
HAL Id: hal-01265151
https://hal.science/hal-01265151

Submitted on 2 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A flexible architecture for call centers with skill-based
routing

Benjamin Legros, Oualid Jouini, Yves Dallery

To cite this version:
Benjamin Legros, Oualid Jouini, Yves Dallery. A flexible architecture for call centers with
skill-based routing. International Journal of Production Economics (IJPE), 2015, 159 (192-207),
�10.1016/j.ijpe.2014.09.025�. �hal-01265151�

https://hal.science/hal-01265151
https://hal.archives-ouvertes.fr


A Flexible Architecture for Call Centers with Skill-Based Routing

Benjamin Legros • Oualid Jouini • Yves Dallery
Laboratoire Génie Industriel, Ecole Centrale Paris, Grande Voie des Vignes, 92290
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Abstract

We focus on architectures with limited flexibility for multi-skill call centers. The context is

that of call centers with asymmetric parameters: unbalanced workload, different service require-

ments, a predominant customer type, unbalanced abandonments and high costs of cross-training.

The most well-known architectures with limited flexibility such as chaining fail against such

asymmetry. We propose a new architecture referred to as single pooling with only two skills per

agent and we demonstrate its efficiency. Using simulation, we conduct a comprehensive compar-

ison between this architecture and chaining. As a function of the various system parameters, we

delimit the regions where either chaining or single pooling is the best. Single pooling leads to a

better performance than chaining while being less costly under various situations of asymmetry:

asymmetry in the number of arrivals, in the service durations, in the variability of service times,

or in the service level requirements. It is also shown that these observations are more apparent

for situations with a large number of skills, or for those with a large call center size.

Keywords: Call centers; queueing models, skill-based routing; flexibility; performance mea-

sures; chaining; simulation; asymmetric parameters.

1 Introduction

Context and Motivation. The concept of flexibility is related to the ability of a company to

efficiently match its capacity to an uncertain demand with multiple types. The need for flexibility

arises in a wide range of manufacturing systems. It also extends to service systems, such as call

centers, where different types of customers ask for a quasi-instantaneous processing. Resource flex-

ibility in call centers reduces to cross-training agents, which allows to improve both the utilization

and the performance. Since cross-training agents is achieved with higher operating costs, resource

flexibility could result in a trade-off between performance and cost. The performance is measured

through operational indicators such as the expected waiting time, the probability of delay, or the

waiting time distribution.



We consider flexibility questions in the context of queueing models for call centers. A wide

literature has focused on contrasting two extreme situations. The full flexible architecture (FF)

versus the the full dedicated (FD) one. In the FF model, each agent is fully cross-trained for all

call types. In most situations in which call types have similar service duration requirements, FF

would require less agents than any other architecture, in order to reach a given predefined service

level. The reason is that it benefits from the economies of scale, which absorb stochastic variability

(Borst et al. (2004)). However the agents in FF are too costly and even sometimes impossible to

find. As commented by Marengo (2004), the multilingual Compaq call center certainly could not

find or train agents to speak eleven languages! In the other extreme situation of the FD model, an

agent is only trained to handle a single call type. Agents are then less costly, but FD would require

a larger staffing level to reach the same service level as in FF or any other architecture.

Full flexibility and full dedication, however, are only two extreme situations. A well-known

intermediate configuration is chaining, first pointed out by Jordan and Graves (1995). Under

chaining, each call type can be assigned to one of two adjacent agent teams, and each agent can

handle calls from two adjacent types. Sheikhzadeh et al. (1998), Gurumurthi and Benjaafar (2004),

and Jordan et al. (2004) prove that chaining, with an appropriate linkage between demand and

resource types, behaves just as well as full flexibility. In the context of Constant Work in Process

(CONWIP) serial production lines, Hopp et al. (2004) showed that the impact of forming a complete

chain of skill sets can be substantial in increasing throughput. Wallace and Whitt (2005) consider

the problem of routing and staffing in multi-skill call centers. They again confirm the principal that

a little flexibility has the potential to achieve the performance of total flexibility. Using simulation

they demonstrate that the performance, with an appropriate and limited cross-training of agents

(two skills per agent) such as in chaining, is almost as good as when each agent has all skills.

Developing intelligent configurations such as chaining is very interesting for practitioners. They

allow to capture the benefits of pooling by only having a limited flexibility. However, the robustness

of chaining fails in the case of asymmetric demand (Sheikhzadeh et al. (1998)). By asymmetric

demand, we mean different workload intensities and service time requirements, and also different

variabilities in inter-arrival and service times. For such cases in practice, it is important to develop

new architectures that allows from on one hand to account for demand asymmetry, and on the

other hand to capture the benefits of pooling with only a limited flexibility.

In this paper, we consider skill-based routing (SBR) call centers with two particular features:

demand asymmetry and costly/difficult agent training. The typical example is that of an European

multilingual call center where customers call from several countries. It is difficult for managers to

find agents speaking more than two languages. For instance, in the call center of an European

2



Airline company, each agent speaks two languages: her own native language and English. Note

that this call center is more interested in agents speaking two languages rather than those speaking

three or more languages. The reason is that the latter often feel themselves over-qualified. They

are therefore likely to leave the company faster than the others, which increases the turnover. The

workload is also unbalanced ranging from only some few calls from a given country to several

thousand of calls from another country. Another example is post-sales service call centers of major

retailers that are, at the same time, distributors of white goods, telecommunications products,

information technology, but also internet services, photo services or travel services. We also give

the example of retail banking call centers where questions are with regard to savings or stock

exchange for examples. The main characteristics in the previous examples are (i) the demand is

unbalanced, (ii) the required agent skills can be very different which make difficult or too costly

the agent training, and (iii) one may find a predominant and “easy” type of questions that could

be handled by most of the agents without any particular training, for example the English task in

a multilingual call center, account information and simple bank tasks in banking, order tracking

and payment for retailers, etc.

Main findings. Motivated by this prevalence in practice, we propose a new organizational model,

referred to as single pooling (SP), where we dedicate a team of agents to each difficult type of calls,

and the easy type of calls have access to all agents from all teams. Balancing the workload among

the agents in this way captures the benefits of pooling without requiring every agent to process

every call type. We do not claim that our model is better than chaining in all cases, but only in the

particular situations of the call center examples above. The value of our architecture is that it has

a low degree of flexibility (each agent handles one difficult type and the easy task) while behaving

in terms of performance as a fully flexible call center. This is important in practice since additional

flexibility often comes at the cost of high operating overhead.

Using simulation, we conduct a comprehensive comparison between single pooling and chaining.

As a function of the various system parameters, we delimit the regions where either chaining or

single pooling is the best. Few of our key findings are highlighted next. Single pooling leads to

better performance while being less costly than chaining under various situations of asymmetry

between the customer types: asymmetry in the number of arrivals, in the service and abandonment

times, in the variability of service times, or in the service level requirements. Moreover, we conclude

that these observations are more apparent for situations with a large number of skills, or for those

with a large call center size.

The rest of the paper is organized as follows. In Section 2, we review some of the literature

related to this paper. In Section 3, we describe chaining and single pooling models, and provide

3



the comparison framework. Under some particular assumptions, we develop in Section 4 two

numerical approximate methods for the analysis of single pooling and chaining. In Section 5, we

use simulation to compare between the two models under various situations of asymmetry on the

parameters. Section 6 concludes the paper and highlights some future research.

2 Literature Review

There is an extensive and growing literature on call centers. We refer the reader to Akşin et al.

(2007) for an overview. We review in what follows some of the literature related to this work.

Impact of Pooling. The value of pooling comes from the creation of flexibility. The general

known intuition is that pooled systems are more effective than independent ones. The impact of

pooling has been first studied in Smith and Whitt (1981). They show that pooling always leads

to better performance in terms of the expected delay in the queue. Akşin and Karaesmen (2007)

investigate the impact of the call center size on the opportunity to add flexibility. They demonstrate

that a small call center will benefit more from adding flexibility than a larger one.

Benjaafar (1995) studies the impact of pooling for a variety of manufacturing, telecommunica-

tion and computer systems. He considers a multi-processing system consisting of several facilities

and shows that in some situations of heterogeneity in the workloads, increasing flexibility can dete-

riorate performance. Mandelbaum and Reiman (1998) consider stochastic service systems modeled

as queueing networks. They show that adding flexibility does not automatically improve perfor-

mance. They point out that adding a partial flexibility could be devastating. Recently, van Dijk

and van der Sluis (2008) show in the context of SBR call centers that without any clever routing

rules and under a high variability in the call types and the resources, pooling could deteriorate

the performance in terms of the average waiting time. Inspired by the results of Smith and Whitt

(1981), Tekin et al. (2009) show that pooling teams could be counterproductive if service time

means are very different from one customer type to another (for example when one is about six

times higher than the other ones).

Flexible Architectures. The most fundamental work on flexibility is that by Jordan and Graves

(1995) for the automobile assembly plants, but it can be also applied to broader manufacturing

system settings. They conclude that “a little flexibility can achieve almost all the benefits of total

flexibility” under a configuration referred to as chaining, with two product types per plant. Similar

results in the context of cellular manufacturing systems have been found by Garavelli (2001, 2003).

We also refer the reader to Albino and Garavelli (1999); Nomden and van der Zee (2008).

For queueing systems, Gurumurthi and Benjaafar (2004) compare different scenarios of adding

flexibility under different routing policies. They prove that the value of chaining decreases for an
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asymmetric demand. Hopp and van Oyen (2004) consider the question of how to cross-train a

worker to two skills in the context of serial production lines. They conclude that a novel strategy

called skill chaining strategy is more robust against variability than a cherry-picking strategy (a

team is full flexible) when demand is symmetric. The cherry-picking strategy in a serial production

line can be seen as similar to single pooling, where the customers are the machines, and the

bottleneck machine represents the easy type of calls. Tomlin and Wang (2005) consider the context

of unreliable supply chains that produce multiple products. They study four canonical supply chain

design strategies, where one of them, referred to as dual-source flexible, has been already proposed

by Chevalier et al. (2004) in the context of call centers. They refine the prevailing intuition that a

flexible network is preferable to a dedicated network by proving that this intuition is valid if either

the resource investments are perfectly reliable or the firm is risk neutral. In a similar setting to

ours, Robbins and Harrison (2010) introduce an SBR call center queueing model with two customer

types, referred to as partial pooling. They consider two dedicated agent teams for each customer

type, and one cross-trained team for both types. They show that cross-training a small number of

agents can deliver a substantial benefit.

Garnett and Mandelbaum (2001) argue on the importance of adapting the system architecture

to the asymmetry in the customer arrival rates. In summary, chaining is robust according to its

ability to support variability. It however fails when the demand is asymmetric. It can be also too

expensive to train agents on various combinations of two skills. For these situations, we propose

and analyze in this paper a new efficient configuration of a queueing call center model.

3 Problem Setting

We consider call center models with n + 1 call types (types 0, 1, ..., n). Customer types 1, 2, ...,

n, referred to as also regular types are those requiring specific agent skills 1, 2, ..., n, respectively,

while customers 0 can be handled by any agent without a particular “sophisticated” training as

required for the regular types. In other words, skill 0 is an easy skill. The mean arrival, service and

abandonment rates of customers type i are λi, µi and γi, respectively (i = 0, 1, ..., n). The agents

are organized in homogeneous teams, i.e., all agents from a given team have the same set of skills.

We only consider agent teams with at most two skills per agent. We define an economic framework

as follows. We assume that skill 0 costs 1, and that skill i costs 1+ti (for i = 1, · · · , n). For two

skills i and j, the cost is 1+ti,j (for i, j ∈ {0, · · · , n}). Since skill 0 is the easy skill, we assume that

ti,0 ≤ ti,j (for i, j ∈ {0, · · · , n}).

We focus on the performance in terms of the steady-state expected waiting time in the queue of

each customer type i taken in service, denoted by Wi, for i = 0, 1, ..., n. We denote the objective
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service level for a type i by W ∗
i , for i = 0, 1, ..., n. In what follows, we describe the two models

that we compare in this paper: chaining and single pooling. They are shown in Figures 1(a) and

1(b), respectively.
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(a) Chaining
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(b) Single pooling

Figure 1: Call center configurations

Under chaining, a customer upon her arrival has access to agents from two teams. If at least

an agent is available in one of them, then the customer is routed to the team with the higher

proportion of idle agents (number of idle agents in a team over the total number of agents in that

team). If this proportion is the same for the two teams, then she is equiprobably routed to one of

the two teams. Otherwise if all agents from the two teams are busy upon her arrival, the customer

waits in her queue (each customer type has its own infinite queue). An agent can handle customers

from two queues. Within each queue, the discipline of service is FCFS. When an agent becomes

idle, she selects to service one of the customers that are waiting in the two queues, if any. The

priority is given to the customer with the longest waiting time.

For single pooling, the discipline of service in each one of the n+ 1 infinite queues is FCFS. A

customer type i (i = 1, ...n) can be served by only an agent from its associated team. A customer

0 however can be served by any agent from any one of the n+ 1 teams. Upon arrival, a customer

0 is in priority handled by an idle agent from team 0, if any. If not, she is handled by an idle agent

from one of the teams of the regular types, if any. If more than one team have at least one idle

agent, then customer 0 is routed to the team with the higher proportion of idle agents. If many

teams have the same highest proportion, then customer 0 is equiprobably routed to one of these

teams. If all agents of all teams are busy, then customer 0 is placed in her queue. When an agent

from one of the teams of the regular customers becomes free, it can serve either a regular customer

or a customer 0. However a regular customer has a non-preemptive priority over a customer 0.
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We compare between the two models chaining and single pooling through simulations. In order

to have a coherent comparison we optimize their total staffing cost under the constraints Wi ≤ W ∗
i ,

for i = 0, 1, ..., n. We use greedy heuristics for the simulation based optimization step. We refer

the reader to the details in Section 1 of the online supplement. For the staffing optimization of SP,

we use an increasing greedy algorithm. Starting from an under-staffed situation (a full dedicated

model with customers 0), we increase step by step the arrival rate of customers 0. In each iteration,

we increment the number of agents in the various teams such that we strictly reach the service level

constraints. For chaining, we develop a decreasing greedy algorithm. The algorithm starts with an

over-staffed situation using a full dedicated model, which is the worst for chaining since it ignores

the links between the teams. We then use the approach suggested by Wallace and Whitt (2005) in

order to correct the staffing levels to the chaining setting.

4 Approximate Numerical Comparison

We numerically compute approximate expected waiting times for single pooling and chaining. For

tractability, we consider Markovian assumptions for inter-arrival and services times, and customer

abandonment is ignored. The objective of this analysis is to obtain some sense on the effect of the

parameters asymmetry on the comparison between the two architectures. A more comprehensive

analysis is then conducted in Section 5 using simulation. We employ a Markov chain method for

the performance analysis of each design. We first compute the steady-state system probabilities,

from which we deduce the expected waiting time for customers type i, i = 0, 1, ..., n.

Single Pooling. Consider a single pooling model with n+ 1 skills and n+ 1 teams, n ≥ 1. Let

us define the stochastic process {x(t), t ≥ 0} as

{x(t), t ≥ 0} = {(x0(t), x1(t), · · · , xn(t), x0,1(t), · · · , x0,n(t), q0(t), q1(t), · · · , qn(t)), t ≥ 0},

where for an instant t ≥ 0, xi(t) denotes the number of agents in team i that are busy with a

customer i, for i = 0, 1, · · ·n; x0,i(t) denotes the number of agents in team i that are busy with a

customer 0, for i = 1, · · ·n; and qi(t) denotes the number of customers in queue i, for i = 0, 1, · · ·n.

Since inter-arrival and service times are Markovian, {x(t), t ≥ 0} is a Markov chain with 3n + 2

dimensions. Let us denote the system steady-state probabilities by πx,

πx = πx0,x1,x2,··· ,xn,x0,1,x0,2,··· ,x0,n,q0,q1,··· ,qn ,
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with xi, x0,i ∈ [0, si] for i = 0, 1, · · ·n, and qi ∈ N for i = 0, 1, · · ·n. The computation method of

these probabilities is given in the appendix. The expected waiting time for customers type i may

be then written as

Wi =
1

λi

 s0∑
x0=0

s1∑
x1+x0,1=0

· · ·
sn∑

xn+x0,n=0

D∑
y0,··· ,yn=0

qiπx

 ,

for i = 0, 1, · · ·n, where D is a truncation point as explained in the appendix.

Chaining. Consider a chaining model with n+ 1 skills and n+ 1 teams. Because of the routing

mechanism in chaining, a standard Markov chain modeling is not appropriate. Once an agent

completes a service, shes chooses next to service the oldest customer among those in the head of

two queues, if any. A standard modeling only based on the number of customers in the queues can

not take this decision into account. We thus propose to discretize the waiting time of the first in

line in each queue instead of using the number of agents in each queue. The modeling of the first

in line as a tool for analyzing a queueing system was proposed by Koole et al. (2012). Let us define

the stochastic process {x(t), t ≥ 0} by the tuple

{(x0,1(t), x1,1(t), x1,2(t), x2,2(t) · · · , xn−1,n(t), xn,n(t), xn,0(t), x0,0(t), q0(t), q1(t), · · · , qn(t)), t ≥ 0},

where for an instant t ≥ 0, xi,j(t) denotes the number of agents in team j that are busy with a

customer i, for i, j = 0, 1, · · ·n; and qi(t) denotes the stage of the waiting time of the first in line in

queue i, for i = 0, 1, · · ·n. We consider an exponential elapsing of time with parameter ζ. Recall

from Koole et al. (2012) that when the first customer in line leaves queue i from a given stage of

the waiting duration k (k > 0), the weight of the transitions from this state k to a state k − h for

k > 0 and 0 ≤ h ≤ k, pk,k−h are

pk,k−h =


1−

k−1∑
h=0

(
λi

λi+ζ

)(
ζ

λi+ζ

)h
=
(

ζ
λi+ζ

)k
, for k = h(

λi
λi+ζ

)(
ζ

λi+ζ

)h
, for 0 ≤ h < k.

(1)

Since inter-arrival, service and elapsing times are exponentially distributed, {x(t), t ≥ 0} is a

Markov chain with 3n+ 3 dimensions. Let us denote the system steady-state probabilities by πx,

πx = πx0,1,x1,1,x1,2,x2,2··· ,xn−1,n,xn,n,xn,0,x0,0,q0,q1,··· ,qn ,
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with xi,j ∈ [0, sj ] for i, j = 0, 1, · · ·n; and qi ∈ N for i = 0, 1, · · ·n. The computation method of

these probabilities is given in the appendix. The expected waiting time for customers type i, for

i = 0, 1, · · ·n, is then given by

Wi =
1

λi

s1∑
x0,1=0

s1∑
x1,1=0

s2∑
x1,2=0

· · ·
sn∑

xn,n=0

s0∑
xn,0=0

s0∑
x0,0=0

D∑
q0,··· ,qn=0

qi
ζ

(
1(qi>qi−1)1(qi>qi+1) + 0.5(1(qi=qi−1)1(qi>qi+1) + 1(qi>qi−1)1(qi=qi+1))

)
(xi−1,iµi−1 + (xi,i + xi,i+1)µi + xi+1,i+1µi+1)πx,

where 1(x∈A) is the indicator function of a subset A, and again D is a truncation point as explained

in the appendix.

Numerical Illustration. An exact analytical comparison between single pooling and chaining

is too complex. The two architectures are SBR queueing models with complex routing mechanisms

and general settings for the parameters. Even in the case of Markovian assumptions, the analysis

is very difficult, and there are no existing exact results for them in the literature. Using the

approximate analysis above, we numerically illustrate the comparison. We first consider a real

multi-language call center setting. We then generate various other settings of asymmetry to cover

other call center settings. The real example consists of an airline company call center, located in

Australia and handling 4 types of customers: Japanese (type 1), Korean (type 2), Bahasa (type

3) and English (type 0) speaking customers. Customer types are identical in their requests (flight

booking and modification, claims, etc.). The expected service time is the same for all types, 1
µi
=6.8

minutes for i = 0, ..., 3. An example of the daily arrival rates is given in Figure 2. For the numerical

illustration, we consider a given time interval with the parameters λ0 = 4.6, λ1 = 7.7, λ2 = 10.1

and λ3 = 1.5. Note that we ignore here several features such as abandonment, retrial, rejection,

agent reservation routing rules, back-office tasks, etc.

This call center uses the SP architecture, where an agent from a given team has skill 0 and

skill i, for i = 0, 1, 2, 3. Let us compare the costs of using SP and chaining. We know from this

call center that the salary per hour of an agent with the easy skill (English) and 1 regular skill

(one of the other languages), is 20% higher than that of an agent with only the easy skill. Also,

the salary of an agent with the easy skill and 2 regular skills, is 16% higher than that of an agent

with the easy skill and 1 regular skill. We then consider that the salary of an agent in SP is

1.2 and that in chaining is either 1.2 or 1.4 according to her set of skills. Under a service level

constraint (W ∗
i = 0.2 for i = 0, ..., 3), the total staffing costs are 230.2 and 210 for chaining and
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Figure 2: Customer arrival rates

SP, respectively. SP behaves better in this example because of the asymmetry in the arrival rates

and also the agents salary structure. Using the same cost structure, we next compare between SP

and chaining by generating 9 scenarios with different levels of asymmetry in the arrival and service

rates. We compute the overall staffing costs for SP and chaining, and also their relative difference.

A positive relative difference corresponds to a higher cost for SP, and viceversa. The results are

shown in Table 1.

Table 1: Comparison between SP and chaining (n = 4, ζ = 30, D = 200, W ∗
i = 0.2 for i = 0, ..., 3)

λ0 λ1 λ2 λ3 µ0 µ1 µ2 µ3 Cost SP Cost Chaining Relative difference

Sc 1 1 1 1 1 0.2 0.2 0.2 0.2 36 35 2.86%

Sc 2 1 2 3 4 0.2 0.2 0.2 0.2 75.6 78 -3.08%
Sc 3 4 3 2 1 0.2 0.2 0.2 0.2 68.4 78 -12.31%

Sc 4 1 1 1 1 0.1 0.2 0.3 0.4 42 38 10.53%
Sc 5 1 1 1 1 0.4 0.3 0.2 0.1 37.2 38 -2.11%

Sc 6 1 2 3 4 0.4 0.1 0.2 0.3 78 78.6 -0.76%
Sc 7 4 1 2 3 0.4 0.1 0.2 0.3 54 61.2 -11.76%
Sc 8 1 2 3 4 0.1 0.2 0.3 0.4 62.4 61.2 1.96%
Sc 9 4 1 2 3 0.1 0.2 0.3 0.4 85.2 72.8 17.03%

We observe that the asymmetry in the parameters has an effect on the comparison between SP

and chaining. For a symmetric case in arrival and service rates (scenario 1), we observe that chaining

is the best. For an asymmetric case in the arrival rates (scenarios 2 and 3), SP is the best. When the

asymmetry is in service rates (scenarios 4 and 5), we observe that chaining is the best for the case of

slowly served customers 0, and viceversa. In scenarios 6-9, we observe that the mix of asymmetry in

both arrival and service rates makes SP prevail in some situations, whereas chaining does in others.

While the observation related to the benefits of pooling for customers 0 in SP is evident (scenario

3), others are not clear and require a deeper analysis. Note that the approximations used here
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do not account for customer abandonment or non Markovian distributions, where the asymmetry

may have an important effect as we show later. In order to obtain a comprehensive understanding

of the comparison, we resort to simulation in the next section. In using simulation for call center

operations management, we are following longstanding practice, see for example Wallace and Whitt

(2005).

5 Effect of Parameter Asymmetry

We describe here the simulation results of the comparison between chaining and single pooling.

We simplify the cost model such that the SP cost is upper bounded and that of chaining is lower

bounded. The cost of single pooling is
∑n

i=0(1+ti,0)si. This is upper bounded by (
∑n

i=0 si)maxi(1+

ti,0). The cost of chaining is (1 + t0,1)s0 + (1 + t1,2)s1 + · · · (1 + tn,0)sn and is lower bounded by

(1+t0,1)s0+(1+mini,j(1+ti,j))(
∑n−1

i=1 si)+(1+tn,0)sn. Let us now simplify the problem as follows.

An agent with skills 0 and i (i = 1, ..., n) costs 1. An agent with skills i and j (i, j = 1, ..., n and

i ̸= j) costs 1+ t, t ≥ 0. In this simplification, we have maxi(1+ ti,0) = 1 and mini,j(1+ ti,j) = 1+ t

(i, j = 1, ..., n and i ̸= j). The parameter t is then the incremental cost of an agent with two regular

skills compared to that with a regular skill and skill 0. All the numerical comparisons are based on

the lower and upper bounds values. This makes the results pessimistic for SP and optimistic for

chaining, though the bounds are likely to be tight in practice.

Design of Experiments. As we are interested in the effect of asymmetry of the parameters on

performance, we propose various forms of asymmetry. For customers 0, we define the parameters

p and p′ to measure the relative importance in arrivals and service durations, respectively. They

are given by p = λ0∑n
i=0 λi

and p′ =
1
µ0∑n

i=0
1
µi

. We measure the asymmetry between the arrival rates

of regular customers by V = λ1
λ2

= λ2
λ3

= · · · = λn−1

λn
, and that between service durations by

U = 1/µ1

1/µ2
= 1/µ2

1/µ3
= · · · = 1/µn−1

1/µn
. We also consider for customers 0 the asymmetry in the variability

of service times, measured by the coefficient of variation of its distribution and denoted by cvs.

We consider other forms of asymmetry in terms of the required service level and also the time to

abandon for customers 0 relatively to those for the regular customers. These effects are studied in

the settings of small and large call centers, and also in the settings of small and large number of

skills. Although the considered forms of asymmetries do not cover all possibilities, they allow to

obtain the main useful conclusions.

The approach to conduct the simulation experiments is as follows. Due to the high number

of parameters, we first run experiments by separately treating one parameter at a time. In a

systematic way, we vary one parameter while holding all the others constant. Second, to assess the

possible interaction effects, we simultaneously vary the values of more than one of them at a time.
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For the values of the parameters, we choose wide ranges that allow to cover most of call center

situations in practice. For the rest of the paper, inter-arrival times are assumed to be Markovian.

Service times are also assumed to be Markovian, except in Section 5.2.1. The abandonment rates

are assumed to be equal to zero, except for Section 5.4.

5.1 Asymmetry in Arrival Rates

We first construct the asymmetry only on the arrival rate of customers 0. We then construct it by

differentiating between all the arrival rates of all customer types.

5.1.1 Asymmetry on Customers 0

To isolate the impact of p =
λ0∑n
i=0 λi

, we assume that all customer types have the same expected

service time, and all the arrival rates of the regular customers are the same, λi = λ for i = 1, ..., n

(V = 1). In particular, we are interested to know, for the different ranges of p, which one of the

models would be preferred to the other. We choose call center examples with n = 4, i.e., 5 agent

teams and 5 skills including skill 0. The results are shown in Table 2 and Figures 3(a) and 3(b).

Table 2: Impact of p (µi = µ0 = 0.2, W ∗
0 = W ∗

i = 0.2,
∑4

i=0 λi = 8, i = 1, ..., 4, U = V = 1,
p′ = 20%, n = 4)

Chaining SP Crossing value
p t=0% t=5% t=10% t=25% t=50% t=100% (Chaining = SP)

0% 49 50.95 52.9 58.75 68.5 88 60 t=28.21%
10% 49 50.7 52.4 57.5 66 83 56 t=20.58%
25% 48 49.3 50.6 54.5 61 74 52 t=15.38%
50% 49 49.9 50.8 53.5 58 67 52 t=16.67%
75% 51 51.55 52.1 53.75 56.5 62 51 t=0%
90% 51 51.3 51.6 52.5 54 57 51 t=0%
100% 47 47 47 47 47 47 47 t=0%
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0% 20% 40% 60% 80% 100%

p

t

Single Pooling

Chaining

(a) Preference zone
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(b) Relative benefits

Figure 3: Comparing single pooling and chaining (µi = µ0 = 0.2, W ∗
0 = W ∗

i = 0.2,
∑4

i=0 λi = 8,
i = 1, ..., 4, U = V = 1, p′ = 20%, n = 4)

Since any agent in SP has skills 0 and i (i.e., costs 1), the staffing cost of SP does not depend
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on t. In Table 2, the column Crossing value gives the value of t for which the two models chaining

and SP are equivalent. Below this threshold chaining is better than SP and viceversa (see Figure

3(a)). Consider small values of t. Table 2 reveals that chaining performs well for small values of

p. The best situation for chaining is reached in the symmetric case (identical arrival rates). The

performance of SP improves as p increases. For small values of p, SP approaches FD which has

the worst performance. For high values of p, customers 0 are first preponderant and second benefit

from pooling, which highly improves the performance of SP. With t = 0, SP and chaining become

equivalent for values of p ≥ 75%.

For higher values of t, SP goes ahead of chaining. The reason is related to the increase of

the costs of the agents with two skills i and j (i, j = 1, ..., 4). It suffices to have t = 15.38% to

outperform the best performance of chaining (the symmetric case). Note that for the real-life airline

company example of Section 4, t is about 16%. For any t beyond 30%, SP is systematically better

than chaining whatever is p. We also measure the relative benefits between SP and chaining. Figure

3(b) provides, for various values of the relative benefits, the associated curve of t as a function of p.

We observe that the sensitivity of the relative benefit as a function of t decreases in p. The reason

is that the number of customers 0 increases in p, which decreases the number of agents with two

regular skills in chaining (i.e., decreases the cost sensitivity in t). The main conclusion here is that

SP can be better than chaining when the demand for skill 0 is important and/or when skill 0 is

less costly than the other ones.

5.1.2 Asymmetry on the other Arrival Rates

We focus on the asymmetry between regular customer types, measured by V = λ1
λ2

= λ2
λ3

= λ3
λ4
. The

simulation results for the cases V = 2 and 5 are shown in Table 3. The experiments for the case

V = 1 reduces to those given in Table 2.
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Figure 4: Preference zone (µi = µ0 = 0.2, W ∗
0 = W ∗

i = 0.2,
∑4

i=0 λi = 8, i = 1, ..., 4, U = 1,
p′ = 20%, n = 4)
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Table 3: Impact of V (µi = µ0 = 0.2, W ∗
0 = W ∗

i = 0.2,
∑4

i=0 λi = 8, i = 1, ..., 4, U = 1, p′ = 20%,
n = 4)

Chaining SP Crossing value
p t=0% t=5% t=10% t=25% t=50% (Chaining = SP)

0% 50 51.8 53.6 59 68 57 t=19.44%
10% 50 51.55 53.1 57.75 65.5 56 t=19.35%
25% 49 50.3 51.6 55.5 62 53 t=15.38%

V = 2 50% 48 48.8 49.6 52 56 51 t=18.75%
75% 50 50.55 51.1 52.75 55.5 52 t=18.18%
90% 52 52.3 52.6 53.5 55 51 t=0.00%
100% 47 47 47 47 47 47 t=0.00%

0% 50 51.8 53.6 59 68 56 t=16.67%
10% 50 51.45 52.9 57.25 64.5 55 t=17.24%
25% 49 50.25 51.5 55.25 61.5 52 t=12.00%

V = 3 50% 49 50 51 54 59 52 t=15.00%
75% 50 50.75 51.5 53.75 57.5 52 t=13.33%
90% 52 52.2 52.4 53 54 51 t=0.00%
100% 47 47 47 47 47 47 t=0.00%

0% 49 51.05 53.1 59.25 69.5 54 t=12.20%
10% 50 51.5 53 57.5 65 54 t=13.33%
25% 50 51.25 52.5 56.25 62.5 52 t=8.00%

V = 5 50% 50 50.7 51.4 53.5 57 52 t=14.29%
75% 51 51.4 51.8 53 55 52 t=12.50%
90% 52 52.25 52.5 53.25 54.5 51 t=0.00%
100% 47 47 47 47 47 47 t=0.00%

Table 3 and Figure 4 reveal that the performance of SP increases in V . An intuitive explanation

is as follows. Remark that the team size si = s(λi) is increasing and concave in λi, for i = 1, ..., n.

Applying then the Jensen inequality leads to

n∑
i=1

s(λi) ≤ n · s
(∑n

i=1 λi

n

)
. Note that the equality

may happen because of the discrete nature of the staffing levels. In the inequality, the left hand

side corresponds to the overall staffing level for an arbitrary situation, i.e., with arbitrary values

of λis. As for the right hand side, it gives the overall staffing level for a symmetric situation, i.e.,

all the λis are identical. We also observe from Table 3 that the performance of chaining is however

relatively insensitive to V . Note that we change each time the configuration of chaining such that

the large teams are close to each others in order to create more pooling effect. This is better than

having small teams each of which connected to a large team.

5.2 Asymmetry in Service Rates

We first define the asymmetry only on customers 0, and second on all customer types.

5.2.1 Asymmetry on Customers 0

We measure the asymmetry on customers 0 by p′ =
1
µ0∑n

i=0
1
µi

. The asymmetry here is defined by

the difference between the value of the mean service time of customers 0 and that of the regular

types. The results are shown in Table 4 and Figure 5.

From Table 4, we observe that the performance of both models chaining and SP improves in p′
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Table 4: Impact of p′ (λi = λ0 = 2,
∑4

i=0
1
µi

= 25, W0 = W ∗
i = 0.2, i = 1, ..., 4, p = 20%,

U = V = 1, n = 4)

Chaining SP Crossing value
p′ t=0% t=5% t=10% t=25% t=50% (Chaining = SP)

0% 60 62.45 64.9 72.25 84.5 72 t=24.49%
10% 59 60.95 62.9 68.75 78.5 67 t=20.51%
25% 58 59.65 61.3 66.25 74.5 62 t= 12.12%
50% 60 61.05 62.1 65.25 70.5 65 t=23.81%
75% 61 61.6 62.2 64 67 68 t=58.33%
90% 65 65.25 65.5 66.25 67.5 69 t=80.00%

(from 0 until the symmetric case for p′ = 25%). The reason is that for chaining we are approaching

the symmetric case where it behaves well, and for SP we are profiting better from the pooling

effect when all service times are statistically identical. However the performance of the two models

deteriorates in p′ (for p′ above 25%), and no model performs well for a high asymmetry in service

times. The explanation is related to a phenomenon referred to as the blocking effect. The blocking

effect is the situation where the agents are excessively blocked by customers 0 (who are in need of

large service times) which deteriorates the waiting time of the regular customers. This phenomenon

is more apparent for single pooling since in the latter customers 0 have access to all teams, whereas

in chaining they do only have access to two teams.

In what follows, we go further by defining the asymmetry on the variability of customers 0

service times. We choose to measure this variability by the coefficient of variation (ratio of standard

deviation over expected value), denoted by cvs. We consider a log-normal distribution for the

service times of customers 0 (inter-arrival times of all types, and service times of all regular types

are Markovian). The choice of the log-normal distribution is based on the call center statistical

analysis in Brown et al. (2005). The results are shown in Table 5 and Figure 5(c). We draw the

same conclusions as those for service rates. Due to the blocking effect, both models do not behave

well as the variability increases. Figure 5(d) reveals that the relative benefit as a function of t is

not sensitive to the variation of cvs. Contrary to the cases for p and p′, the arrival and service rates

of regular types do not vary here.

5.2.2 Asymmetry on the Other Service Rates

The service times can be now different from one regular customer to another. Recall that the

ratio U is defined by U = 1/µ1

1/µ2
= 1/µ2

1/µ3
= 1/µ3

1/µ4
. We also consider cases with a high proportion of

customers 0, p = 50%. The simulation results are shown in Table 6, and Figures 6(a) and 6(b).

From the numerical results we observe that SP is preferred to chaining for a wide range of pa-

rameters. The performance of SP is quite insensitive to the asymmetry defined by U . The reason

15



��������������������	��
�����

�� ��� ��� ��� 
��

�

��

��������

�����	
�������

(a) Preference zone (λi = λ0 = 2,
∑4

i=0
1
µi

= 25, W0 =

W ∗
i = 0.2, i = 1, ..., 4, p = 20%, U = V = 1, n = 4)
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(b) Relative benefits (λi = λ0 = 2,
∑4

i=0
1
µi

= 25, W0 =

W ∗
i = 0.2, i = 1, ..., 4, p = 20%, U = V = 1, n = 4)
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(c) Effect of variability in service times (λ0 = 2, λi = 1.5,
µ0 = µi = 0.2, W0 = W ∗

i = 0.2, i = 1, ..., 4, p = 25%,
p′ = 20%, U = V = 1, n = 4)
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(d) Relative benefits (λ0 = 2, λi = 1.5, µ0 = µi = 0.2,
W0 = W ∗

i = 0.2, i = 1, ..., 4, p = 25%, p′ = 20%,
U = V = 1, n = 4)

Figure 5: Preference zone

is that whatever U is, the agent teams in SP are divided into to two types. One first type with two

teams where customers 0 are served faster than regular customers (positive effect), and a second

type with two teams where customer 0 are served slower than regular customers (negative effect

of blocking). The performance of chaining is however decreasing in asymmetry. In chaining, each

team receives two customer types with different service times, which creates a negative blocking

effect in all teams and deteriorates as a consequence the performance. In general for both single

pooling and chaining with U ̸= 1, regular customers require different mean service times. We then

have regular customers that are served faster than others. The slowly served ones block the teams

Table 5: Impact of variability in service times (µi = µ0 = 0.2, W0 = W ∗
i = 0.2, i = 1, ..., 4, p = 25%,

p′ = 20%, U = V = 1,
∑4

i=0 λi = 8, n = 4)

Chaining SP Crossing value
cvs 0% 5% 10% 25% 50% (Chaining = SP)

0 49 50.3 51.6 55.5 62 52 11.54%
0.5 49 50.25 51.5 55.25 61.5 52 12.00%
1 50 51.3 52.6 56.5 63 53 11.54%
2 54 55.3 56.6 60.5 67 56 7.69%
3 62 63.45 64.9 69.25 76.5 63 3.45%
5 64 65.45 66.9 71.25 78.5 66 6.90%
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Table 6: Impact of U (µ0 = 0.2, λ0 = 4, λi = 1, W0 = W ∗
i = 0.2, i = 1, ..., 4,

∑4
i=0

1
µi

= 25,

p′ = 20%, p = 50%, V = 1, n = 4)

Chaining SP Crossing value
U t=0% t=5% t=10% t=25% t=50% (Chaining = SP)

1 49 50.25 51.5 55.25 61.5 52 t=12.00%
2 49 49.75 50.5 52.75 56.5 53 t=26.67%
3 50 51.65 52.3 54.25 57.5 53 t=9.09%
5 52 52.65 53.3 55.25 58.5 52 t=0.00%
10 55 55.75 56.5 58.75 62.5 55 t=0.00%
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(b) Relative benefits

Figure 6: Preference zone (µ0 = 0.2, λ0 = 4, λi = 1 for i = 1, ..., 4,
∑4

i=0
1
µi

= 25, p′ = 20%,
p = 50%, V = 1, n = 4)

in which they are routed to. This is more apparent in chaining because regular customers are

routed to two teams (and to only one in SP). We also measure the relative benefits between SP and

chaining. Figure 6(b) reveals that this benefit as a function of t is not sensitive to the variation of

U . The reason is that although the service rates of regular types do vary, the total staffing level

for the regular types do not.

Remark. We have so far compared SP and chaining based on the staffing costs. In what follows,

we instead compare between their expected waiting times for a given same total staffing level. The

results are shown in Table 7. Note that we optimize the staffing of the various teams in the two

models for the case t = 0, i.e., no incremental cost for regular skills. Under this framework, we

again observe the same qualitative conclusions as those derived under the staffing costs comparison.

5.3 Asymmetry in the Service Level Constraints

We define the asymmetry on the service level of customers 0, W ∗
0 . The results are shown in Table

8 and Figure 7.

We observe as expected that SP behaves better than chaining in the case of a high asymmetry

in the service levels. Chaining is requiring higher staffing levels than needed for some customer
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Table 7: Performance measures of SP and chaining

Impact of p Impact of p′ Impact of V Impact of U
p SP Chaining p′ SP Chaining V SP Chaining U SP Chaining

0% 3.41 0.86 0% 0.78 0.09 1 0.91 0.67 1 0.33 0.17
10% 1.47 0.77 10% 0.30 0.09 2 0.84 0.76 2 0.37 0.19
25% 0.91 0.67 25% 0.25 0.13 3 0.77 0.73 3 0.39 0.34
50% 0.74 0.74 50% 0.97 0.76 5 0.68 0.66 5 0.39 0.38
75% 0.71 0.89 75% 5.11 4.10
90% 0.66 0.69 90% 139 102
100% 0.54 0.54

Table 8: Impact of W ∗
0 (λ0 = 4, λi = 1, µi = µ0 = 0.2 and W ∗

i = 0.2 for i = 1, ..., 4, p = 50%,
p′ = 20%, U = V = 1, n = 4)

Chaining SP Crossing value
W ∗

0 t=0% t=5% t=10% t=25% (Chaining = SP)

0.01 58 59 60 63 56 t=-10.00%
0.1 51 51.9 52.8 55.5 52 t=5.56%
0.2 49 49.9 50.8 53.5 52 t=16.67%
1 48 48.9 49.8 52.5 52 t=22.22%

types. The agent teams are less correlated in SP than in chaining. This gives more flexibility under

SP to adjust the size of the teams as required. However, the strong link between the chains in

chaining forces the size of the teams to be adjusted with regard to the high requirement of some

customer types while it is not needed for other types. As for the relative benefits between SP and

chaining, we observe from Figure 7(b) that it is not sensitive to the variation of W ∗
0 . Since the

parameters related to the regular types do not vary, the associated staffing levels do not change

also.
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(b) Relative benefits

Figure 7: Preference zone (λ0 = 4, λi = 1, µi = µ0 = 0.2 and W ∗
i = 0.2 for i = 1, ..., 4, p = 50%,

p′ = 20%, U = V = 1, n = 4)

5.4 Asymmetry in Abandonments

We allow in this section customers to abandon. After entering the queue, a customer will wait a

random length of time for service to begin. If service has not begun by this time she will abandon
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and be lost. We first investigate the impact of abandonment on the performance of single pooling

and chaining. We then investigate the effect of the asymmetry in the abandonment rate of customers

0. Recall that that γi denotes the abandon rate of customers i, for i = 0, · · ·n. In the experiments

below, times before abandonment are assumed to be exponentially distributed. Note that with

customer abandonment, new performance measures do appear for waiting times. Since the sojourn

time in queue may end up with a start of service or an abandonment, we distinguish the conditional

waiting time given service, that given abandonment, and the unconditional one. We focus here on

the conditional waiting time given service.

Impact of Abandonment. We investigate the impact of abandonment on the performance of

SP and chaining in various situations of asymmetries. We consider homogeneous abandonments

for all customer types, γi = γ for i = 0, · · ·n. The results are shown in Figures 8(a)-8(d). Further

results are also given in Tables 6-9 in Section 3 of the online supplement. An important observation

here is that the effect of the parameters asymmetry changes in the presence of abandonment. For

example, to the contrary to the results with no abandonment, the performance of SP deteriorates

in p, but improves in p′. The reason is that the abandonment of customers reduces the arrivals

to service, which in turn reduces the asymmetry. This can be seen from Table 9, where the the

probability to abandon of customers 0 increases in p.

Table 9: Probability of abandonment (µi = µ0 = 0.2,
∑2

i=0 λi = 8, λi = λj , W
∗
0 = W ∗

i = 0.2,
γi = γ0 = γ for i, j = 1, ..., 4, p′ = 20%, U = V = 1, n = 4)

γ = 0.1 γ = 0.2
Single Pooling Chaining Single Pooling Chaining

p Type i Type 0 Type i Type 0 Type i Type 0 Type i Type 0

0% 3.04% 1.68% 7.00% 3.20%
10% 2.05% 0.00% 2.24% 1.95% 5.00% 0.03% 3.58% 3.13%
25% 1.84% 0.01% 1.52% 1.79% 4.30% 0.07% 4.44% 4.24%
50% 1.73% 0.08% 1.69% 2.11% 4.18% 0.40% 3.82% 4.13%
75% 1.70% 0.53% 1.09% 1.27% 4.12% 1.45% 3.80% 3.47%
90% 1.68% 1.14% 0.29% 1.13% 4.10% 2.62% 4.63% 3.33%
100% 1.67% 1.67% 4.25% 4.25%

Asymmetry in Abandonment. Consider the asymmetry in the abandonment rates measured

by the relative difference between the abandonment rate of customers 0 compared to those of the

regular customers. The results are shown in Figures 9(a)-9(d). Further results are also given in

Tables 10-13 in Section 3 of the online supplement. We again observe an important impact of

the abandonment on the performance of SP and chaining. This impact mainly depends on how

the abandonment affects the asymmetry. For example, we observe from Figure 9(a) that when

regular customers have higher abandonment rates than customers 0, the asymmetry in terms of
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(a) Impact of p (µi = µ0 = 0.2,
∑2

i=0 λi = 8, λi = λj ,
W ∗

0 = W ∗
i = 0.2, for i, j = 1, ..., 4, p′ = 20%, U = V = 1,

n = 4)

��������������������	��
�����

�� ��� ��� ��� 
��

�
��
����
����

��������
�����	
�������

��

(b) Impact of p′ (λi = λ0 = 2,
∑4

i=0
1
µi

= 25, W0 =

W ∗
i = 0.2, i = 1, ..., 4, p = 20%, U = V = 1, n = 4)
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(c) Impact of V (λ0 = 2, µ0 = µi = 0.2,
∑4

i=0 λi = 8,
W0 = W ∗

i = 0.2, i = 1, ..., 4, p = 25%, p′ = 20%, U = 1,
n = 4)
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(d) Impact of U (µ0 = 0.2, λ0 = 4, λi = 1, W0 = W ∗
i =

0.2, i = 1, ..., 4,
∑4

i=0
1
µi

= 25, p′ = 20%, p = 50%,

V = 1, n = 4)

Figure 8: Impact of abandonment

p is accentuated (which further improves SP performance). In the opposite case however, the

asymmetry in p reduces because of the abandonment of customers 0.

5.5 Impact of the Call Center Size

Akşin and Karaesmen (2007) showed that a small call center benefits more from a flexible ar-

chitecture than a larger one. From the simulation experiments conducted here, we confirm this

conclusion. The results are shown in Table 10 and Figure 10. In Table 11, we provide the achieved

expected waiting times for the optimal staffing levels.

Because of the small teams, the lack of the pooling effect in small call centers makes the threshold

values of t higher than those in large call centers. However in large call centers, the team sizes are

quite large in the sense that we have a less need to the chains. This makes SP better than chaining

even under the symmetric case of arrival rates. From Table 11 we observe that contrary to small

call centers, the service level constraints are saturated for large call centers. Because of the discrete

nature of staffing levels, the impact of adding or removing an agent on performance is higher in

small call centers. For the same reason, the staffing levels of the regular teams do not vary much

in small call centers. This makes the relative benefits between SP and chaining not sensitive to
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(a) Impact of p (µi = µ0 = 0.2, W ∗
0 = W ∗

i = 0.2,∑4
i=0 λi = 8, i = 1, ..., 4, p′ = 20%, U = V = 1, n = 4)
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(b) Impact of p′ (W ∗
0 = W ∗

i = 0.2,
∑4

i=0
1
µi

= 25, i =

1, ..., 4, p = 50%, U = V = 1, n = 4)
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(c) Impact of V (λ0 = 2, W ∗
0 = W ∗

i = 0.2, µi = µ0 =
0.2, i = 1, ..., 4, p = 25%, p′ = 20%, U = 1, n = 4)
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(d) Impact of U (λ0 = 4, W ∗
0 = W ∗

i = 0.2, µ0 = 0.2,
i = 1, ..., 4, p = 50%, p′ = 20%, V = 1, n = 4)

Figure 9: Impact of the asymmetry in abandonment

the variation of p in small call centers, while the opposite is true for large call centers (see Figures

10(b) and 10(d)).

5.6 Impact of the Number of Skills

In this section, we investigate the effect of the number of skills (denoted by N = n + 1). For two

cases with different number of skills, it is not possible to keep at the same time a constant workload

on each team and a constant overall workload. We choose to separately treat each situation.

Table 10: Impact of the Call Center Size (µi = µ0 = 0.2, W ∗
i = W ∗

0 = 0.2 for i = 1, ..., 4, p′ = 20%,
U = V = 1, n = 4)

Small Call Center (
∑4

i=0 λi = 1) Large Call Center (
∑4

i=0 λi = 100)

Chaining SP Crossing value Chaining SP Crossing value
p t = 0% t = 5% t = 10% (Chaining = SP) t = 0% t = 5% t = 10% (Chaining = SP)
0% 12 12.4 12.8 16 t = 50% 513 534.6 556.2 536 t = 5.32%
10% 12 12.4 12.8 16 t = 50% 513 531.15 549.3 518 t = 1.38%
25% 11 11.3 11.6 16 t = 83.33% 513 527.2 541.4 513 t = 0%
50% 12 12.25 12.5 15 t = 60% 513 522.1 531.2 513 t = 0%
75% 13 13.25 13.5 13 t = 0% 515 519.45 523.9 513 t = −2.25%
90% 12 12.15 12.3 11 t = −33.33% 517 519 521 513 t = −10.00%
100% 9 9 9 9 t = 0% 513 513 513 513 t = 0%
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Table 11: Expected waiting times (µi = µ0 = 0.2, W ∗
i = W ∗

0 = 0.2 for i = 1, ..., 4, p′ = 20%,
U = V = 1, n = 4)

Small Call Center (
∑4

i=0 λi = 1) Large Call Center (
∑4

i=0 λi = 100)

Single Pooling Chaining Single Pooling Chaining
p Wi W0 Wi W0 Wi W0 Wi W0

0% 0.08 0.06 0.18 0.20
10% 0.07 0.00 0.06 0.06 0.15 0.20 0.19 0.19
25% 0.05 0.00 0.09 0.08 0.08 0.19 0.19 0.20
50% 0.04 0.00 0.07 0.05 0.05 0.17 0.18 0.20
75% 0.19 0.01 0.07 0.02 0.04 0.20 0.17 0.19
90% 0.19 0.03 0.06 0.05 0.02 0.19 0.15 0.18
100% 0.10 0.10 0.17 0.17
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(a) Small Call Center (
∑4

i=0 λi = 1)
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(b) Relative benefits (
∑4

i=0 λi = 1)
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(c) Large Call Center (
∑4

i=0 λi = 100)
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(d) Relative benefits (
∑4

i=0 λi = 100)

Figure 10: Preference zone (µi = µ0 = 0.2, W ∗
i = W ∗

0 = 0.2 for i = 1, ..., 4, p′ = 20%, U = V = 1,
n = 4)

Constant Workload per Team. We consider identical service rates for all customer types. In

the experiments below, the ratio
∑n

i=0 λi

N is then hold constant. The results are given in Figure

11(a), and in Table 14 of the online supplement. We observe that SP behaves much better than

chaining as the number of skills increases. Figure 11(a) shows that for N = 10, the crossing value

of t should be negative for high values of p (this means that SP is better in all cases). Single

pooling behaves much better than chaining for the following two reasons. First as N increases,

the flexibility in chaining decreases. A customer type in the chaining configuration has access to

a fewer proportion of agent as N increases (the gap with the full flexible model increases). The

second reason is related to the impact of the constant ratio
∑n

i=0 λi

N , which increases the overall size
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of the call center as N increases. Having large call centers makes SP more efficient (see Section

5.5).

Constant Overall Workload. We again consider identical service rates for all customer types.

The summation
∑n

i=0 λi is then hold constant. The results are given in Figure 11(b), and in Table

15 of the online supplement. We distinguish two effects depending on p. For small values of p, the

preference zone for SP reduces. The opposite is true for large values of p. The reason is related to

the decreasing of the size of each team as N increases. Since we keep constant the overall workload,

increasing the number of skills implies a lower demand per skill, which requires less agents per

team. This makes the effect of pooling predominant. For the case of large p, the large number

of customers 0 benefits from pooling under SP. For the case of small p, the system contains more

regular customers, each of which benefits in chaining from the pooling of two adjacent teams.
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(a) Preference zone (µi = µ0 = 0.2, W ∗
0 = W ∗

i = 0.2,∑n
i=0 λi/N = 2, i = 1, ..., 4, U = V = 1)
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(b) Preference zone (µi = µ0 = 0.2, W ∗
0 = W ∗

i = 0.2,∑n
i=0 λi = 8, i = 1, ..., 4, U = V = 1)

Figure 11: Preference zone

5.7 More than One Easy Skill

We want to understand the impact of having more than one easy skill, as it would be the case in

more complex call centers. Let us consider the case of a call center with Markovian assumptions

for inter-arrival and service times. There are two easy skills, denoted by 0 et 0’, with arrival rates

λ0 and λ0′ and service rates µ0 and µ0′ , respectively. We consider the same cost modeling, i.e., an

agent with a regular skill and two easy skills costs 1, and an agent with two regular skills costs

1+ t. All easy customers arrive at queue 0 and are served in the order of their arrival regardless of

their type (0 or 0’). One may see that the conclusions drawn so far still hold for the case µ0 = µ0′ .

There is no distinction between the two easy skills that would change the results. However, one

may expect that a difference in the service rates of the easy skills may have an impact on the

conclusions. Some numerical illustrations are given next.

Since the arrival processes of customers 0 and 0’ are Poisson, the probability that a new easy
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arrival is type 0 (0’) is λ0
λ0+λ0′

(
λ0′

λ0+λ0′
). Moreover, easy customers are served under FCFS, then, the

service time of an arbitrary easy customer follows a hyperexponential distribution (an exponential

distribution with rate µ0 with probability λ0
λ0+λ0′

, and an exponential distribution with rate with

µ0′ with probability
λ0′

λ0+λ0′
). We thus measure the difference between µ0 and µ0′ by the coefficient

of variation of the hyperexponential distribution, denoted by cv.
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Figure 12: Preference zone (λ0 = λ0′ = 2, µi = 0.2, λi = 1, W ∗
0 = W ∗

0′ = W ∗
i = 0.2, for i = 1, ..., 4,

U = 1, V = 1, n = 4)

Table 12: Cost comparison with two easy skills (λ0 = λ0′ = 2, µi = 0.2, λi = 1, W ∗
0 = W ∗

0′ = W ∗
i =

0.2, for i = 1, ..., 4, U = 1, V = 1, n = 4)

Chaining SP Crossing value
µ0 µ′

0 cv t=0% t=5% t=10% t=25% (Chaining = SP)

1 1 1 33 33.95 34.9 37.75 35 t =10.53%
0.8 1.33 1.06 33 33.9 34.8 37.5 35 t =11.11%
0.6 3 1.37 33 33.95 34.9 37.75 35 t =10.53%
0.5 ∞ 1.73 32 32.95 33.9 36.75 36 t =21.05%

0.2 0.2 1 49 49.9 50.8 53.5 52 t =16.67%
0.15 0.3 1.11 49 50.35 51.7 55.75 53 t =14.81%
0.12 0.6 1.37 49 50.3 51.6 55.5 54 t =19.23%
0.1 ∞ 1.73 49 50.25 51.5 55.25 56 t =28.00%

0.1 0.1 1 73 73.9 74.8 77.5 76 t =16.67%
0.08 0.13 1.06 73 73.9 74.8 77.5 77 t =22.22%
0.06 0.3 1.37 73 73.95 74.9 77.75 78 t =26.32%
0.05 ∞ 1.73 72 72.95 73.9 76.75 80 t =42.11%

In Figure 12 and Table 12, we compare between SP and chaining under various scenarios

with two easy skills. We consider a call center case with 6 customer types, 2 easy and 4 regular

skills. In the experiments, we vary the cv of the service time distribution of an easy customer (or

equivalently the difference between µ0 and µ0′). For a coherent comparison, the quantity 1
µ0

+ 1
µ0′

is kept constant. There are three parts in the experiments. In the first part, an arbitrary easy

customer is in average served faster than a regular one. In the second part, the average service

durations for easy and regular customers are the same. In the last part, an arbitrary easy customer

is in average served slower than a regular one.
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We observe that SP is not preferred for large differences between the service rates of the easy

skills (high cv). This is especially apparent when the easy customers are served slower than the

regular ones. The explanations of these observations are again related to the blocking effect, as

explained for the analysis of the parameters p′ and cvs in Section 5.2.1. One may then conclude

that an asymmetry in the service of the easy customers deteriorates the performance of SP.

5.8 Impact of the Agent Costs

We change the cost framework such that the cost of regular agents are no longer identical. This

allows to have situations where some agents may be much more expensive than others. We examine

then the impact of an asymmetry in the costs on the comparison between the staffing costs of SP

and chaining. The detailed experiments are given in Section 5 of the online supplement.

The main conclusions from this study is that the asymmetry in the agent costs has not a

significant impact on the team staffing levels and costs in SP. Because of the lack of pooling for

the regular customers, SP does not have enough flexibility to act on the team staffing levels so

as to reduce the overall costs. However, the impact of the agent costs on the performance of

chaining is important. Under asymmetrical situations of arrival or service rates, chaining prefers

an asymmetrical cost framework. This allows to have large and cheap teams. The opposite is true

under symmetrical situations of arrival or service rates.

5.9 Mix of Asymmetry

In this section we mix the effects of more than a parameter at a time. We propose to interact the

effects of p and p′, U and p, U and p′, U and V , and also all of them. The results are presented in

Tables 13-17 and Figures 13(a)-13(d).

From the numerical results, we observe that the individual effects are still present, but they

may accumulate or make up for one another. One important observation is that two asymmetries

may lead to a bad performance for SP. For example SP behaves well in each one of the asymmetric

situations (U = 2 and V = 1) and (U = 1 and V = 1/3) in isolation. However, it does not behave

well for the mixed situation (U = 2 and V = 1/3). In such a situation, the customers types with

large arrival rates are the faster to be served, and viceversa. Therefore, the different customer types

workloads are likely to be symmetric. For the same reason, SP behaves well in the situation (U = 2

and V = 3) because the mix of asymmetries further accentuates the asymmetry in workloads.

Tables 14 and 15 reveal also that the most predominant effects are those of p (because of pooling)

and p′ (because of blocking). Various scenarios of mixed asymmetries are considered in Table 17.

We find again that SP behaves well in large call centers (the first four scenarios). Scenarios 3 and 7

are similar in terms of the values of p and p′ (high values for the two parameters). This means that
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(a) Impact of p and p′ (µi = µj and λi = λj for i, j =
1, ..., 4, W ∗

0 = W ∗
i = 0.2,

∑4
i=0 λi = 8,

∑4
i=0

1
µi

= 25

i = 1, ..., 4, U = V = 1)
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(b) Impact of U and p (λi = λj for i, j = 1, ..., 4, µ0 =
0.2, W ∗

0 = W ∗
i = 0.2,

∑4
i=0 λi = 8,

∑4
i=0

1
µi

= 25 i =

1, ..., 4, p′ = 20%, V = 1)
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(c) Impact of U and p′ (λi = λj = 1.5 for i, j = 1, ..., 4,
λ0 = 2, W ∗

0 = W ∗
i = 0.2,

∑4
i=0

1
µi

= 25 i = 1, ..., 4,

p = 25%, V = 1)
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(d) Impact of U and V (λ0 = 0.8, µ0 = 0.2, W ∗
0 = W ∗

i =
0.2,

∑4
i=0

1
µi

= 25 and
∑4

i=0 λi = 8, p = 10%, p′ = 20%)

Figure 13: Preference zone

Table 13: Impact of p and p′ (µi = µj and λi = λj for i, j = 1, ..., 4, W ∗
0 = W ∗

i = 0.2,
∑4

i=0 λi =
8,
∑4

i=0
1
µi

= 25 i = 1, ..., 4, U = V = 1)

Chaining SP Crossing value
p t=0% t=5% t=10% t=25% t=50% (Chaining = SP)

0% 52 53.95 55.9 61.75 71.5 64 t=30.77%
10% 51 52.7 54.4 59.5 68 60 t=26.47%
25% 46 47.45 48.9 53.25 60.5 52 t=20.69%

p′ = 10% 50% 39 39.9 40.8 43.5 48 43 t=22.22%
75% 35 35.6 36.2 38 41 35 t=0.00%
90% 31 31.3 31.6 32.5 34 31 t=0.00%
100% 24 24 24 24 24 24 t=0.00%

0% 49 50.95 52.9 58.75 68.5 60 t=28.21%
10% 49 50.7 52.4 57.5 66 56 t=20.58%
25% 48 49.3 50.6 54.5 61 52 t=15.38%

p′ = 20% 50% 49 49.9 50.8 53.5 58 52 t=16.67%
75% 51 51.55 52.1 53.75 56.5 51 t=0.00%
90% 51 51.3 51.6 52.5 54 51 t=0.00%
100% 47 47 47 47 47 47 t=0.00%

0% 24 24.95 25.9 28.75 33.5 40 t=84.21%
10% 40 41.05 42.1 45.25 50.5 53 t=61.90%
25% 53 53.85 54.7 57.25 61.5 63 t=58.82%

p′ = 50% 50% 75 75.6 76.2 78 81 82 t=58.33%
75% 97 97.4 97.8 99 101 100 t=37.50%
90% 111 111.2 111.4 112 113 112 t=25.00%
100% 112 112 112 112 112 112 t=0.00%

the effect of pooling and blocking are highly present in both scenarios. An important observation

here is that scenario 3 is the best among scenarios 1-4, while scenario 7 is the worst among scenarios
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Table 14: Impact of p and U (λi = λj for i, j = 1, ..., 4, µ0 = 0.2, W ∗
0 = W ∗

i = 0.2,
∑4

i=0 λi =
8,
∑4

i=0
1
µi

= 25 i = 1, ..., 4, p′ = 20%, V = 1)

Chaining SP Crossing value
p t=0% t=5% t=10% t=25% t=50% (Chaining = SP)

0% 49 50.8 52.6 58 67 57 t=22.22%
10% 49 50.6 52.2 57 65 55 t=18.75%
25% 49 50.15 51.3 54.75 60.5 53 t=17.39%

U = 2 50% 49 49.75 50.5 52.75 56.5 53 t=26.67%
75% 51 51.5 52 53.5 56 53 t=20.00%
90% 53 53.35 53.7 54.75 56.5 53 t=0.00%
100% 47 47 47 47 47 47 t=0.00%

0% 51 52.4 53.8 58 65 55 t=14.29%
10% 50 51.4 52.8 57 64 53 t=10.71%
25% 50 51.5 53 57.5 65 53 t=10.00%

U = 3 50% 50 51.3 52.6 56.5 63 52 t=7.69%
75% 51 52.3 53.6 57.5 64 52 t=3.85%
90% 52 53.35 54.7 58.75 65.5 52 t=0.00%
100% 47 47 47 47 47 47 t=0.00%

0% 52 53.2 54.4 58 64 55 t=12.50%
10% 51 51.95 52.9 55.75 60.5 53 t=10.53%
25% 52 53.2 54.4 58 64 53 t=4.17%

U = 5 50% 52 52.05 52.1 52.25 52.5 52 t=0.00%
75% 52 52.05 52.1 52.25 52.5 52 t=0.00%
90% 52 52.15 52.3 52.75 53.5 52 t=0.00%
100% 47 47 47 47 47 47 t=0.00%

5-8. This gives an indication on the direct competition between the effects of p and p′. In large call

centers, the pooling effect created by customers 0 is predominant over the blocking effect, and the

opposite is true in small call centers.

6 Concluding Remarks

We focused on a fundamental problem in the design and management of SBR call centers, for which

it is important to choose a flexible architecture. We considered the context of call centers with

unbalanced workload, different service requirements, a predominant customer type and high costs

of cross-training. With these asymmetry in the parameters, the well-known existing architectures

such as chaining lose their robustness. We proposed the new call center architecture single pooling

and demonstrated its efficiency. SP allows to balance the workload among the agents in a way that

captures the benefits of pooling, without requiring every agent to process every type of call.

The numerical analysis showed that single pooling performs better than chaining for various

cases of asymmetry. In the case of a predominance of customers 0 and/or an important asymmetry

in the arrival rates of the regular types (captured by V ), SP is more robust than chaining even for

small differences between the costs of a regular skill and that of skill 0. Because of the blocking

effect, the performance of both chaining and SP deteriorates in the asymmetry defined by the

service time duration of customers 0 relatively to that of regular customers. This is more apparent

in single pooling because customers 0 have access to all teams, while in chaining they do only
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Table 15: Impact of p′ and U (λi = λj = 1.5 for i, j = 1, ..., 4, λ0 = 2, W ∗
0 = W ∗

i = 0.2,∑4
i=0

1
µi

= 25 i = 1, ..., 4, p = 25%, V = 1)

Chaining SP Crossing value
p′ t=0% t=5% t=10% t=25% t=50% (Chaining = SP)

0% 51 52.15 53.3 56.75 62.5 55 t=17.39%
10% 50 51.2 52.4 56 62 54 t=16.67%
25% 51 52.25 53.5 57.25 63.5 54 t=12.00%

U = 2 50% 51 52.25 53.5 57.25 63.5 56 t=20.00%
75% 52 53.25 54.5 58.25 64.5 62 t=40.00%
90% 52 53.25 54.5 58.25 64.5 68 t=64.00%

0% 52 53.15 54.3 57.75 63.5 54 t=8.70%
10% 51 52.2 53.4 57 63 53 t=8.33%
25% 51 52.25 53.5 57.25 63.5 53 t=8.00%

U = 3 50% 51 52.25 53.5 57.25 63.5 56 t=20.00%
75% 54 55.25 56.5 60.25 66.5 61 t=28.00%
90% 56 57.3 58.6 62.5 69 67 t=42.31%

0% 52 53.2 54.4 58 64 53 t=4.17%
10% 51 52.25 53.5 57.25 63.5 52 t=4.00%
25% 51 52.3 53.6 57.5 64 52 t=3.85%

U = 5 50% 52 53.3 54.6 58.5 65 54 t=7.69%
75% 55 56.25 57.5 61.25 67.5 60 t=20.00%
90% 58 59.3 60.6 64.5 71 66 t=30.77%

have access to two teams. We have also observed that SP is more robust than chaining against

an increasing asymmetry between the service times of regular types. Since the teams under SP

are less inter-dependent than under chaining, SP is again preferred in the case of an asymmetry

between the objective service levels. We therefore avoid over-staffing situations that may happen

in chaining.

From this study one may summarize the recommendations and guidelines to call center managers

as follows. The manager choice of a flexible call center design should be single pooling under

situations of asymmetry in arrival and service rates. This holds even for small differences between

the skill costs. This choice more apparently prevails for large call centers and/or in the case of a

high number of skills. However, the choice of the design is highly impacted in the context of call

centers with customer abandonment. Abandonments may affect the system by either increasing or

decreasing the asymmetry of the parameters. In the first case, the preference remains for single

pooling, while it is for chaining in the second case.

In a future research, it would be useful to extend the numerical approximations, of the perfor-

mance of SP and chaining, in the case of customer abandonment or non-Markovian assumptions.

Another interesting work is to generalize the functioning of single pooling in order to avoid the

blocking effect in the case of long service times for customers 0.
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Table 16: Impact of U and V (λ0 = 0.8, µ0 = 0.2, W ∗
0 = W ∗

i = 0.2,
∑4

i=0
1
µi

= 25 and
∑4

i=0 λi = 8,

p = 10%, p′ = 20% )

Chaining SP Crossing value
U V t=0% t=5% t=10% t=25% t=50% (Chaining = SP)

1/3 50 51.45 52.9 57.25 64.5 55 t=17.24%
1/2 50 51.55 53.1 57.75 65.5 56 t=19.35%

1 1 49 50.7 52.4 57.5 66 56 t=20.58%
2 50 51.55 53.1 57.75 65.5 56 t=19.35%
3 50 51.45 52.9 57.25 64.5 55 t=17.24%

1/3 26 26.8 27.6 30 34 34 t=50.00%
1/2 31 32 33 36 41 37 t=30.00%

2 1 49 50.6 52.2 57 65 55 t=18.75%
2 71 72.6 74.2 79 87 76 t=15.63%
3 81 82.3 83.6 87.5 94 84 t=11.54%

1/3 20 20.55 21.1 22.75 25.5 26 t=54.55%
1/2 24 24.65 25.3 27.25 30.5 31 t=53.85%

3 1 50 51.4 52.8 57 64 53 t=10.71%
2 79 80.65 82.3 87.25 95.5 82 t=9.09%
3 93 94.35 95.7 99.75 106.5 95 t=7.41%

Table 17: Impact of p, p′, U and V (W ∗
i = 0.2 for i = 0, · · · 4)

Scenarios Chaining SP Crossing value
λ1 λ2 λ3 λ4 λ0 µ1 µ2 µ3 µ4 µ0 t = 0% t = 10% t = 20% (Chaining=SP)

Sc 1 1 2 3 4 5 0.05 0.1 0.2 0.5 1 78 83.5 89 87 16.36%
Sc 2 2 3 4 5 1 0.05 0.1 0.2 0.5 1 115 122.6 130.2 127 15.79%
Sc 3 1 2 3 4 5 1 0.5 0.2 0.1 0.05 179 184.9 190.8 184 8.47%
Sc 4 2 3 4 5 1 1 0.5 0.2 0.1 0.05 111 116.9 122.8 119 13.56%

Sc 5 0.1 0.2 0.3 0.4 0.5 0.05 0.1 0.2 0.5 1 14 15 16 18 40.00%
Sc 6 0.2 0.3 0.4 0.5 0.1 0.05 0.1 0.2 0.5 1 18 19.4 20.8 24 42.86%
Sc 7 0.1 0.2 0.3 0.4 0.5 1 0.5 0.2 0.1 0.05 26 26.7 27.4 30 57.14%
Sc 8 0.2 0.3 0.4 0.5 0.1 1 0.5 0.2 0.1 0.05 18 18.7 19.4 21 42.86%
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Appendix

This appendix is related to Section 4. We provide the method to compute the steady-state proba-

bilities in single pooling and chaining.

Single Pooling. The equilibrium equation related to the tuple x is(
n∑

k=0

λk + xkµk + x0,kµ0

)
πx0,x1,x2,··· ,xn,x0,1,x0,2,··· ,x0,n,q0,q1,··· ,qn (2)

=
n∑

k=1

λk1(0≤xk+x0,k−1<sk)πx0,x1,x2,··· ,xk−1,xk−1,xk+1,··· ,xn,x0,1,x0,2,··· ,x0,n,q0,q1,··· ,qn

+

n∑
k=1

λk1(xk+x0,k=sk,qk−1≥0)πx0,x1,x2,··· ,xn,x0,1,x0,2,··· ,x0,n,q0,q1,··· ,qk−1,qk−1,qk+1,···qn

+ λ01(0≤x0−1<s0)πx0−1,x1,x2,··· ,xn,x0,1,x0,2,··· ,x0,n,q0,q1,··· ,qn

+ λ01(x0=s0,x1+x0,1=s1,···xn+x0,n=sn,q0−1≥0)πx0,x1,x2,··· ,xn,x0,1,x0,2,··· ,x0,n,q0−1,q1,··· ,qn

+ λ01(x0=s0)

n∑
k=1

1(xk+x0,k−1

sk
<1

)1(xk+x0,k−1

sk
<

xj+x0,j
sj

for j ̸=k

)πx0,··· ,xn,x0,1,··· ,x0,k−1,x0,k−1,x0,k+1,··· ,x0,n,q0,··· ,qn

+ · · ·+ λ0

n
1(x0=s0)

n∑
k=1

1(xk+x0,k−1

sk
<1

)1(xk+x0,k−1

sk
=

xj+x0,j
sj

for j ̸=k

)πx0,··· ,xn,x0,1,··· ,x0,k−1,x0,k−1,x0,k+1,··· ,x0,n,q0,··· ,qn

+

n∑
k=0

1(qk=0)µk(xk + 1)πx0,x1,x2,··· ,xk−1,xk+1,xk+1,··· ,xn,x0,1,x0,2,··· ,x0,n,q0,q1,··· ,qn

+
n∑

k=1

1(qk=0)µ0(x0,k + 1)πx0,x1,x2,··· ,xn,x0,1,x0,2,··· ,x0,k−1,x0,k+1,x0,k+1,··· ,x0,n,q0,q1,··· ,qn

+

n∑
k=0

1(xk+x0,k=sk)(µkxk + µ0x0,k)πx0,x1,x2,··· ,xn,x0,1,x0,2,··· ,x0,n,q0,q1,··· ,qk−1,qk+1,qk+1,···qn ,

with the convention x0,0 = 0. We next add the normalization condition and numerically solve the

obtained system of equations relating the steady-state probabilities. We use a finite state space

approximation in order to obtain a system with a finite number of equations. This consists of

truncating the number of states by assuming that each queue has a finite capacity D. In the

numerical experiments, we choose the smallest value of D such that beyond this value the expected

waiting time does not vary with a sufficiently high precision (six digits beyond the decimal point).
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Chaining. The equilibrium equation related to the vector (x0,1, · · · , xn,0, x0,0, q0, q1, · · · , qn) is(
n∑

k=0

(λk + µk(xk,k+1 + xk,k)) + ζ

(
1−

n∏
k=0

1(qk=0)

))
πx0,1,··· ,xn,0,x0,0,q0,q1,··· ,qn (3)

=

n∑
k=0

λk1(0≤xk,k+xk−1,k−1<sk)1(xk,k+xk−1,k−1<xk+1,k+1+xk,k+1)πx0,1,··· ,xk,k−1,··· ,xn,0,x0,0,q0,q1,··· ,qn

+

n∑
k=0

λk1(0≤xk+1,k+1+xk,k+1−1<sk+1)1(xk+1,k+1+xk,k+1−1<xk,k+xk−1,k)πx0,1,··· ,xk,k+1−1,··· ,xn,0,x0,0,q0,q1,··· ,qn

+
n∑

k=0

λk

2
1(0≤xk,k+xk−1,k−1<sk)1(xk,k+xk−1,k−1=xk+1,k+1+xk,k+1)πx0,1,··· ,xk,k−1,··· ,xn,0,x0,0,q0,q1,··· ,qn

+
n∑

k=0

λk

2
1(0≤xk+1,k+1+xk,k+1−1<sk+1)1(xk+1,k+1+xk,k+1−1=xk,k+xk−1,k)πx0,1,··· ,xk,k+1−1,··· ,xn,0,x0,0,q0,q1,··· ,qn

+

n∑
k=0

λk1(qk−1=0)1(xk,k+xk−1,k=sk)1(xk+1,k+1+xk,k+1=sk+1)πx0,1,··· ,xn,0,x0,0,q0,q1,··· ,qk−1,··· ,qn

+

n∑
k=0

ζ1(qk−1>0)1(qj=0 for j ̸=k)πx0,1,··· ,xn,0,x0,0,q0,q1,··· ,qk−1,··· ,qn

+ · · ·+ ζ

n∏
k=0

(
1(qk−1>0)

)
πx0,1,··· ,xn,0,x0,0,q0−1,q1−1,··· ,qn−1

+
n∑

k=0

1(qk=0)µk(xk,k + 1)πx0,1,··· ,xk,k+1,··· ,xn,0,x0,0,q0,q1,··· ,qn

+
n∑

k=0

1(qk=0)µk(xk,k+1 + 1)πx0,1,··· ,xk,k+1+1,··· ,xn,0,x0,0,q0,q1,··· ,qn

+

n∑
k=0

1(xk−1,k+xk,k=sk)1(xk,k+1+xk+1,k+1=sk+1) (µkxk,k + µk−1,kxk−1,k)

×
∞∑

i,j=0

1(qk+j>qk−1+i)pqk+j,qkπx0,1,··· ,xn,0,x0,0,q0,q1,··· ,qk+j,··· ,qn

+
1

2

n∑
k=0

1(xk−1,k+xk,k=sk)1(xk,k+1+xk+1,k+1=sk+1) (µkxk,k + µk−1,kxk−1,k)

×
∞∑

i,j=0

1(qk+j=qk−1+i)pqk+j,qkπx0,1,··· ,xn,0,x0,0,q0,q1,··· ,qk+j,··· ,qn ,

with the convention x−1,0 = xn,n+1 = xn,0. Again, we add the normalization condition and numer-

ically solve the obtained system of equations using truncation with parameter D. The value of ζ

has a significant impact on the approximation. Increasing it allows to better model the continuous

elapsing time. However, this increases the number of used states in the Markov chain, which would

require to increase the truncation threshold D. Again in the numerical experiments, we choose the

values of ζ and D such that for better combinations of values (with higher computational efforts),
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the expected waiting time does not vary with a sufficiently high precision (six digits beyond the

decimal point).

33


