchet derivatives of the data with respect to
model parameters and δd is the vector that contains the data resid-
uals. The determination of J would require computing the Fréchet
derivatives for each time step in the time window considered and
for all the source-station pairs, which is completely prohibitive on
current supercomputers (let us note that this situation may change
one day). However, it is possible to obtain this gradient without
computing the Jacobian matrix explicitly. The approach to deter-
mine the gradient without computing the Fréchet derivatives was
introduced in nonlinear optimization by Chavent (1974) working
with J. L. Lions, and later applied to seismic exploration problems
by Bamberger et al. (1977), Bamberger et al. (1982), Lailly (1983)
and Tarantola (1984). The idea is to resort to the adjoint state, which
corresponds to the wavefield emitted and back-propagated from the
receivers (e.g. Tromp et al. 2005; Fichtner et al. 2006; Plessix 2006;
Tromp et al. 2008).
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Let us give an outline of the theory to compute the gradient
based on the adjoint method and refer the reader to, for example,
Tromp et al. (2005) and Tromp et al. (2008) for further details. The
perturbation of the misfit function can be expressed as:

δχ (m) =
N∑

s=1

M∑
r=1

∫ T

0
[u(xr , xs ; t) − d(xr , xs ; t)] · δu(xr , xs ; t) dt,

(8)

where δu is the perturbation of displacement given by the first-order
Born approximation (e.g. Hudson 1977):

δu(xr , xs ; t) = −
∫ t

0

∫
V

[
δρ(x)G(xr , x; t − t ′) · ∂2

t ′ u(x, xs ; t ′)

+ ∇G(xr , x; t − t ′) : δc(x) : ∇u(x; t ′)
]

d3x dt ′. (9)

In this expression, G is the Green’s tensor, δρ the perturbation of
density, δc the perturbation of the fourth-order elasticity tensor, and
a colon denotes a double tensor contraction operation. Inserting
eq. (9) into eq. (8) we obtain

δχ (m) = −
N∑

s=1

M∑
r=1

∫ T

0
[u(xr , xs ; t) − d(xr , xs ; t)]

×
∫ t

0

∫
V

[
δρ(x)G(xr , x; t − t ′) · ∂2

t ′ u(x, xs ; t ′)

+ ∇G(xr , x; t − t ′) : δc(x) : ∇u(x, t ′)
]

d3x dt ′ dt . (10)

Defining the waveform adjoint source for each source xs

f†(x, xs ; t) =
M∑

r=1

[u(xr , xs ; T − t) − d(xr , xs ; T − t)] δ(x − xr ) ,

(11)

and the corresponding adjoint wavefield

u†(x, xs ; t) =
∫ t ′

0

∫
V

G(x, x′; t ′ − t) · f†(x′, xs ; t) d3x′ dt , (12)

the perturbation of the misfit function may be expressed as:

δχ (m) = −
N∑

s=1

∫
V

∫ T

0

[
δρ u†(x, xs ; T − t) · ∂2

t u(x, xs ; t)

+ ∇u†(x, xs ; T − t) : δc : ∇u(x, xs ; t)
]

d3x dt . (13)

At this point, we make some assumptions on the nature of the elas-
ticity tensor. A general fourth-order elasticity tensor is described
by 21 elastic parameters, a very large number that makes its com-
plete characterization way beyond the reach of any tomographic
approach. For the time being, let us thus consider isotropic elastic-
ity tensors, described by the two Lamé parameters λ and μ:

ci jkl = λδi jδkl + μ(δikδ jl + δilδ jk) . (14)

In this case, eq. (13) can be written as:

δχ (m) = −
N∑

s=1

∫
V

[
Kρ(x, xs)δ ln ρ(x) + Kλ(x, xs)δ ln λ(x)

+ Kμ(x, xs)δ ln μ(x)
]

d3x , (15)

where ln() is the natural logarithm and where the Fréchet derivatives
with respect to the density and Lamé parameters are given by:

Kρ(x, xs) = −
∫ T

0
ρ(x)u†(x, xs ; T − t) · ∂2

t u(x, xs ; t) dt, (16)

Kλ(x, xs) = −
∫ T

0
λ(x)∇ · u†(x, xs ; T − t)∇ · u(x, xs ; t) dt, (17)

Kμ(x, xs) = −2
∫ T

0
μ(x)(x)∇u†(x, xs ; T − t) : ∇u(x, xs ; t) dt .

(18)

Since the propagation of seismic waves mainly depends on com-
pressional wave speed α and shear wave speed β, but also because
these seismic velocities are easier to interpret, tomographic mod-
els are usually described based on these two parameters. With this
new parametrization, the perturbation of the misfit function may be
written as:

δχ (m) = −
N∑

s=1

∫
V

[
K ′

ρ(x, xs)δ ln ρ(x) + K ′
α(x, xs)δ ln α(x)

+ K ′
β (x, xs)δ ln β(x)

]
d3x , (19)

where

K ′
ρ(x, xs) = Kρ(x, xs) + Kλ(x, xs) + Kμ(x, xs) (20)

K ′
α(x, xs) = 2

(
λ + 2μ

λ

)
Kλ(x, xs) (21)

K ′
β (x, xs) = 2Kμ − 4μ

λ
Kλ(x, xs) . (22)

As can be seen from these expressions, the principle of the
adjoint-state method is to correlate two wavefields: the direct (i.e.
forward) field that propagates from the source to the receivers, and
the adjoint field that propagates from all the receivers backward in
time. The same approach can be followed for any type of seismic
observable (phase, amplitude, envelope, time series, etc.), provided
the appropriate adjoint source is used (Tromp et al. 2005, 2008).
For example, for the cross-correlated traveltime of a seismic phase,
the adjoint source is defined as the velocity of that synthetic phase
weighted by the traveltime residual.

Computing the gradient based on the adjoint-state method re-
quires performing two simulations per source (forward and adjoint
fields) regardless of the type of observable. However, to define the
adjoint field one must know the adjoint source, and that source is
computed from the results of the forward simulation. One must
therefore perform the forward simulation before the adjoint simu-
lation. A straightforward solution for time-domain methods would
be to store the whole forward field to disk at each time step during
the forward run and then read it back during the adjoint simulation
to calculate the interaction of these two fields. In 2-D this is feasible
but in the 3-D case for very short seismic periods and without lossy
compression, downsampling or a large amount of disk or memory
checkpointing (e.g. Fichtner et al. 2009; Rubio Dalmau et al. 2014;
Cyr et al. 2015) the amount of disk storage required would cur-
rently be too large. However, let us note again that this situation
may change in the future. In the mean time, a standard possible
solution is to perform three simulations per source (Tromp et al.
2008; Peter et al. 2011), that is, perform the forward calculation
twice, once to compute the adjoint sources and once again at the
same time as the adjoint simulation to correlate the two fields and
sum their interaction on the fly over all the time steps. Doing so for
an elastic Earth, one only needs a small amount of disk storage to
store the last time step of the forward run, which is then used as an
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initial condition to redo the forward run backwards, as well as the
field on the outer edges of the mesh for each time steps in order to
be able to undo the absorbing boundary conditions.

3.3 The SEM and tomographic (inversion) grids

Because it is more convenient to use a topologically regular tomo-
graphic grid than a non-structured finite-element mesh, we distin-
guish the grid used to solve the wave propagation problem (the SEM
grid) and the tomographic grid, which we choose to be regular. The
former is subdivided into a number of non-overlapping hexahedral
elements controlled by their 27 corners, mid-edge, mid-face and
central control points. Inside each spectral element, the model and
the wave field are defined on a basis of Lagrange polynomials of
degree N = 4 (Komatitsch & Tromp 1999) and thus based on N +
1 = 5 interpolation points along each of the three spatial directions.
Each element thus contains (N + 1)3 = 125 points, at which the
elastic parameters as well as the wave field are sampled. The mesh
is a ‘chunk’ of the Earth, that is, a portion of the so-called ‘cubed
sphere’ (Sadourny 1972; Ronchi et al. 1996; Chaljub et al. 2003)
that is used to mesh part of the Earth based on hexahedra. We use the
conventions given in Chevrot et al. (2012) to map the geographical
coordinates to the cubed sphere coordinates and conversely. The
chunk is defined by the position of the centre of its upper surface,
referenced in the geographic coordinate system by its north–south
and east–west extensions expressed in degrees, and by the azimuth
of the X axis in the regional mesh.

To project the model defined on the SEM mesh onto the topolog-
ically regular tomographic grid, we search for the SEM elements
that contain the vertices of each given tomographic cell. We then
use the products of Lagrange polynomials (i.e. the SEM interpola-
tion matrix) to interpolate the model parameters at the eight corners
of this tomographic cell and assign to it the average of the values
at these eight corners. We similarly compute the gradient from the
correlation of the forward and adjoint wavefields, and for accu-
racy reasons we compute the volume integrals needed based on the
SEM Gauss–Lobatto–Legendre quadrature formula. This requires
interpolating the values of the correlations between the forward and
adjoint wavefields not only at the vertices of each tomographic cell
but also at all the collocation points located inside that cell. Once
the model and the gradients for all the sources are projected onto
the tomographic grid, we use the summed gradient to update the
current tomographic model, which we then project back to the SEM
mesh before proceeding to the next iteration. For efficiency, we once
and for all define a mapping function that matches the SEM ele-
ments and their collocation point identifiers with the identifiers of
the cell in the tomographic grid. Based on this mapping, the inverse
projection becomes straightforward.

3.4 Regularization

To stabilize the inversion it is necessary to regularize the problem.
To do so, we add a classical penalty condition on the norm of the
Laplacian of the model to the waveform misfit function and define
a new misfit function:

χ ′ (m) = χ (m) + η

2
‖
m‖2, (23)

where η is a smoothing coefficient that weights the contribution
of the norm of the Laplacian with respect to the waveform misfit.
Denoting L(m) the norm of the Laplacian:

L(m) = 1

2
‖
m‖2 , (24)

the gradient of the new misfit function is then given by:

∇χ ′(m) = g(m) + η∇L(m) . (25)

We have recalled in the previous section how to compute g(m) based
on the adjoint method. The Laplacian of the model can be computed
using a finite-difference operator in the regular 3-D Cartesian in-
version grid:


m(i, j,k) = −8m(i, j,k) + m(i−1, j,k) + m(i+1, j,k) + m(i, j−1,k)

+m(i, j+1,k) + m(i, j,k−1) + m(i, j,k+1). (26)

This formula can easily be adapted to the case of different smoothing
values along the horizontal and vertical directions:


m(i, j,k) = (−4lh − 2lv)m(i, j,k) + lh(m(i−1, j,k) + m(i+1, j,k)

+ m(i, j−1,k) + m(i, j+1,k)) + lv(m(i, j,k−1) + m(i, j,k+1)),

(27)

where lh and lv are the smoothing coefficients along the horizontal
and vertical directions, respectively. Let us denote 
d the discrete
Laplacian operator in the inversion grid, which is described by a
symmetric band-diagonal matrix. The norm of the discrete Lapla-
cian can then be written as:

L(m) = 1

2
‖
d m‖2 = 1

2
〈
d m|
d m〉 , (28)

where 〈〉 denotes the scalar product. Using these definitions, the
product

∇L(m).δm = 〈
d m|
dδm〉 (29)

can be written as:

∇L(m).δm = 〈
∗
d
d m|δm〉 = 〈
d
d m|δm〉 , (30)

since the discrete Laplacian is self-adjoint. From this last expression
we thus see that the gradient of the penalty function L(m) is simply
obtained by applying the discrete Laplacian to the model vector m
twice:

∇L(m) = 
d
d m. (31)

4 I T E R AT I V E O P T I M I Z AT I O N
A L G O R I T H M S

Different classes of nonlinear optimization methods can be used to
find the minimum of a cost function. Stochastic methods randomly
explore the model space with no other information than the value
of the cost function (e.g. Mosegaard & Tarantola 1995; Sambridge
1999). Their main advantage is that they converge towards the global
minimum of the cost function, but at the price of a much larger
computational cost. In practice, these methods are thus efficient
only if the dimension of the parameter space to explore is small,
which is not the case in 3-D full waveform inversion problems.

Steepest descent methods search for a perturbation of the model
along the direction defined by the gradient of the misfit function.
Their main two drawbacks are that the inversion may converge
towards a local minimum and remain trapped there, and that it may
converge very slowly. They are therefore not recommended for very
large problems in which the cost to estimate the misfit function and
the gradient is important.

The Gauss–Newton method is the most efficient technique in
terms of convergence speed. In this method, the search direction
is obtained by preconditioning the gradient by the inverse Hessian

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/202/2/811/590445 by guest on 18 June 2021



816 V. Monteiller et al.

(e.g. Pratt et al. 1998; Pratt 1999). However, this method requires to
first compute and store the Hessian, which requires a huge amount of
computation and storage space, and then to solve a very large system
of linear equations. In the case of 3-D full waveform inversion, such
an approach is currently completely prohibitive.

For all these reasons, we thus choose to use the L-BFGS method
(Nocedal & Wright 2006) to handle the full waveform inversion
problem. The main appeal of this method is that while it is affili-
ated to Gauss–Newton methods, it does not require computing and
storing the Hessian (or its inverse) explicitly.

4.1 The L-BFGS method

Using iterative methods, it is possible to compute an estimate of
the inverse Hessian based only on the knowledge of the gradient at
the previous iterations, the quality of the approximation improving
with the number of previous iterations used. The method generates
a series of models that gradually converge towards a minimum of
the misfit function (which may be local) and a series of matrices
that converge towards the inverse Hessian.

The BFGS formula to compute Hk , the approximate inverse Hes-
sian at iteration k, is given by (Nocedal & Wright 2006):

H−1
k 
 H−1

k−1 − H−1
k−1 · sk−1 ⊗ sk−1 · H−1

k−1

sk−1 · Hk−1 · sk−1
+ yk−1 ⊗ yk−1

yk−1 · sk−1
, (32)

where ⊗ is the tensor product, sk = mk − mk−1 is the difference be-
tween the current model and the model at the previous iteration, and
yk = ∇χ ′

k − ∇χ ′
k−1 is the gradient change. Using eq. (32) one can

iteratively calculate an estimate of the inverse Hessian H−1 based
on the knowledge of the approximation of the inverse Hessian at
the previous iteration, the difference s between the current model
and its value at the previous iteration, and the difference y between
the current gradient and the gradient at the previous iteration. Com-
pared to the gradient method, convergence of BFGS is much faster
(for a mathematical proof see, e.g. Nocedal & Wright 2006) for the
same numerical cost. Convergence is about a factor of four faster
in the examples that we will show below. Compared to the classical
Gauss–Newton method, BFGS is also easier to implement because
it does not require to compute and store the inverse Hessian. The
reader is referred to chapter 7 of Nocedal & Wright (2006) for a
more detailed presentation of the BFGS algorithm.

To compute the search direction at iteration k

pk = −H−1
k · ∇χ ′

k , (33)

one only needs to perform a matrix–vector multiplication. However,
in the case of large problems it is currently impossible to compute
and store even the approximate inverse Hessian matrix. Since in
eq. (33) one does not need to explicitly store it but only be able
to compute its effect on a vector (the gradient), a modified method
called the L-BFGS algorithm (for ‘limited-memory BFGS’) has
been developed (Nocedal & Wright 2006) in order to compute the
matrix–vector product in eq. (33) without having to store the inverse
Hessian. The principle of L-BFGS is to use eq. (32) iteratively to
compute the product of the inverse Hessian, using the gradient from
the initial inverse Hessian and the history of models and gradients
accumulated in the iterations of the algorithm. In this case, one only
needs to store a set of models and gradients, which represents only a
fraction of the storage space required to store the complete inverse
Hessian. The number of previous models and gradients that are
kept in memory is a parameter chosen by the user. An initial inverse
Hessian H−1

0 also needs to be specified; we will present below a
simple approach to define it.

4.2 Calculation of the step length

Once the descent direction pk at iteration k has been obtained, it
is necessary to determine the step length, or in other words to
decide how far to move along that direction. This problem can be
formulated as finding the step s that minimizes

φ(s) = χ ′(mk + spk) . (34)

In practice, determining that optimal step precisely may require to
test a large number of step lengths, which can thus be very expen-
sive. However, one should keep in mind that χ ′(m) rather than φ(s)
is the quantity that we need to minimize. It is thus sufficient to find
an approximate step at minimal cost that honours certain conditions
in order to make the optimization method converge. In practice, the
step length variations between two iterations must be sufficiently
large so that the algorithm requires a moderate number of iterations
to converge, and sufficiently small to avoid the divergence of the
algorithm. A good compromise is to use the so-called Wolfe condi-
tions to select the step length (Nocedal & Wright 2006). These rules
test if the current step provides a sufficient decrease of both the cost
function and the gradient. Introducing parameters 0 < c1 < c2 < 1,
and φ′(s) the derivative of φ with respect to s, the step length is kept
if:

φ(s) ≤ φ(0) + c1sφ′(0) and |φ′(s)| ≤ c2|φ′(0)| . (35)

If these two conditions are not satisfied, a new step is tested. If

φ(s) > φ(0) + c1sφ′(0) (36)

the step is too long, and one then tests a smaller step length. On the
other hand, if:

φ(s) ≤ φ(0) + c1sφ′(0) and |φ′(s)| > c2|φ′(0)| , (37)

the step is too short, and one then tests a longer step. When it
is no longer possible to find a step that satisfies these relations,
convergence is reached and one then stops the algorithm. Tuning
parameters c1 and c2 makes the selection rules more or less re-
strictive in terms of accepting the step length. For example, if c1

is chosen close to 0, it is easier to honour the first inequality. In
our implementation, we select c1 = 0.1 and c2 = 0.9, the standard
values recommended by Nocedal & Wright (2006).

5 T E S T O F T H E M E T H O D O N A
C H E Q U E R B OA R D M O D E L

In order to test the inversion method described in the previous sec-
tions, we consider a simple ideal (in terms of ray coverage) synthetic
chequerboard test. The chequerboard model is composed of 20 km
cube-shaped velocity anomalies of ±0.5 km s−1 embedded in a ho-
mogeneous model in which Vp = 8 km s−1, Vs = 4.5 km s−1 and
ρ = 3000 kg m−3. We perform the computations in a 100 km ×
100 km × 60 km regular Cartesian grid discretized with 2 km cu-
bic elements. The model is illuminated by 20 different plane-wave
sources coming from the south, east, north and west directions
and with incidence angles of 20, 30, 45, 60 and 80. These plane
waves are recorded by an array of 2116 stations uniformly dis-
tributed at the free surface with an inter-station spacing of 2 km.
The source wavelet is a Gaussian with a dominant period of 1.25 s,
and we invert the vertical component of P waveforms in time win-
dows that start 5 s before the P-wave arrival and end 10 s af-
ter. The starting model in the iterative algorithm is the homoge-
neous background model. In the beginning of the inversion, we
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Figure 1. Results of full waveform inversion for a chequerboard test. The plots show vertical cross-sections (left) and map views (right) of the Vp and Vs

models obtained with a hierarchical algorithm starting with data low-pass filtered at 5 s (top) and then gradually decreasing the corner period of the filter to
0.5 s (bottom). We used 20 plane waves with 5 coming from the north, 5 from the south, 5 from the east and 5 from the west, with incidence angles of 20, 30,
45 and 80◦ for each of the four waves in each case. The misfit function decreases from 13.16 to 0.14 in 18 iterations for the data filtered at 5 s, from 6.45 to
0.17 in 62 iterations for the data filtered at 2 s, from 1.99 to 0.54 in 76 iterations for the data filtered at 1 s and from 1.8 to 1.05 in 63 iterations for the data
filtered at 0.5 s.

invert the waveforms low-pass filtered at 0.2 Hz and gradually in-
crease the corner frequency of the filter up to 2 Hz. Moving from
low to high frequencies helps the inversion to converge towards
a model close to the true model (Fig. 1) without getting trapped
in a secondary minimum of the misfit function (e.g. Pratt 1999;
Pageot et al. 2013).

6 A M O R E R E A L I S T I C S Y N T H E T I C
C A S E

To illustrate the feasibility and potential of our approach, we now
apply our waveform inversion method to a synthetic model with a
crustal root. While this model represents a simple analogue of the
crust beneath a narrow mountain range, at this point we did not
introduce a topography profile as in Monteiller et al. (2013). It is
worth mentioning that our approach only requires computational
resources that are nowadays accessible: all the simulations are run
on a moderate-size cluster with a number of processor cores used
typically smaller than 500.

6.1 The computational grid and the synthetic
experiment settings

The computational grid is a chunk of the sphere with a size of
2◦ in the north–south direction, 1◦ in the east–west direction and
75 km in the vertical direction (Fig. 2). This chunk is discretized
using 2.5 km × 2.5 km × 2.5 km hexahedral elements. The min-
imum shear wave velocity is 3.36 km s−1 and the calculations are
performed for a minimum seismic period of 1 s. We consider four
different explosive sources located at 600 km depth. Sources 1
and 2 are located at an epicentral distance of 60◦ with respect to
the centre of the chunk, while sources 3 and 4 are located at 50◦.
The backazimuths for the four sources are respectively 0, 180, 20
and 60◦.

We construct a lithospheric model (Fig. 3) starting from the
IASP91 reference Earth model (Kennett & Engdahl 1991). In this
model, the crust consists of two homogeneous layers separated by
an interface located at 20 km depth. The P- and S-wave velocities
are respectively 5.8 and 3.36 km s−1 in the top layer, and 6.5 and
3.75 km s−1 in the bottom layer. The Moho is located at 35 km
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818 V. Monteiller et al.

Figure 2. The spectral element mesh that we use in the SPECFEM3D software package. The X-axis is oriented along the south–north direction, the Y-axis
along the west–east direction and the Z-axis from bottom to top. A linear profile of 40 recording stations is placed on the free surface along the X-axis at y = 0.
This mesh is composed of 121 500 spectral elements having a total of 8 910 835 degrees of freedom. The minimum distance between two mesh points is 431 m
and the maximum distance is 1406 m.

Figure 3. Synthetic model of P (top) and S (bottom) velocities.

depth. We modify this 1-D model by changing the geometry of the
Moho. To do so, we introduce a 25 km Moho jump at X = 11 km,
the X-axis following a meridian. To the south of this Moho jump,
the Moho has a polynomial variation of degree 2, from 35 km depth

at the southern edge of the grid to a maximum depth of 60 km.
The negative velocity anomaly related to this lower crust thicken-
ing is about 20 per cent for the P-wave speed and 15 per cent for
the S-wave speed. We place 40 stations along a north–south profile
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Figure 4. The smooth 1-D P and S velocity models that we use as starting models for waveform inversion.

located in the middle of the mesh chunk, with a station spacing of
5.5 km.

The choice of the starting model is important in nonlinear itera-
tive methods because it can significantly influence the convergence
speed as well as the results of the inversion. Since we use the IASP91
reference Earth model to compute the incident teleseismic wave-
fields based on DSM, it would seem natural to also use this model
as the initial model. However, this choice would be far from optimal
because the gradients at the first iterations would be strongly con-
taminated by the seismic signature of the interfaces in the starting
model. Unless one has a good a priori knowledge of the geometry of
the interfaces, it is thus better to start from a smooth model having
no interface. This smooth initial model must preserve the arrival
times of the direct waves computed in the reference Earth model.
This constraint is met by searching for the smooth 1-D polynomial
model that conserves the traveltime of vertically propagating P and
S waves in the IASP91 model. We match this smooth model, shown
in Fig. 4, to the IASP91 model on the edges of the SEM grid using
a cosine taper function with a width of 15 km.

Fig. 5 compares the vertical and radial seismograms computed
in the 1-D smooth starting model of Fig. 4 to those computed in
the 3-D model of Fig. 3. The seismograms are filtered in different
frequency bands to show the effect of the filter on the seismic wave-
forms that are used at different stages of the hierarchical iterative
waveform inversion algorithm. The most salient feature observed
on the vertical component seismograms is that the direct P wave
(the first arrival in the record section) recorded at stations 12 to
20, located above the strong low-velocity anomaly related to the
thickened crust, is both delayed and amplified. This effect is mostly

visible at short period. The complex Moho topography has a clear
signature on the traveltime of the PpPmP phase (P wave reflected
beneath the free surface and reflected back by the Moho), which
arrives about 10 s after the P wave at the stations located at the two
extremities of the profile. In particular, the curvature of the Moho
in the southern domain can be directly observed through its influ-
ence on the onset of the PpPmP phase. Other notable effects on the
vertical record section are the diffracted waves that are scattered
at the extremities of the vertical segment of the crust-mantle inter-
face. Again, these effects are mostly visible at short period. At long
period, crustal multiples and diffracted waves interfere, producing
smooth amplitude modulations of the direct P wave and its coda.

6.2 Gradient of the cost function and pre-conditioning

In the first iteration, the gradients are computed in the smooth 1-D
model (Fig. 4). Total gradients for Vp and Vs obtained by summing
the gradients computed for the four individual sources are shown in
Fig. 6. These gradients are computed by considering different time
window lengths around the direct P wave and different filterings.
The Vp and Vs gradients show very different behaviours. The Vp

gradient is remarkably stable when the length of the time window
is increased, meaning that it is dominated by the contribution of
the direct P wave. Nevertheless, a closer look reveals that for win-
dow lengths extending beyond 20 s after the P wave, a sharp band
of enhanced sensitivity is observed in the Vp gradient. This band,
which is more clearly seen at short period, approximately follows
the Moho geometry in the true model. This sensitivity to sharp ve-
locity gradients is carried by the PpPmp phase, which arrives around
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820 V. Monteiller et al.

Figure 5. Radial and vertical synthetic seismograms for the first source (distance 60◦, backazimuth 0◦) computed in the 3-D model of Fig. 3 (black lines) and
in the smooth starting model of Fig. 4 (red lines), low-pass filtered at 10 s (a, d), 5 s (b, e) and 1 s (c, f). The blue lines show the time windows used in the
inversions.

10 s after the P wave, as can be seen in Fig. 5. For periods longer
than 5 s, the Vp gradient is dominated by the contribution of the
low-velocity anomaly associated with the thick crustal root. Note
that the geometry of this crustal root is better retrieved with longer
time windows that include the reverberations on the Moho. Again,
this is consistent with a Vp gradient dominated by the contribution
of the direct P wave, that is, to long wavelength structures, the later
reverberations being mainly sensitive to sharp velocity interfaces,
that is, to short wavelength structures. At shorter period (1–2 s), the
gradient exhibits a large central V-shape anomaly that takes its roots
along the vertical edge of the crust-mantle boundary. It is probably
produced by the contribution of waves diffracted on the vertical
edge of the Moho, illuminated from the north or from the south by
the different teleseismic sources.

In contrast, the Vs gradient shows strong sensitivity to seismic
velocity jumps at the mid-crust and crust-mantle interfaces at all
the periods, regardless of the time window length considered. This
is not surprising, since PmS, the phase converted from P to S at the
Moho, arrives 4–6 s after the P wave and is thus always present in
the parts of the seismograms that are inverted. Other later-arriving
phases that are multiply reflected off crustal discontinuities such
as the PpPms or the PpSms are only present in the longest time
window, which ends 25 s after the P wave (see Fig. 5). Previous
studies have shown that including these backscattered waves in
the inversion leads to drastic resolution improvement (e.g. Bostock
et al. 2001; Rondenay 2009; Pageot et al. 2013). This is clearly
seen in the last column of the top of Fig. 6 where the Moho is more
sharply defined than in the case of gradients computed for shorter

periods. At periods longer than 5 s, the Vs gradient starts to bring
information on the long-wavelength part of the Vs model.

As pointed out by Virieux & Operto (2009), there is a close
connection between full waveform inversion and diffraction tomog-
raphy (Wu & Toksoz 1987). The wavenumbers in the model space
that can be resolved depend on the source–receiver configuration
through the relation (Sirgue & Pratt 2004; Virieux & Operto 2009;
Pageot et al. 2013):

k = 2ω

c
cos

θ

2
, (38)

where θ is the scattering angle and c the local velocity. From
eq. (38), it can be seen that low-frequency data and forward scattered
waves (θ ∼ 180◦) resolve the long wavelengths of the medium. On
the other hand, high-frequency data and backscattered waves (θ ∼
0◦) resolve the small wavelengths of the medium, with a theoretical
resolution limit of half a wavelength. Finally, since Vs is signifi-
cantly smaller than Vp (by a factor of typically about 1.7–2), this re-
lation also predicts that for the same frequency content, shear waves
will constrain significantly shorter wavelengths than compressional
waves. Applied to a teleseismic source–receiver configuration, eq.
(38) thus qualitatively explains the main observations that can be
made on the Vp and Vs gradients.

Another notable feature in the Vp and Vs gradients is the strong
amplification of sensitivity close to the surface. This effect is only
barely visible in the gradients plots because of the amplitude cut-off
in the colour scales. The near-surface amplification mainly results
from the geometrical spreading of seismic waves, which tends to
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Figure 6. Gradient of the misfit function for Vs (a, b, c, d) and Vp (e, f, g, h) computed for a time window that starts 10 s before the direct P wave and ends
20 s (b, d, f, h) or 40 s (a, b, e, g) after. We filtered the waveforms with a 10 s (a, b, e, f) or 2.5 s (c, d, g, h) low-pass Butterworth filter.

diminish their amplitude at depth. These contrasted sensitivities in
the Vp and Vs gradients are usually accounted for and balanced by
a pre-conditioning operator. In the L-BFGS algorithm, one needs
to define an approximate inverse Hessian that is later refined in the
different iterations of the algorithm; for that purpose in the following
we will define the initial inverse Hessian based on the square root
of depth at each point in the tomographic grid.

6.3 A first inversion test

We run a first test by considering a time window starting 10 s before
and ending 50 s after the P wave, for periods down to 2.5 s, inverting
the broadband seismograms simultaneously for the four sources.

6.3.1 Results

Fig. 7 shows the convergence history for Vp and Vs models obtained
during the iterations of the L-BFGS algorithm. Compared to the
input model, the final Vp model fails to resolve the sharp interfaces
of the input crustal model but the thick crustal root is well retrieved,
with a geometry close to the original and with very little artefacts.
In fact, the results of this first attempt to use the P waveforms
are already very good for the Vp model. However, the results for
Vs are less accurate: in the Vs model the seismic interfaces are
more sharply defined, but very strong artefacts are visible in the
lower crust. Such very contrasted behaviours directly result from

the different sensitivities of teleseismic P wavefields to Vp and Vs,
as pointed out above.

6.3.2 Comparison between the gradient and the L-BFGS methods

We applied the gradient and the L-BFGS methods to the complete
set of seismograms, iterating upon convergence of the algorithm. As
mentioned above, we define convergence as the moment at which
the algorithm cannot honour the Wolfe conditions any more. With
the gradient method, a 99.79 per cent reduction of the misfit is ob-
tained after convergence, which is reached after 732 iterations. The
final model obtained with the L-BFGS algorithm gives the same re-
duction of the misfit, but more importantly convergence is reached
much faster, after only 137 iterations. Fig. 8 compares the evolu-
tion of the misfit function for the gradient and L-BFGS algorithms.
Since each L-BFGS iteration requires the same amount of compu-
tations as the gradient method, this comparison demonstrates that
owing to its faster convergence rate the L-BFGS method is superior
because it requires fewer iterations and thus a smaller total number
of calculations than the gradient method to reach convergence.

6.3.3 Comparison between adjoint tomography
and full waveform inversion

The seismological community has started to compute synthetic seis-
mograms in 3-D global and regional models and incorporate them
in a minimization procedure of phase misfits measured in different
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Figure 7. Vp (left) and Vs models obtained after 10 (a, e), 25 (b, f), 35 (c, g) and 50 (d, h) iterations of the L-BFGS algorithm.

Figure 8. Decay of the misfit function as a function of the number of
iterations in the gradient (blue) and L-BFGS (red) algorithms.

frequency bands (Fichtner et al. 2009; Tape et al. 2009). This can
also be related to full waveform inversion with transmission data as
developed for instance by Gee & Jordan (1992) and Luo & Schuster
(1991). This minimization procedure is also iterative, and requires
computing gradient kernels based on the adjoint method, but in this

case using differential traveltime adjoint sources instead of wave-
form adjoint sources as in the full waveform inversion approach.
This tomographic approach, sometimes called adjoint tomography
in the recent literature, has gained popularity owing to its superior
resolution potential compared to classical ray tomography. Since
this approach relies on the phase of the seismic wavefield, it is ro-
bust and quasi-linearly related to Earth’s structures. At this point,
it is thus interesting to investigate whether resorting to waveform
adjoint sources instead of differential traveltime adjoint sources,
that is, using full waveforms instead of phase information only, can
offer significant improvement.

To address this issue, we ran a set of inversions considering ver-
tical components of the direct P-wave train in a time window that
starts 5 s before the P-wave onset and ends 7 s afterwards. We fil-
tered the seismograms with a 5 s low-pass Butterworth filter. We
first implemented adjoint tomography, in which we minimized the
phase misfit between the direct P wave in the real and synthetic
vertical components of the seismograms, starting from the initial
smooth 1-D model described above. After 15 iterations, the algo-
rithm converged towards a model that provides a misfit reduction
of 99 per cent. The final model, shown at the bottom of Fig. 9,
thus provides an almost perfect fit of phase anomalies. We then per-
formed full waveform inversion in the same data set, following the
approach described above. The algorithm converged after five iter-
ations, with a misfit reduction of 96 per cent. The model obtained
by full waveform inversion is shown at the top of Fig. 9.
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Figure 9. Models obtained by full waveform inversion (a) and adjoint to-
mography (b) from vertical-component direct P waves, after 15 iterations of
the L-BFGS in the case of adjoint tomography and 5 iterations in the case
of full waveform inversion.

Both methods are able to retrieve the thick crustal root beneath
the central part of the profile, with very little vertical smearing.
This is remarkable since, as in the previous inversion tests, these
models were obtained with only four teleseismic sources. On the
other hand, in the full waveform inversion model, the geometry
of the crustal root is much more sharply defined, which clearly
points to significantly finer resolution, both laterally and vertically.
In particular, the shape and the velocity contrasts of the main seismic
interfaces are both very well retrieved. This strongly suggests that
there is rich and useful information contained in the amplitude of
teleseismic waves, even at relatively long period (∼5 s) and that for
the same numerical cost, full waveform inversion can lead to more
accurate results than adjoint tomography.

6.4 Hierarchical multiscale full waveform inversion

The first inversion tests that we have performed above have shown
that the iterative full waveform algorithm may converge towards a
model that can be far from the true model, especially for the Vs

model. Indeed, the Vs model in Fig. 7 presents very strong high- and
low-velocity anomalies in the lower crust. In this section, let us thus
propose and explore some possible improvements of the inversion
algorithm.

A well-known limitation of full waveform inversion is that the
traveltimes predicted by the starting model must match the true
traveltimes with an error less than half the dominant period of the
signals. If not, cycle skipping occurs and inversion converges to-
wards a local minimum (e.g. Virieux & Operto 2009). To avoid
this problem, a simple solution is to adopt a multiscale or hierar-
chical algorithm, starting from the low frequencies and gradually
moving to including higher frequencies as well (e.g. Pratt 1999;
Pageot et al. 2013). Such a multiscale approach has been used in
a number of studies to obtain detailed velocity models of the crust
and lithosphere (e.g. Tape et al. 2009, 2010; Fichtner et al. 2009,

2013; Zhu & Tromp 2013). We thus performed inversions of P
waveforms over longer time windows, starting 10 s before the P
arrival and ending 50 s after. In the first inversion we filtered the
data between 0.01 and 0.1 Hz using a Butterworth bandpass fil-
ter. The starting model is the smooth model shown in Fig. 4. The
L-BFGS algorithm is iterated upon convergence, usually reached
after five or six iterations, and then repeated with an upper corner
frequency gradually increased to 0.8 Hz by steps of 0.1 Hz. Each
new inversion starts from the 3-D model obtained after convergence
of the previous inversion. Smoothing constraints are imposed to the
model by damping its Laplacian. Without them, the models would
be contaminated by strong artefacts, which tend to be stronger at
shorter period. Some models obtained at different stages of the in-
version are shown in Fig. 11. The comparisons shown in Fig. 10 of
the waveforms obtained in the final 3-D model (Figs 11c–d) with
the waveforms obtained in the true model (Fig. 3) demonstrate that
the final model provides a very good match of the waveforms in all
the frequency bands considered.

In a second test, we considered shorter time windows, which this
time ended 25 s after the P wave, and left all the other parame-
ters unchanged. The models obtained in this new inversion test are
shown in Figs 11(b) and (f). Comparison of the models clearly sug-
gests that shortening the time window has a detrimental effect on the
results of waveform inversion. Closer inspection of Fig. 11 reveals
that the Vs model is always more poorly retrieved than the Vp model,
with a quality that deteriorates at frequencies above 0.2 Hz. This
comes from the fact that at these frequencies the shear wavelength
is smaller than station spacing and thus aliasing appears. We thus
tried a new inversion with a station spacing of 500 m. The results are
shown in Figs 11(d) and (h). The small artefacts that were present
with a coarser array of recording stations are considerably reduced.
The density of sensors is thus a crucial parameter that controls
spatial resolution (see also Pageot et al. 2013, for a more detailed
discussion of the relation between resolution and sampling of the
seismic wavefield), especially for shear wave velocities. In all the
above we have used the same penalty coefficients to smooth the Vp

and Vs models, while the P wavelength is approximately twice the S
wavelength. This would suggest that stronger smoothing constraints
should be applied to the shear velocity models. There is thus still
room for improvement of the full waveform inversion algorithm
used. Such improvements will be investigated in more details in fu-
ture work when we start applying our waveform inversion approach
to real data.

7 D I S C U S S I O N

Using a sequential, multiscale waveform inversion of seismograms
recorded by a rectilinear array, we have shown that it is possible
to recover Vp and Vs over a broad range of scales, including the
geometry of sharp seismic discontinuities such as the mid-crust and
crust-mantle interfaces. These velocity models have a much finer
resolution than what could be obtained based on classical ray-based
traveltime tomography or even adjoint tomography. In particular,
the depth resolution is remarkable, with almost no visible vertical
smearing of the low-velocity crustal anomaly into the mantle, which
is a typical shortcoming of regional body wave tomography (e.g.
Chevrot et al. 2014).

So far we have only investigated a significantly heterogeneous
crustal model, containing both short- and long-wavelength hetero-
geneities. For the same 5 km receiver spacing as the one considered
here, the overlap of the Fresnel zones of adjacent receivers will

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/202/2/811/590445 by guest on 18 June 2021



824 V. Monteiller et al.

Figure 10. Radial and vertical synthetic seismograms for the first source (distance 60◦, backazimuth 0◦) computed in the 3-D model of Fig. 3 (black lines)
and in the final model of Figs 11(c) and (g) (red lines). The seismograms are low-pass filtered at 10 s (a, d), 5 s (b, e) and 1 s (c, f).

increase with depth and we thus expect even finer resolution for
imaging lithospheric mantle structures. This opens important and
new perspectives for instance for detailed imaging of subduction
zones or of deep crustal and lithospheric roots of high mountain
ranges (e.g. the Himalayas).

Our synthetic experiment tried to reproduce the characteristics
of temporary experiments as closely as possible. For example, the
5 km receiver spacing is similar to that in many recent temporary de-
ployments (Chevrot et al. 2014). The ability to obtain well-resolved
models with an extremely limited number of sources (here we used
only four different teleseismic sources) also suggests that this ap-
proach can be used even for data obtained in short-duration tempo-
rary experiments (typically a few months) with reasonable hope of
success. For a much larger number of teleseismic sources, source
encoding may be a viable option to accelerate the computations.
For example, Castellanos et al. (2015) have shown that the L-BFGS
method can be implemented through a source-encoding approach,
which leads to significant reduction of the computational cost.

In this study we have only considered the direct P waves, but
since the DSM–SEM hybrid method can model any type of in-
coming wave, it would be straightforward to include any other
later-arriving phase in the inversion. Considering seismic phases
with different slownesses (or incidence angles) would improve spa-
tial coverage and consequently resolution in the final tomographic
models. For example, including the direct S waves should allow for
better reconstruction of the Vs model.

Before applying our full waveform inversion approach to real
waveform data, a number of issues will need to be addressed. First, in
our synthetic experiments, we considered simple impulsive wavelets

with short temporal support. As a result, the different seismic phases
are well separated in time, at least at short period. In contrast, natural
earthquakes will have more complex and longer source wavelets.
These source wavelets and source locations will need to be estimated
before the inversion or included into the inversion problem (e.g. Liu
et al. 2004). Another potential source of complexity may come from
topographic relief. In addition to perturbing the arrival times and
amplitudes of seismic waves, topography of the free surface (e.g.
Lee et al. 2008, 2009; Köhler et al. 2012) generates strong body-to-
surface wave conversions that contaminate the coda of the P wave
(Monteiller et al. 2013). This signal-generated noise will decrease
the signal-to-noise ratio of later-arriving phases such as the P-to-
S converted phases or the crustal multiples that are key to image
the sharp velocity interfaces. However, since simple migration ap-
proaches of P-to-S converted waves have largely demonstrated their
potential to image seismic discontinuities, there should be no rea-
son for full waveform inversion, which more accurately describes
all the wave propagation effects, to fail. Finally, site effects may
affect the amplitude of teleseismic P waves, in particular at short
periods (e.g. Zhou et al. 2003). It will thus be necessary to separate
local site amplifications from the effects of focusing/defocusing of
seismic waves produced by propagation through an heterogeneous
medium.

8 C O N C LU S I O N S A N D F U T U R E W O R K

Building on the recently developed DSM/SEM hybrid method
to compute synthetic seismograms of short-period teleseismic P
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Figure 11. Full waveform inversion with the hierarchical multiscale approach. The panels show the (a) Vp and (e) Vs models obtained in the first inversion,
which uses a 0.001–0.1 Hz frequency range. Panels (b) and (f) show the Vp and Vs models obtained using a 0.001–0.4 Hz frequency range with a 35 s time
window going from 10 s before to 25 s after the P wave, panels (c) and (g) using a 60 s time window going from 10 s before to 50 s after the P wave, and panels
(d) and (h) for a station spacing of 500 m instead of 5.5 km.

waves, we have implemented an adjoint approach to compute the
gradient of traveltime or waveform misfit functions in 3-D regional
models. This key ingredient for full waveform inversion of seis-
mic records opens new perspectives for high-resolution imaging
beneath dense permanent or temporary arrays of seismic sensors.
We have demonstrated that this nonlinear full waveform inversion
problem can be efficiently handled based on the L-BFGS algo-
rithm, a memory-efficient implementation of the Gauss–Newton
algorithm that does not require computing and storing the inverse
Hessian matrix. Compared to the gradient method, the L-BFGS
method converges faster (in about four times fewer iterations in
the examples that we have shown) and also leads to models that
provide stronger waveform misfit reductions. This points to avoid-
ing gradient-based methods to solve nonlinear waveform inversion
problem. We have shown that a sequential multiscale inversion, in
which a Vp model is first inverted from the vertical component of
the P wave and then refined in a subsequent inversion for both Vp

and Vs using both vertical and radial components, leads to dramatic
improvement of the Vs model retrieved compared to the direct joint
inversion of Vp and Vs. Convergence is achieved after a few tens of
iterations (typically less than 20), providing high-resolution models
of Vp and Vs in which both the short- and long-wavelength struc-
tures are very well retrieved. This key advantage over conventional

reflection seismic imaging comes from the presence of both direct
transmitted P waves, which constrain the 3-D background velocity
model, and reflected/converted waves in the coda of the P waves,
which mainly constrain the geometry of seismic interfaces. Given
the ease of access to moderate-size computing clusters and the in-
creasing development of dense regional seismic recording arrays
worldwide, we anticipate rapidly growing interest in regional full
waveform imaging from both seismologists and geologists alike,
who will, perhaps for the first time, have the possibility to analyse
high-resolution tomographic images prone to detailed interpreta-
tions in varied tectonic environments. Application of this new full
waveform imaging approach to real data is under way.
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