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wang1075@umn.edu • oualid.jouini@ecp.fr • saif@umn.edu

Manufacturing & Service Operations Management. To appear, 2014.

Abstract

We consider service systems with a finite number of customer arrivals, where customer
inter-arrival times and service times are both stochastic and heterogeneous. Applications
of such systems are numerous and include systems where arrivals are driven by events or
service completions in serial processes, and systems where servers are subject to learning
or fatigue. Using an embedded Markov chain approach, we characterize the waiting time
distribution for each customer, from which we obtain various performance measures of in-
terest, including the expected waiting time of a specific customer, the expected waiting time
of an arbitrary customer, and the expected completion time of all customers. We carry out
extensive numerical experiments to examine the effect of heterogeneity in inter-arrival and
service times. In particular, we examine cases where inter-arrival and service times increase
with each subsequent arrival or service completion, decrease, increase and then decrease, or
decrease and then increase. We derive several managerial insights and discuss implications
for settings where such features can be induced. We validate the numerical results using a
fluid approximation that yields closed form expressions.

Keywords: Queueing systems; finite arrivals; heterogeneous inter-arrival and service times;
transient analysis; fluid approximation



1 Introduction

This paper is motivated by systems where a finite number of customer arrivals occur over a

period of time followed by few or no arrivals for an extended period thereafter. During the

period over which arrivals take place, inter-arrival times between consecutive customers can be

different and so can be their service times. Examples of such systems are numerous.

Consider, for example, settings where arrivals are triggered by the start of an event or a

service (e.g., the arrival of passengers to check-in for or to board a flight), the total number

of arrivals is finite (and determined by the number of tickets sold). Passengers may belong to

different classes (e.g., early, on-time, and late) or are assigned to different groups (e.g., priority

boarding zones), so that arrivals occur in waves with each wave drawing from the population

of the corresponding class or group.

Another example is one where a finite number of jobs go through a sequence of production

stages. The arrival process to each stage (other than the first one) corresponds to the departure

process from the preceding one. Because production times at a particular stage are stochastic

and can vary in distribution from job to job, the inter-arrival times to the subsequent stage are

also stochastic and vary from job to job.

A third example is one where arrivals are driven by appointments (e.g., patient appoint-

ments at a health clinic). Assuming customers are punctual (or nearly punctual), inter-arrival

times coincide with time between appointments. Depending on how appointments are sched-

uled, the inter-arrival times between customers can vary. For example, spacing appointments

equally leads to uniform inter-arrival times, while other rules, such as those that schedule more

appointments at the beginning and at the end, and fewer in between, lead to increasing and

then decreasing inter-arrival times.

All the above examples share four common characteristics: (1) a finite number of customers;

(2) heterogeneous (and possibly stochastic) inter-arrival times; (3) heterogeneous (and possibly

stochastic) service times; and (4) inter-arrival and service times that depend on the position of

the customers in the arrival process.

Accounting for heterogeneity in arrival and service times is important in settings where inter-

arrival and service times exhibit distinctive features that make it difficult to justify the common

assumption of identically distributed inter-arrival and service times. Such features include (1)

arrivals that decrease in intensity with each subsequent arrival; (2) arrivals that increase in

intensity with each subsequent arrival; and (3) arrivals that exhibit the combinations of both

the increasing and decreasing features. They also include (1) service times that increase with
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each subsequent service completion, typical of settings where servers are subject to fatigue; (2)

service times that decrease with each subsequent service completion, typical of systems where

learning takes place; and (3) service times that exhibit the combinations of both the increasing

and decreasing features (e.g., initial learning by the servers that is followed by eventual fatigue).

The modeling and analysis of systems with finite arrivals and varying inter-arrival and service

times raise several important questions: (1) What is the impact of different inter-arrival and

service time features on system performance (for example, does system performance deteriorate

with increased heterogeneity in inter-arrival or service times)? (2) For a fixed number of arrivals,

are there features which lead to better performance than others (for example, given a target

time window for arrivals, is it best to have more arrivals early on, in the middle, or at the end

of the arrival time window)? (3) How are the answers to the above questions affected by other

problem parameters such as the overall arrival intensity and the total number of arrivals (for

example, do higher levels of the parameters favor certain arrival features over others)? (4) Does

the heterogeneity in service times affect performance the same way that the heterogeneity in

inter-arrival times does, or are there fundamental differences between these two?

In this paper, we address these and other related questions. In particular, we consider

a system with a finite number of arrivals, where the inter-arrival time between the mth and

(m+1)th customer is described by a random variable that has a general distribution which can be

different from the distributions that describe the inter-arrival times between other consecutive

customers. Customer service times are described by exponential distributions; however, the

mean service times (or service rates) of different customers can be different. We consider

systems with both single and multiple servers. Using an embedded Markov chain approach, in

each case, we are able to characterize analytically the probability distribution of the number of

customers seen by each arrival. This allows us to characterize the waiting time distribution for

each customer, from which we obtain various performance measures of interest, including the

expected waiting time of a specific customer, the expected waiting time of an arbitrary customer,

and the expected completion time of all customers (makespan). These characterizations further

simplify for several special cases of interest, including systems with exponential and deterministic

inter-arrival times.

We carry out extensive numerical experiments to examine the effects of heterogeneity in

inter-arrival and service times. In particular, we examine cases where, with each subsequent ar-

rival or service completion, inter-arrival and service times (1) increase, (2) decrease, (3) increase

and then decrease, or (4) decrease and then increase. We derive several managerial insights and
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discuss implications for settings where such features can be induced. We validate the numerical

results using a fluid approximation that yields closed form expressions. Some of our key findings

are highlighted below:

• Arrival processes with different features can lead to significantly different expected waiting

times. There is a considerable difference in performance between systems with homoge-

neous inter-arrival times and those with heterogeneous inter-arrival times. Therefore,

ignoring the heterogeneity in arrival process can lead to significant errors in performance

evaluation.

• Arrival processes with homogeneous inter-arrival times may not lead to the lowest waiting

time. In fact, for a wide range of parameter values, systems with homogenous inter-arrival

times perform poorly.

• Although there is no strict ordering in terms of performance among the arrival processes

considered, for systems with homogeneous service times, arrival processes where inter-

arrival times decrease, or increase and then decrease, lead to lower waiting time than

those where inter-arrival times increase, or decrease and then increase, suggesting that it

is generally better to postpone the busy (or peak) period.

• When inter-arrival times are homogeneous, systems in which customers with short service

times arrive early (at the beginning of the arrival period) have lower waiting time than

those in which such customers arrive later. This is perhaps consistent with results about

the optimality of processing customers with shorter processing times first. However, this

is not true when inter-arrival times are heterogeneous.

• Inter-arrival and service time features that lead to lower waiting time may not lead to

lower makespan.

These insights show that there might be opportunities for system managers to improve sys-

tem performance by inducing certain arrival features and by differentiating between customers

or jobs with different service requirements. We illustrate how arrivals could be affected using

two examples. The first one involves the sequencing of a finite number of jobs through two

production stages in series. The second one involves the grouping of passengers into multi-

ple boarding zones. For systems where arrivals cannot be controlled, we examine how arrival

processes with different features affect the capacity needed to guarantee a specified level of

performance (e.g., a maximum expected waiting time or makespan).
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2 Related Literature

Although systems with a finite number of arrivals and distinct features in inter-arrival or service

times are prevalent and perhaps even pervasive in practice, they have received relatively little

attention in the service operations management literature (and more generally in the broader

queueing literature). This appears to be, in part, due to the difficulty of analyzing these sys-

tems using standard queueing methodology which relies on steady state analysis (and therefore

assumes an infinite number of arrivals) or requires homogenous inter-arrival and service times

(see, Kleinrock 1975; Hall 1991).

There is an extensive literature that deals with finite population systems (see, for example,

Takagi 1993; Sztrik 2005; Haque and Armstrong 2007). However, in that case, the finite pop-

ulation of customers cycles indefinitely through two phases of not needing service and needing

service (e.g., machines that require repairs). The analysis typically assumes homogeneity in

both arrival and service processes. Hence, this literature does not capture the essential features

of the problem we consider here.

There is also an extensive literature on systems with time-dependent/state-dependent arrival

or service processes (see, for example, Courtois and Georges 1971; Ross 1978; Green et al. 1991)

where the arrival or service rates may depend on either time, the number of customers in the

system, or the evolution of certain exogenous stochastic processes. This literature does not

capture the settings we describe here where inter-arrival and service times depend on the order

in which a particular customer arrives to the system and where the number of customers is

finite.

The literature which is most related to ours is the one on transient analysis of queueing

systems (see, for example, Kelton and Law 1985; Parthasarathy and Moosa 1989; Griffiths et

al. 2006). However, this literature typically assumes homogenous inter-arrival and service time

distributions and the existing results are for systems with Markovian arrivals. Other related

papers include Hu and Benjaafar (2009), which treats a special case of our problem where all

customers arrive at once (they refer to this as the rush hour regime). Parlar and Moosa (2008)

also consider a special case of our problem where the arrivals are Markovian and determined by

a pure death process so that the arrival rates are linearly decreasing. In our case, we allow for

non-Markovian arrivals and arbitrary arrival rates. Hassin and Mendel (2008) consider a system

with a single server and finite arrivals, but customer arrivals are determined by appointment

times. Customers are assumed to be punctual and therefore there is no uncertainty regarding

arrival times. The service times are exponentially and identically distributed.
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There is an extensive body of literature in the area of scheduling which shares features of

the problem we consider in this paper; namely a finite number of customers (or jobs) that

are processed through one or more machines. The jobs are available for processing at specified

release times. Jobs may vary in their processing times, delay costs, and due dates. In some cases

the release and service times are stochastic. The focus of much of this literature is, on developing

efficient algorithms for generating optimal job sequences, or on identifying structural properties

of optimal sequences; see (Pinedo 2012; Emmons and Vairaktarakis 2013) for a discussion of

important results and a review of relevant literature. Some of the literature treats the online

version of the problem where jobs arrive over time and a decision on which job to process next

is made with each job arrival and job completion (in the case where preemption is allowed);

see for example (Chou et al. 2006; Chen and Shen 2007; Ouelhadj and Petrovic 2009). This

literature is generally not concerned with developing performance evaluation models as we are

in this paper.

Finally, there is a growing body of literature which deals with the scheduling of appoint-

ments, particularly in healthcare settings. A review of this literature can be found in (Preater

2001; Cayirli and Veral 2003). We also refer the reader to (Mondschein and Weintraub 2003;

Gupta and Denton 2008; Jouini et al. 2014). Most of this literature assumes that customers

are punctual and the objective is to identify the optimal spacing between appointments where

the optimality is determined by a weighted measure of patient’s delay, physician’s idleness,

and tardiness. Note that when customers are punctual and service times are exponential, the

performance of a specified schedule can be evaluated using the approach described in this paper.

Some of the literature considers no-shows which introduces a particular form of stochasticity

in patients’ inter-arrival times. For example, Kaandorp and Koole (2007) develop a local search

algorithm to identify optimal schedules in the presence of no shows and show that a so-called

dome-shaped form where more appointments are scheduled at the beginning and at the end of

the schedule, is particularly effective (see related discussion in Section 7). Zeng et al. (2010)

extend Kaandorp and Koole (2007) to include heterogeneous no-show rates. Koeleman and

Koole (2012) also generalize the model by considering both scheduled and emergency arrivals.

Some recent papers consider patient scheduling based on an open access model with same day

appointments; see Robinson (2010) and the references therein.

The rest of the paper is organized as follows. In Section 3, we describe the model and provide

analysis for the single server system. In Section 4, we extend the analysis to the multi-server

case. In Section 5, we present numerical results and discuss insights. In Sections 6, we describe
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the fluid approximation. In Section 7, we discuss example applications. In Section 8, we provide

a summary and concluding comments.

3 Problem Description and Analysis

We consider a queueing system with a single server and a finite number of customers arriving

randomly over time. The total number of customers is M . We index customers by the order of

their arrivals, so that customer m for m = 1, ...,M , is the mth customer to arrive. The inter-

arrival time between customerm−1 and customerm has a general distribution with a finite mean

1
λm

for m = 2, ...,M . No other specific assumptions are made concerning inter-arrival times

except that they are independent. Customer service times are independent and exponentially

distributed with a strictly positive and finite mean 1
µm

for customerm. We make the exponential

assumption regarding the distribution of service times for mathematical tractability, as it allows

us to formulate the problem as an embedded Markov chain. This assumption is also useful in

approximating the behavior of systems where service time variability is high. Doing away

with this assumption without losing tractability is difficult, given the generality of the model

otherwise (i.e., the heterogeneity in inter-arrival and service times). Upon arrival, a customer

goes immediately into service if the server is available. If not, the customer joins the queue and

waits. Customers waiting in the queue are served on a first-come, first-served (FCFS) basis.

Note that the inter-arrival and service times are indexed by the position of the customer

in the arrival sequence (m = 1, ...,M) and not by time, as in a time-dependent process. This

is because we are interested in settings, such as the ones we describe in Section 1, where the

characteristics of the arrival and service processes are affected by the number of customers that

have already arrived and not by the amount of time that has already elapsed. This is apparent

for example when customers, who are drawn from a finite population, arrive independently from

each other, when arrivals correspond to service completions from a preceding process, or when

service times are affected by the number of customers previously processed, as in situations in

which learning and fatigue can take place.

We are interested in characterizing customer waiting time. Our approach consists of first

computing the probabilities of the system states seen by a new arrival. We then compute the

conditional waiting time, given the system state. Finally, we characterize the unconditional

waiting time by averaging over all possibilities. We denote Am as the random variable that

describes the arrival time of customer m, and Rm as the random variable that describes the

number of customers found in the system by customer m, upon her arrival at Am. This means
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that the total number of customers in the system immediately after Am is Rm+1. We let pm,i =

Pr{Rm = i} refer to the probability that the mth customer finds, upon arrival, i customers

already in the system (in queue or in service) for i = 0, ...,m− 1 and m = 1, ...,M .

In what follows, we first characterize the probabilities pm,i. Let Tm be the random variable

describing the inter-arrival time between customers m−1 and m, and let fm(.) be its probability

density function. We have Tm = Am − Am−1 for m = 2, ...,M . Without loss of generality, we

assume the first customer arrives at time 0 (T1 = 0). For m = 1, we have p1,0 = 1 and p1,i = 0

for i ̸= 0, because the first customer always finds the system empty. For 2 ≤ m ≤ M , we

separate the two cases, 1 ≤ i ≤ m− 1 and i = 0. Let us first consider the case 1 ≤ i ≤ m− 1.

Conditioning on the number of customers found, upon arrival, by customer m− 1, we obtain

pm,i =

m−2∑
j=i−1

pm−1,jPr{Rm = i | Rm−1 = j} (1)

for 2 ≤ m ≤ M . Note that we must have i − 1 ≤ j ≤ m − 2. Let us now characterize

the probability Pr{Rm = i | Rm−1 = j} for 1 ≤ i ≤ m − 1 and i − 1 ≤ j ≤ m − 2. We

again separate the analysis into two cases, i ≤ j ≤ m − 2 and j = i − 1. Firstly, when

i ≤ j ≤ m − 2, in order for customer m to find i customers given that customer m − 1 finds

j, there must be exactly j − i + 1 service completions during the time period (Am−1, Am].

It is easy to see that the j − i + 1 customers who have finished their service are customers

m − j − 1,m − j, ...,m − i − 1, and the one under service at time Am is customer m − i. Let

us define Bm,i,j as the random variable describing the total duration of those j − i + 1 service

completions, and let fBm,i,j (.) and FBm,i,j (.) be its probability density function and cumulative

distribution function, respectively. Noting that the underlying process is a pure death process,

we can see that Bm,i,j equals to the summation of exponential random variables, and thus, it

is hypoexponentially distributed with parameters µm−j−1, µm−j , ..., µm−i−1. From Ross (2009),

we have (in the case where all the rates are distinct) fBm,i,j (t) =
∑m−i−1

l=m−j−1 µlom,i,j,le
−µlt and

FBm,i,j (t) = 1 −
∑m−i−1

l=m−j−1 om,i,j,le
−µlt for t ≥ 0, where om,i,j,l =

∏m−i−1
n=m−j−1, n ̸=l

µn

µn−µl
. (By

convention, an empty product equals to 1.) We denote by εm−i the exponential random variable

that describes the service time of the (m − i)th (yet to complete service) customer, and let

fεm−i(.) be its probability density function, then we have fεm−i(t) = µm−ie
−µm−it for t ≥ 0. Let

us now define the random variable Cm,i,j by Cm,i,j = Bm,i,j + εm−i. One may easily see that

Pr{Rm = i | Rm−1 = j} = Pr{Bm,i,j < Tm < Cm,i,j}. Due to the independence between Tm,

Bm,i,j and εm−i, we have

Pr{Rm = i | Rm−1 = j} = µm−i

m−i−1∑
l=m−j−1

µlom,i,j,l

∫ ∞

0

∫ ∞

0

∫ y+z

y
fm(x)e−µly−µm−izdxdydz
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for i ≤ j ≤ m− 2. Similarly, for j = i− 1, we have

Pr{Rm = i | Rm−1 = i− 1} = µm−i

∫ ∞

0

∫ z

0
fm(x)e−µm−izdxdz,

which leads to

pm,i = µm−i

m−2∑
j=i

m−i−1∑
l=m−j−1

µlpm−1,jom,i,j,l

∫ ∞

0

∫ ∞

0

∫ y+z

y
fm(x)e−µly−µm−izdxdydz

+ pm−1,i−1µm−i

∫ ∞

0

∫ z

0
fm(x)e−µm−izdxdz (2)

for 1 ≤ i ≤ m− 1. As for the quantity pm,0, it is simply given by

pm,0 = 1−
m−1∑
i=1

pm,i (3)

for 2 ≤ m ≤ M . Using Equations (2) and (3), the probabilities pm,i for 1 ≤ m ≤ M and

0 ≤ i ≤ m− 1 can be recursively computed starting with m = 1.

Next we show how the above probabilities can be used to characterize various performance

measures. Let Xm, a random variable, denote the waiting time in queue of customer m, and let

E(Xk
m) be the corresponding kth moment for k ≥ 1. (For the rest of the paper, we use E(Zk) to

denote the kth moment of a random variable Z for k ≥ 1.) Note that X1 = 0 with probability

1, since it corresponds to the waiting time of the first customer. For 2 ≤ m ≤ M , we have

E(Xk
m) =

m−1∑
i=1

pm,iE(Xk
m,i),

where Xm,i is the conditional random variable denoting the waiting time in queue for customer

m, given that customer m finds, upon arrival, i customers in the system. Obviously, Xm,0 = 0

with probability 1. For 1 ≤ i ≤ m − 1, the i customers seen by the mth arrival are customers

m − 1,m − 2, ...,m − i. For the (m − i)th customer who is currently in service, the remain-

ing service time is still exponentially distributed with rate µm−i. Since their service times are

independent and exponentially distributed, Xm,i has a hypoexponential distribution with pa-

rameters µm−1, µm−2, ..., µm−i. Hence, the quantities E(Xk
m,i) for k ≥ 1 can be easily computed.

For example, we have E(Xm,i) =
∑m−1

l=m−i
1
µl

and E(X2
m,i) =

∑m−1
l=m−i

1
µ2
l
+ (
∑m−1

l=m−i
1
µl
)2.

Let the random variable X denote the waiting time in queue of an arbitrary customer among

the M ones. Then, we obtain E(Xk) = 1
M

∑M
m=2E(Xk

m) = 1
M

∑M
m=2

∑m−1
i=1 pm,iE(Xk

m,i) for

k ≥ 1. In particular, we have

E(X) =
1

M

M∑
m=2

m−1∑
i=1

m−1∑
l=m−i

pm,i

µl

and

V ar(X) =
1

M

M∑
m=2

m−1∑
i=1

pm,i

 m−1∑
l=m−i

1

µ2
l

+

(
m−1∑
l=m−i

1

µl

)2
− 1

M2

(
M∑

m=2

m−1∑
i=1

m−1∑
l=m−i

pm,i

µl

)2

.

From the probabilities pm,i, we can also characterize the distribution of X. Specifically,
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Pr{X ≤ t} = 1
M (1 +

∑M
m=2 Pr{Xm ≤ t}) = 1

M + 1
M

∑M
m=2(pm,0 +

∑m−1
i=1 pm,iPr{Xm,i ≤ t}) for

t ≥ 0. In case all the rates are distinct, we have

Pr{X ≤ t} = 1− 1

M

M∑
m=2

m−1∑
i=1

m−1∑
l=m−i

pm,iom,0,i−1,le
−µlt.

In addition to waiting time, an important performance measure for systems with finite

arrivals is makespan, namely, the time it takes the system to complete serving all customers.

Since the server starts working at time zero, makespan can be computed as the departure time of

the last customer (customer M). We define Dm as the random variable describing the departure

time of customer m. Then DM = AM +XM + εM , which leads to

E(DM ) = E(AM ) + E(XM ) + E(εM ) =

M∑
m=2

1

λm
+

M−1∑
i=1

M−1∑
l=M−i

pM,i

µl
+

1

µM
.

Other measures of interest, such as those discussed in Cayirli and Veral (2003), can also be

easily obtained. For example, the expected total time in system (waiting time + service time)

for an arbitrary customer is given by 1
M (
∑M

m=1E(Xm) + 1
µm

), or equivalently 1
M

∑M
m=1

1
µm

+

1
M

∑M
m=2

∑m−1
i=1

∑m−1
l=m−i

pm,i

µl
; while the expected server idle time is given by E(DM )−

∑M
m=1

1
µm

,

or equivalently
∑M

m=2
1
λm

+
∑M−1

i=1

∑M−1
l=M−i

pM,i

µl
−
∑M−1

m=1
1
µm

; and the expected server utilization

is given by

∑M
m=1

1
µm

E(DM ) , which can also be rewritten as (
∑M

m=1
1
µm

)(
∑M

m=2
1
λm

+
∑M−1

i=1

∑M−1
l=M−i

pM,i

µl

+ 1
µM

)−1. Various service level measures can also be obtained, including the probability that a

customer waits more than a specified threshold or that makespan exceeds a certain threshold.

In some applications where the arrival process can be controlled, another useful performance

measure is the amount of time, starting from time zero, until a customer arrives. This can be

viewed as the indirect or offline waiting time. The expected arrival time of an arbitrary customer

is given by
∑M

m=2

∑m
i=2 E(Ti)

M .

Next, we consider three special cases for which the analysis simplifies further.

The Case of Exponential Inter-arrival Times: In this case, computing the probability

pm,i simplifies by noting that, the probability Pr{Rm = i | Rm−1 = j} for 1 ≤ i ≤ m − 1 and

i− 1 ≤ j ≤ m− 2, can now be expressed as

Pr{Rm = i | Rm−1 = j} =

(
j+1∏

l=i+1

µm−l

µm−l + λm

)
λm

µm−i + λm
. (4)

The Case of Deterministic Inter-arrival Times: In this case, Tm is constant and equals

to 1
λm

for 2 ≤ m ≤ M . The probability density function fm(t) is now a Dirac delta function at

1
λm

, which leads to Pr{Rm = i | Rm−1 = j} = e−
µm−i
λm

∑m−i−1
l=m−j−1 om,i,j,l

µl
µm−i−µl

(e
µm−i−µl

λm − 1)

for i ≤ j ≤ m− 2 and Pr{Rm = i | Rm−1 = i− 1} = e−
µm−i
λm .

The case of deterministic inter-arrival times is of interest in applications where arrivals are

determined by appointments and customers are punctual. In this case, arrival times correspond
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to appointment times. Note that the above allows for heterogeneous service time distributions

and generalizes earlier treatments that consider service times with homogenous rates (see, for

example, Kaandorp and Koole 2007; Hassin and Mendel 2008).

The Case of Instantaneous Arrivals: An extreme case of the arrival process is one where

customers arrive all at once. In this case, the expected waiting time of the mth customer

corresponds to the sum of the expected service times of customers 1, 2, ...,m− 1, i.e. E(Xm) =∑m−1
i=1

1
µi
. This leads to E(X) = 1

M

∑M
m=2

∑m−1
l=1

1
µl

and E(DM ) =
∑M

m=1
1
µm

.

4 The Multi-Server Case

In this section, we consider the case of a queueing system with multiple servers. We assume

that there are s parallel and identical servers. For tractability, we focus on the case where

service times are independent and exponentially distributed with rate µ. An arriving customer

immediately begins service if there is an available server. Otherwise, she waits in queue and

will be served by the first available server. All other assumptions are the same as those for the

single server case in Section 3, and we continue to use similar notations.

As in the single server case, let us first characterize the probability Pr{Rm = i | Rm−1 = j}

for 2 ≤ m ≤ M , 1 ≤ i ≤ m− 1 and i ≤ j ≤ m− 2. In order for customer m to find i customers

given that customer m−1 finds j customers, there must exactly be j− i+1 service completions

during the time period (Am−1, Am]. We distinguish the following three cases.

Case 1, s ≤ i ≤ j+1: Once customer m−1 arrives, she joins the queue (if j+1 > s) or occupies

the last available server (if j + 1 = s). In both cases, customer m joins the queue once she

arrives, and all the servers are busy during the time period (Am−1, Am]. When all servers are

busy, the departure process is Poisson with rate sµ. The probability Pr{Rm = i | Rm−1 = j}

corresponds to the probability that j − i + 1 customers finish their service during Tm. So we

may write

Pr{Rm = i | Rm−1 = j} =

∫ ∞

0

(sµx)j−i+1

(j − i+ 1)!
e−sµxfm(x)dx.

Case 2, 1 ≤ i ≤ j + 1 < s: In this case, there is no queue. Both customer m − 1 and m

immediately enter service once they arrive, and Pr{Rm = i | Rm−1 = j} corresponds to the

probability that exactly j− i+1 among j+1 customers finish their service during Tm. Noticing

that
(

j+1
j−i+1

)
=
(
j+1
i

)
, this leads to

Pr{Rm = i | Rm−1 = j} =

∫ ∞

0

(
j + 1

i

)
(1− e−µx)j−i+1e−µxifm(x)dx.

Case 3, 1 ≤ i < s ≤ j + 1: In this case, the system starts busy with j − s + 1 queued
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customers immediately after Am−1. The probability Pr{Rm = i | Rm−1 = j} corresponds to

the probability that, within Tm, the first j − s+ 1 queued customers leave the queue and enter

service (which implies that j − s + 1 customers finish their service) and then s − i customers

finish their service afterwards, i.e., j − i + 1 service completions in total. We denote by I the

random variable that describes the time needed to complete those j− s+1 services, then I has

an Erlang distribution with j − s + 1 stages and parameter sµ. Thus, the probability density

function of I, say fI(t), is given by fI(t) =
(sµ)j−s+1tj−se−sµt

(j−s)! for t ≥ 0. This leads to

Pr{Rm = i | Rm−1 = j} =

∫ ∞

0

∫ x

0

(
s

i

)
(1− e−µ(x−t))s−ie−µ(x−t)i (sµ)

j−s+1tj−se−sµt

(j − s)!
fm(x)dtdx.

As for the single server case, using Equations (1) and (3), we can obtain pm,i for 2 ≤ m ≤ M

and 1 ≤ i ≤ m− 1 recursively.

Having the probabilities pm,i on-hand, we can now compute various performance measures.

In particular, we have

E(Xk
m) =

m−1∑
i=s

pm,iE(Xk
m,i)

for 1 ≤ m ≤ M . Obviously Xm,i = 0 with probability 1 for i ≤ s− 1. For i ≥ s, Xm,i is Erlang

distributed with i− s+ 1 stages and parameter sµ. Consequently, we have

E(Xm) =

m−1∑
i=s

pm,i
i− s+ 1

sµ
(5)

and E(X2
m) =

∑m−1
i=s pm,i

(i−s+1)(i−s+2)
s2µ2 . Higher moments can be similarly computed. Since

E(Xm) = 0 for m ≤ s, we have

E(Xk) =
1

M

M∑
m=s+1

E(Xk
m).

From the cumulative distribution function of Erlang distribution, we obtain Pr{Xm,i ≤ t} =

1−
∑i−s

l=0
(sµt)l

l! e−sµt and then Pr{Xm ≤ t} = 1−
∑m−1

i=s

∑i−s
l=0 pm,i

(sµt)l

l! e−sµt. This leads to

Pr{X ≤ t} = 1− 1

M

M∑
m=s+1

m−1∑
i=s

i−s∑
l=0

pm,i
(sµt)l

l!
e−sµt.

As in Section 3, we can also characterize the makespan. However, in contrast to the single

server case, makespan in the multi-server system no longer necessarily coincides with the depar-

ture time of customer M . The reason is that, if there are other customers under service at the

time when customer M enters service, since service times are random, customer M may finish

service and leave the system earlier than someone else. But, note that, although customer M

may not be the last one to leave the system, she is still the last one to enter service by assump-

tion (FCFS). Therefore, makespan equals to, the sum of, the time it takes customer M to enter

service, and the time it takes to empty the system after she enters service. When customer M
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arrives, seeing i customers in system, there are two possibilities. The first possibility is i ≤ s−1,

which implies that there is at least one idle server, and customer M immediately enters ser-

vice without waiting. In this case, the time to empty the system corresponds to the longest

completion time among the i+1 services. This time has the hypoexponential distribution with

parameters (i + 1)µ, iµ, ..., µ. Thus, if customer M finds i customers in the system upon her

arrival and i ≤ s− 1, then the expected makespan is given by
∑M

m=2
1
λm

+
∑i+1

l=1
1
lµ .

The second possibility is i ≥ s, which implies that customer M has to wait in queue before

being served. In this case, the waiting time of customer M is Erlang distributed with i− s+ 1

stages and parameter sµ, and the time to empty the system has the hypoexponential distribution

with rates sµ, (s− 1)µ, ..., µ. Thus, if customer M finds i customers in system upon her arrival

and i ≥ s, then the expected makespan is given by
∑M

m=2
1
λm

+ i−s+1
sµ +

∑s
l=1

1
lµ .

Putting it all together, the unconditional expected makespan can be obtained as

E[Makespan] =
M∑

m=2

1

λm
+

s−1∑
i=0

(
pM,i

i+1∑
l=1

1

lµ

)
+

M−1∑
i=s

pM,i

(
i− s+ 1

sµ
+

s∑
l=1

1

lµ

)
.

Other performance measures can be similarly obtained, and we omit the details for the sake of

brevity.

The Case of Exponential Inter-Arrival Times: Using similar arguments as in the single

server case and noting that, when there are l customers in the system, the service rate is

µ min(l, s), we obtain

Pr{Rm = i | Rm−1 = j} =

(
j+1∏

l=i+1

µmin(l, s)

µmin(l, s) + λm

)
λm

µmin(i, s) + λm
.

The Case of Deterministic Inter-Arrival Times: This also follows the approach used for

the single server case by setting fm(t) as a Dirac delta function at 1
λm

and then computing

Pr{Rm = i | Rm−1 = j} using the corresponding equations.

The Case of Instantaneous Arrivals: In this case, the first s customers have zero waiting

time, and customer s+ i (1 ≤ i ≤ M − s) waits for i service completions to start service. This

leads to E(X) = (M−s)2+(M−s)
2sµM and E(DM ) = M−s

sµ +
∑s

l=1
1
lµ .

5 Numerical Experiments

In this section, we describe results from the numerical experiments we carried out to examine

the impact of features that are unique to the systems we consider, namely the finite number

of arrivals, the heterogeneity in inter-arrival times, and the heterogeneity in service times.

Our objective is three-fold: (1) to draw insights into how these specific features affect system

performance, (2) to show that models which do not explicitly account for these features can lead

12



to significant errors in performance evaluation, and (3) to illustrate how the models we present

in this paper can be used to support operational decision making, particularly as it pertains to

capacity planning (see Section 7 for discussions on additional applications). In Sections 5.1 and

5.2, we consider respectively the impact of heterogeneity in inter-arrival times and service times,

on various performance measures. In Section 5.3, we discuss the impact of heterogeneity on

capacity levels. Throughout this section, we focus on the single server setting. We also studied

the multi-server setting and obtained similar results; we omit the details for the sake of brevity.

5.1 The Impact of Heterogeneity in Inter-Arrival Times

To examine the impact of heterogeneity in inter-arrival times, we investigate five arrival pro-

cesses with different inter-arrival time features that may arise naturally in practice (see our

earlier discussion in the introduction section). These five processes are described in Table 1.

To allow for a fair comparison between different processes, we maintain the same number of

customers and the same average expected inter-arrival time (equal to 1
λ) across processes. The

first process corresponds to a setting where the expected inter-arrival times decrease with each

subsequent arrival. Specifically, we let E(Tm) = M−m+1
M

2
λ for m = 2, ...,M . The other pro-

cesses correspond similarly to settings where expected inter-arrival times (1) increase with each

subsequent arrival, (2) decrease and then increase, (3) increase and then decrease, and (4) are

constant. Note that {E(Tm)|m = 2, ...,M} in the four heterogeneous processes are indeed four

specific permutations of the sequence { 1
M

2
λ , ...,

M−1
M

2
λ}.

Inter-arrival Time Features Expected Inter-arrival Times

Decreasing E(Tm) = M−m+1
M

2
λ for m = 2, ...,M

Increasing E(Tm) = m−1
M

2
λ for m = 2, ...,M

Decreasing/Increasing E(Tm) = M−2m+3
M

2
λ for m = 2, ..., M+2

2

E(Tm) = 2m−M−2
M

2
λ for m = M+4

2 , ...,M

Increasing/Decreasing E(Tm) = 2m−2
M

2
λ for m = 2, ..., M

2

E(Tm) = 2M−2m+1
M

2
λ for m = M+2

2 , ...,M
Constant E(Tm) = 1

λ for m = 2, ...,M

Table 1: Inter-Arrival Time Features

A representative sample from an extensive set of numerical results on expected waiting time

is shown in Figure 1 (additional results are available from the authors upon request). The

results are shown for systems where inter-arrival times are exponentially distributed and service

times are i.i.d. and exponentially distributed (the results are qualitatively the same for other

common inter-arrival time distributions we tested). Note that by varying λ for fixed M and

µ, the workload in system (i.e. the traffic intensity or the utilization of server) over the arrival
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period, as measured by ρ = λ
µ , is varied. On the other hand, by varying M for fixed λ and µ,

the workload remains constant, but the period of arrivals, as measured by the expected time

until the last customer arrives, is varied.

The following observations can be made regarding system performance in terms of the

expected waiting time of an arbitrary customer.

• Arrival processes with different features can lead to significantly different expected wait-

ing times. Moreover, there is a considerable difference between the performance of sys-

tems with constant expected inter-arrival times and those with heterogeneous expected

inter-arrival times. Clearly, ignoring the heterogeneity in the arrival process can lead to

significant errors in performance evaluation.

• Arrival processes with constant expected inter-arrival times does not guarantee better per-

formance. In other words, arrivals with a fixed intensity may not necessarily be preferable

to arrivals with variable intensity.

• Arrival processes with “Decreasing” inter-arrival times always perform better than pro-

cesses with “Increasing” and “Decreasing/Increasing” inter-arrival times. In other words,

processes where arrivals peak later leads to better performance than those where arrivals

peak earlier. This is due to the fact that a peak in arrivals that occurs early in the process

can delay all customers that arrive subsequently.

• The relative performance of different arrival processes depends on problem parameter

values. For example, when ρ is small (ρ << 1), “Constant” is the best as it maximizes the

spreading-out of arrivals, reducing the possibility of congestion. On the other hand, when

ρ is large (ρ >> 1), congestion is inevitable. In that case, arrival processes, with features

that can limit the number of customers affected by congestion, become more preferable,

explaining, for example why “Decreasing” is the best.

• The difference in performance between different arrival processes decreases as λ increases.

The performances become indistinguishable as λ gets very large, in which case, all cus-

tomers arrive nearly instantaneously.

• The threshold on ρ that determines the relative performance of different arrival processes

is affected by M . For example, the larger M is, the larger is the value of ρ under which

“Constant” performs the best. In Section 6, we provide an approximation that allows us

to specify these thresholds in closed form.

14



0.0

0.5

1.0

1.5

2.0

2.5

0.1 0.2 0.3 0.4 0.5

E
(X

)

λ

Decreasing
Increasing
Decreasing/Increasing
Increasing/Decreasing
Constant

(a) M = 40, µ = 1, Small λ

0

6

12

0.5 0.75 1 1.25 1.5

E
(X

)

λ

Decreasing
Increasing
Decreasing/Increasing
Increasing/Decreasing
Constant

(b) M = 40, µ = 1, Medium λ

3

11

19

1 6 11 16

E
(X

)

λ

Decreasing
Increasing
Decreasing/Increasing
Increasing/Decreasing
Constant

(c) M = 40, µ = 1, Large λ

0

56

112

0.5 0.75 1 1.25 1.5

E
(X

)

λ

Decreasing
Increasing
Decreasing/Increasing
Increasing/Decreasing
Constant

(d) M = 400, µ = 1, Medium λ

Figure 1: Impact of Inter-Arrival Time Features on Expected Waiting Time

In addition to the expected waiting time, we also obtained results for the impact of different

arrival processes on the variance of waiting time. For brevity, we omit these results (available

from the authors upon request) and note the following.

• Most of the observations on expected waiting time continue to hold. For example, ar-

rival processes with different features lead to significantly different variances, with the

“Constant” inter-arrival time feature not always leading to the lowest variance. The dif-

ference in variances induced by different arrival processes decreases as λ increases, with

the threshold on ρ that determines the relative performance of different processes affected

by M .

• Systems with “Constant” and “Increasing/Decreasing” inter-arrival times always perform

better than the others. In particular, for small ρ, “Constant” performs the best as it

smoothes the arrival process and reduces the possibility of congestion. However, for large

ρ, congestion is inevitable, and “Increasing/Decreasing” performs the best since it sepa-

rates the arrival process into two sub-processes with each one having a lower peak value

of congestion.

In Figures 2a and 2b, we present results that illustrate the impact of different arrival pro-

15



cesses on the expected makespan and the expected arrival time, with solid lines representing

expected makespan and expected arrival time, respectively, and dashed lines representing ex-

pected waiting time. Here too, arrival processes with different inter-arrival time features can

lead to significantly different expected makespans, with “Constant” not necessarily being the

best. While the average expected inter-arrival time stays the same for all processes, makespan

is minimized by minimizing the expected waiting time in queue of the last customer (or equiv-

alently minimizing idleness of the server). This is achieved by maximizing the number of

customers that arrive early, explaining why “Increasing” performs the best and “Decreasing”

performs the worst. The relative performance of other processes depends on system utilization.

For example, when utilization is low, “Decreasing/Increasing” performs better than “Increas-

ing/Decreasing”. Although the peak of arrivals occurs later under “Decreasing/Increasing”,

there is enough capacity in the system to ensure that most customers would clear before the

last customer arrives. This is not the case when utilization is high. There, it is preferable

to have the peak of arrivals occur as early as possible to minimize the idleness of the server,

explaining why “Increasing/Decreasing” is more preferable. Same as for the expected waiting

time, the difference in the expected makespan induced by different arrival processes decreases

as λ increases. This difference approaches zero as λ becomes very large. Similar to the expected

makespan, the expected arrival time is lower when more customers arrive earlier. Therefore, the

relative performance of different arrival processes on the expected arrival time coincides with

the one observed for the expected makespan.
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Figure 2: Impact of Inter-Arrival Time Features on Makespan and Arrival Time
(M = 40, µ = 1)
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5.2 Impact of Heterogeneity in Service Times

In results (the details of which are not shown here for the sake of brevity), we examine the

impact of heterogeneity in service times. Here again, we investigate five service processes with

different service time features, as shown in Table 2. These include settings where expected

service times (1) decrease with each subsequent service completion, (2) increase, (3) decrease

and then increase, (4) increase and then decrease, and (5) are constant. To allow for a fair

comparison between different processes, we maintain the same number of customers and the

same average expected service time (equal to 1
µ) across processes.

Service Time Features Expected Service Times

Decreasing E(εm) = M−m+1
M+1

2
µ for m = 1, ...,M

Increasing E(εm) = m
M+1

2
µ for m = 1, ...,M

Decreasing/Increasing E(εm) = M−2m+1
M+1

2
µ for m = 1, ..., M

2

E(εm) = 2m−M
M+1

2
µ for m = M+2

2 , ...,M

Increasing/Decreasing E(εm) = 2m
M+1

2
µ for m = 1, ..., M

2

E(εm) = 2M−2m+1
M+1

2
µ for m = M+2

2 , ...,M

Constant E(εm) = 1
µ for m = 1, ...,M

Table 2: Service Time Features

Similar to what we have observed for the arrival process, service processes with different

service time features can lead to significantly different expected waiting times, with the “Con-

stant” service time feature again not necessarily being the best. Service processes with features

that postpone congestion are preferable when utilization is high (ρ >> 1) (e.g., “Increasing”

tends to perform the best). This is perhaps also consistent with known results from the schedul-

ing literature regarding the optimality of the “shortest processing time first” scheduling rule.

However, when utilization is low (ρ << 1), this is not the case, and “Constant” performs the

best for reasons similar to those explained for the arrival process.

With regard to the variance of waiting time, again for the same reasons as explained in

the previous section, when utilization is high, “Decreasing/Increasing” performs the best, and

when utilization is low, “Constant” performs the best. For expected makespan, the order of

preference tends to be reversed, with features that reduce congestion later in the arrival process

being preferable (in other words, for the expected makespan, it is preferable that arrivals with

shorter service times occur later in the arrival process).

5.3 On the Impact on Capacity Levels

In this section, we examine how arrival processes with different features affect the capacity

needed to guarantee a specified level of performance (e.g., a maximum expected waiting time
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or makespan). For single server systems, determining this capacity requires determining the

minimum processing rate. For systems with multiple servers, this requires determining the

minimum number of servers.

In Figure 3, we show the minimum service rate µ needed under each of the four heterogeneous

arrival processes described in Table 1 to meet a specified minimum expected waiting time

target. In this case, the specified target is the expected waiting time obtained under the arrival

process with “Constant” inter-arrival times at µ = 1. As we can see, the difference in the

capacity levels needed under different arrival processes can be dramatically different. Ignoring

the heterogeneity in inter-arrival times (and similarly in service requirements) can therefore lead

to significant under or over investments in capacity, resulting in either poor service quality or

unjustified additional capacity cost.
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Figure 3: Impact of Inter-Arrival Time Features on Capacity Level (M = 100)

6 A Fluid Approximation

Although the performance analysis given in Sections 3 and 4 is exact, we resorted to numerical

analysis in order to draw the conclusions in Section 5. This is because the exact results are not

in closed form and therefore difficult to use to characterize structural results. To provide further

support for the numerical results, we discuss in this section a deterministic fluid approximation

that does yield closed form expressions and that allows us to capture key features of our setting.

The objective from this approximation is of course not to substitute for the exact analysis which

is easy to implement, but to analytically confirm the numerical findings of Section 5 and provide

evidence of their robustness. The approximation may also be useful in investigating additional

structural results and as a first step in examining first order effects. The approximation does

not require the assumption of exponential service times and, therefore, is useful for the study of

more general systems. For the sake of brevity, we describe the approximation in the context of
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the single server model. However, extending the treatment to the multi-server case is relatively

straightforward.

We treat all customer inter-arrival and service times as being deterministic and replace all

corresponding random variables by their expected values. (For every quantity Z defined in Sec-

tion 3 for the original model, we define a corresponding quantity ZF for the fluid approximation).

We treat the arrival of customers as fluid, one unit per customer, that is “pumped-in” to the

system at a constant rate λm over the time period (AF
m−1, A

F
m] for m = 2, ...,M . Since T1 = 0

in the original model, we assume all the fluid associated with the first customer is present in the

system at time 0. Similarly, we treat the service process as fluid, also one unit per customer, that

is “pumped-out” at a constant rate µm over the time period (DF
m−1, D

F
m] for m = 2, ...,M , and

at the rate µ1 over the time period (0, DF
1 ], where DF

m = max(DF
m−1, A

F
m) + 1

µm
with DF

1 = 1
µ1
.

By induction, it is straightforward to show that DF
m = max1≤i≤m{

∑i
j=2

1
λj

+
∑m

j=i
1
µj
} for

m = 1, ...,M (by convention, an empty sum equals to 0).

We define AF (t) and DF (t) as the cumulative arrivals to the system and the cumulative

departures from the system by time t, respectively (with AF (0) = 1). It is not difficult to see

that, AF (t) and DF (t) are piecewise linear functions (see Figure 4 for an illustration). The

area between AF (t) and DF (t) over the interval [0, DF
M ] corresponds to the total time spent in

the system for all customers, which, when divided by the total number of customers, yields the

expected time in system of an arbitrary customer. Let us denote the expected time in system

of an arbitrary customer by EF (Y ). Then, we have

EF (Y ) =

∫ DF
M

0 [AF (t)−DF (t)]dt

M
.

Figure 4: An Illustration of the Fluid Approximation

The area under AF (t) over the interval [0, DF
M ] is the sum of the areas of M − 1 trapezoids

and one rectangle. If we define SF
m(A) as the area of the mth trapezoid from left, then SF

m(A) =

(m + 1
2)

1
λm+1

for m = 1, ...M − 1, and the area of the rectangle, which we denote by SF
r (A),
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equals to M(DF
M −AF

M ).

We now let SF (A) denote the total area under AF (t) for t ∈ [0, DF
M ]. Then, we can show

that SF (A) =
∑M−1

m=1 SF
m(A) + SF

r (A) =
∑M

m=2m
1
λm

− (M + 1
2)A

F
M +MDF

M .

Similarly, we denote SF (D) as the area under DF (t) over the interval [0, DF
M ]. This is the

sum of the areas of one triangle and M − 1 trapezoids. The area of the triangle, which we

denote by SF
t (D), is 1

2D
F
1 . The area of the mth trapezoid from left, which we denoted by

SF
m(D), is given by SF

m(D) = (m + 1
2)(D

F
m+1 − DF

m) for m = 1, ...,M − 1. This implies that

SF (D) =
∑M−1

m=1 SF
m(D) + SF

t (D) = (M − 1
2)D

F
M −

∑M−1
m=1 DF

m.

Putting it together, the expected time in system can be written as

EF (Y ) =
SF (A)− SF (D)

M
=

∑M
m=2m

1
λm

− (M + 1
2)A

F
M +

∑M
m=1D

F
m − 1

2D
F
M

M
.

Using the above explicit expressions, we can evaluate each of the arrival and service time

processes considered in the numerical study of the previous sections. For the sake of brevity,

we focus on the relative performance of different arrival processes. Without loss of generality,

we scale time such that µm = 1 for m = 1, ...,M , and the sequences { 1
λm

|m = 2, ...,M} are

as those sequences in Table 1. For the four arrival processes with heterogeneous inter-arrival

times, 1
λm

∈ { 1
M

2
λ , ...,

M−1
M

2
λ}, and for the process with constant inter-arrival times, we have

1
M

2
λ ≤ 1

λ ≤ M−1
M

2
λ . In what follows, we consider the average time in system instead of the

average waiting time in queue. Since the total service times of all customers are the same

among all the arrival processes, the ordering of processes will not be affected by using time

in systems instead of waiting time in queue. Let EF (Y )(C), E
F (Y )(D), E

F (Y )(I), E
F (Y )(DI),

and EF (Y )(ID) refer respectively to the expected time in system for the arrival processes with

“Constant”, “Decreasing”, “Increasing”, “Decreasing/Increasing”, and “Increasing/Decreasing”

inter-arrival times.

We distinguish three different cases: Case 1 ( 1
M

2
λ ≥ 1); Case 2 (M−1

M
2
λ ≤ 1); and Case 3

( 1
M

2
λ < 1 < M−1

M
2
λ).

Case 1: This is an obvious case. We have DF
M = M+(λ−1)

λ for all the processes. Therefore, it

is easy to show that EF (Y ) is the same for all the processes.

Case 2: In this case, DF
M = M for all the processes. After some algebra, we obtain

EF (Y )(C) =
(λ−1)M2+2M−1

2λM , EF (Y )(D) =
(3λ−4)M2+9M−5

6λM , EF (Y )(I) =
(3λ−2)M2+3M−1

6λM ,

EF (Y )(DI) =
(2λ−2)M2+3M

4λM , and EF (Y )(ID) =
(2λ−2)M2+3M

4λM . Then, we can easily show that

EF (Y )(D) < EF (Y )(ID) = EF (Y )(DI) < EF (Y )(C) < EF (Y )(I),

which is consistent with the results in Section 5.1.

Case 3: Denote DF
M(C), D

F
M(D), and DF

M(I) as the makespan for the arrival processes with
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“Constant”, “Decreasing”, and “Increasing” inter-arrival times, respectively. We can show that

(see the detail derivations in the online supplement)

DF
M(C) =

{
M+(λ−1)

λ for λ ∈ (2 1
M , 1)

M for λ ∈ [1, 2M−1
M )

, DF
M(D) =

(λ2+4)M+(2λ−4)
4λ , and

DF
M(I) =

{
M+(λ−1)

λ for λ ∈ (2 1
M , 1)

M for λ ∈ [1, 2M−1
M )

. Then, EF (Y )(C) =

{
2λM−λ
2λM for λ ∈ (2 1

M , 1)

(λ−1)M2+2M−1
2λM for λ ∈ [1, 2M−1

M )
,

EF (Y )(D) =
λ3M2−(3λ2−24λ)M−10λ

24λM and EF (Y )(I) =

{
λ3M2−(3λ2−6λ)M−λ

6λM for λ ∈ (2 1
M , 1)

(3λ−2)M2+3M−1
6λM for λ ∈ [1, 2M−1

M )
.

Applying the implicit function theorem, it is easy to show that there exits an αF (M) ∈

(1, 2M−1
M ) increasing in M such that

EF (Y )(C) < EF (Y )(D) < EF (Y )(I) for λ ∈
(
2
1

M
,αF (M)

)
, and

EF (Y )(D) < EF (Y )(C) < EF (Y )(I) for λ ∈
(
αF (M), 2

M − 1

M

)
,

which is again consistent with the results in Section 5.1. (We can obtain similar expressions

for the expected time in system for the arrival processes with “Decreasing/Increasing” and

“Increasing/Decreasing” inter-arrival times. For the sake of brevity, we omit the details. The

relative ordering also coincides with the one observed in the previous section.)

Other results from Section 5.1 can also be confirmed using the fluid approximation. For

example, the difference in performance between different arrival processes decreases as λ in-

creases and approaches 0 as λ → ∞. The limit case of λ → ∞ corresponds to the case of

instantaneous arrivals. In that case, the expression for the expected time in system reduces to

EF (Y ) = 1
M

∑M
m=2

∑m−1
j=1

1
µj

+ 1
2M

∑M
m=1

1
µj
. It is straightforward to show that this expression

converges asymptotically to the expression from the exact analysis in Section 3 as M → ∞,

with limM→∞
EF (Y )

E(Y )
= 1.

7 Example Applications

In this section, we describe example applications where the results from our analysis can be

used to support operational decision making.

7.1 A Job Sequencing Problem

Consider the job sequencing problem described in the introduction section. In particular, con-

sider a system with M jobs to be sequenced on two production stages (e.g., a manufacturing

stage and an inspection stage) in series, with a single server at each stage (the extension to
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multiple servers is straightforward). All M jobs are available at time 0. The processing time

of job h for h = 1, ...,M , at stage r for r = 1, 2, is exponentially distributed with rate µ(h),r.

Once a sequence is selected, the jobs are processed in that sequence on both stages without

idling (i.e., a server never idles if there is a job available to be processed). For a given sequence,

the expected waiting time of an arbitrary job at the first stage equals 1
M

∑M
m=2

∑m−1
l=1

1
µl,1

,

where µl,1 is the processing rate of the job assigned to position l (the lth to process), and the

corresponding total time spent in that stage equals to 1
M

∑M
m=1

∑m
l=1

1
µl,1

. To characterize the

performance at the second stage, we must first characterize the inter-arrival time distributions

to that stage. This can be done by recognizing that, given a job sequence, the distributions of

inter-arrival times to the second stage are simply the distributions of processing times at the

first stage. In particular, if job h is assigned position m (m ≥ 2) in the sequence, then the

time between the (m − 1)th and mth arrivals to the second stage is exponentially distributed

with rate µ(h),1. Consequently, the expected waiting time for an arbitrary job at the second

stage is given by 1
M

∑M
m=2

∑m−1
i=1

∑m−1
l=m−i

pm,i

µl,2
, where pm,i can be computed via the analysis

we developed in Section 3, with λl and µl in Equation (4) replaced by µl,1 and µl,2 for all l,

respectively. This leads to the expected total waiting time in the system of an arbitrary job as

1
M

∑M
m=2

∑m−1
i=1 ( 1

µi,1
+
∑m−1

l=m−i
pm,i

µl,2
). Other performance measures can be similarly obtained.

In particular, the expected makespan is given by
∑M

m=1
1

µm,1
+
∑M−1

i=1

∑M−1
l=M−i

pM,i

µl,2
+ 1

µM,2
.

From the above analysis, we can see that by controlling the job sequence, the system man-

ager can control the distributions of inter-arrival times at the second stage, and therefore the

corresponding system performance. Next, we present numerical results for an example system

where µ(h),1 = M+1
h

ε
2 and µ(h),2 = µ, for h = 1, ...,M and constants ε and µ. We evaluate four

different sequences (four permutations of the sequence {M+1
1

ε
2 , ...,

M+1
M

ε
2}) as described in Table

3 (to be consistent with the other sections, we name the sequences according to the expected

service times instead of the service rates). The first sequence corresponds to an ordering of

the jobs in decreasing expected service times at stage 1, which implies an ordering of the jobs

in decreasing expected inter-arrival times at stage 2. The second sequence corresponds to an

ordering in increasing expected inter-arrival times at stage 2, while the third and fourth cor-

respond respectively to, decreasing and then increasing, and, increasing and then decreasing,

orderings of the expected inter-arrival times at stage 2.

Figure 5 provides comparisons of the four job sequences under different values of delay costs

(consistent with the job scheduling literature, we assign a delay cost, wr per job per unit time

at stage r for r = 1, 2; without loss of generality, we let w1 = 1 and vary w2; the case of
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Job Sequences Expected Service Times at Stage 1

Decreasing E(εm) = M−m+1
M+1

2
ε for m = 1, ...,M

Increasing E(εm) = m
M+1

2
ε for m = 1, ...,M

Decreasing/Increasing E(εm) = M−2m+1
M+1

2
ε for m = 1, ..., M

2

E(εm) = 2m−M
M+1

2
ε for m = M+2

2 , ...,M

Increasing/Decreasing E(εm) = 2m
M+1

2
ε for m = 1, ..., M

2

E(εm) = 2M−2m+1
M+1

2
ε for m = M+2

2 , ...,M

Table 3: Job Sequences
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Figure 5: Impact of Job Sequence on Delay Cost (M = 100, ε = 1, µ = 0.5)

w1 = w2 = 1 allows us to compare the expected total delay in the system for the four different

job sequences). As we can see, the four job sequences lead to very different total delay costs.

Perhaps surprisingly, the “Increasing” sequence which minimizes the delay cost at stage 1 does

not necessarily minimize the expected total delay cost. In fact, for sufficiently large w2, such

a sequence performs the worst. This can be explained as follows. The “Increasing” sequence

generates the “Increasing” inter-arrival times at stage 2, which, as discussed in Section 5.1,

results in long waiting times. On the other hand, the “Decreasing” sequence, although leading

to long waiting times at stage 1, generates the “Decreasing” inter-arrival times at stage 2 and

therefore results in short waiting times at that stage. The net effect, when w2 is large, is lower

total delay cost.

Additional results (the details of which are not shown here for the sake of brevity) indicate

that the four job sequences also lead to significant differences in makespan, with the “Increasing”

sequence always performing the best. Note that characterizing the optimal sequence is difficult

in general (even for the deterministic setting, the problem is strongly NP-hard; see discussions

from Pinedo 2012), and is outside the scope of this paper.

7.2 A Flight Boarding Problem

Consider the flight boarding problem described in the introduction section. There areM passen-

gers waiting to board a flight, and they are grouped into K equal size zones, each consisting of
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M
K passengers (assuming M is divisible by K). Passengers from a zone are called to embark only

after all the passengers from a higher ranked zone have finished embarking. The announcement

of each zone results in arrivals to the gate drawn from a population of M
K passengers. Assum-

ing each passenger takes an exponentially distributed amount of time to arrive, independent of

other customers, then the arrival process for each zone corresponds to a pure death process,

with the inter-arrival time between customer m − 1 and customer m being exponentially dis-

tributed with rate (MK + 1 − m)λ for m = 2, ..., MK (the arrival time of the first customer is

exponentially distributed with rate M
K λ). This also implies that the expected inter-arrival times

within a zone is strictly increasing. Assuming that service times are exponentially distributed

with rate µ, the results of Section 3 can be readily applied to obtain various measures of per-

formance. In particular, the expected waiting time of an arbitrary passenger can be obtained

by setting λm = (MK + 1−m)λ for m = 2, ..., MK and µm = µ for m = 1, ..., MK in Equation (4),

and the expected makespan (the expected boarding completion time of all zones) is given by

K[ 1λ
∑M

K
m=1

1
m + 1

µ(
∑M

K
−1

i=1 i pM
K

,i + 1)].

As we can see, by controlling the number of zones, the system manager can control the

distributions of inter-arrival times and therefore the corresponding system performance. Two

extreme cases are worth highlighting. The first is when K = M ; in this case, the expected

inter-arrival times are constant. The second is when K = 1; in that case, the expected inter-

arrival times are strictly increasing. In between, the expected inter-arrival times exhibit a

cyclical pattern of being strictly increasing within a cycle (a zone) and having a step decrease

between cycles (the start of boarding of each zone). Fewer zones reduce makespan while more

zones reduce waiting time. The system manager would typically want to balance the costs

associated with these two measures; customers prefer to wait less while boarding (and there is

an implied delay cost) while the airline would like to reduce the total boarding time (and there

is an implied resource usage cost). There is of course indirect waiting time related to customers

waiting for their zones to be called, but the cost of that waiting is lower since customers are

less inconvenienced in that case than when they are waiting to board.

In Figure 6, we present numerical results for an example system with 120 passengers. The

solid line represents the expected waiting times of an arbitrary customer, and the dashed line

represents the expected makespan of the boarding process. It is interesting to note the di-

minishing value of having more zones. An initial increase in the number of zones significantly

reduces expected waiting time while further increases lead to only marginal further reduction.

Given that the increase in makespan due to more zones does not exhibit a similar diminishing
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effect, the optimal number of zones would generally be relatively small.
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Figure 6: Impact of the Number of Zones on Expected Waiting Time and Makespan
(M = 120, λ = 0.1, µ = 1)

It is worth to note that results from the above examples, as well as those from the previous

sections, show that in general, inter-arrival or service time features that reduce waiting time do

not reduce makespan (in fact, the reverse is typically true). Thus, there is a need to trade off

the benefit of lower waiting time against shorter makespan, in making decisions about which

features to induce.

There are other related settings where arrivals exhibit features that are similar to the ones

observed in the flight boarding problem. As mentioned in the introduction, this can be the case

when the arrival of customers is triggered by the start of an event (e.g., the arrival of passengers

to check-in for a flight or the arrivals of fans to a concert), and customers may belong to different

classes that are differentiated by their risk attitudes toward being late for the event (with some

classes preferring to arrive earlier than others). The arrival of customers within the same class

can be modeled as a pure death process, which again leads to increasing mean inter-arrival

times. Although controlling the number of customers within each class is more difficult in this

case than in the flight boarding case, it may be possible, with sufficient incentives, to induce

customers to arrive earlier or later. More importantly, recognizing the heterogeneity in inter-

arrival times allows the system manager to plan for the necessary capacity (e.g., to meet target

service levels as discussed in Section 5.3).

We conclude this section by noting that the insights provided so far also apply to settings

where arrivals can be controlled in a more direct way, such as when arrivals to a particular

process can be specified. This is the case, as we mentioned in the introduction, when arrivals are

determined by appointment times. Assuming customers are punctual, inter-arrival times would

be deterministic and would correspond to the time between appointment times. Depending on

how appointments are scheduled, inter-arrival times may exhibit different features. For example,
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scheduling more (fewer) appointments early on and then progressively fewer (more) leads to

increasing (decreasing) inter-arrival times. Scheduling appointments differently could lead to

inter-arrival times that exhibit combinations of both the increasing and decreasing features.

To evaluate the impact of different arrival and service time features, we carried out extensive

experiments similar to those in Section 5 (for the sake of brevity, we omit the details). The

results obtained are qualitatively consistent with those described there. Hence, our observations

also provide insights into desirable features of appointment schedules for such settings. We note

that some of these are consistent with the results from the appointment scheduling literature.

For example, we observe that arrival processes with the “Increasing/Decreasing” inter-arrival

time feature, although not always performing the best, do perform relatively well for all the

performance measures considered. This “Increasing/Decreasing” feature is consistent with the

“dome-shaped” appointment schedule shown in Kaandorp and Koole (2007) to perform well

when the performance measure is a weighted cost of waiting time, idle time, and tardiness.

8 Concluding Comments

The results of this paper highlight the importance of accounting for the heterogeneity in cus-

tomer inter-arrival and service times, when the number of customers is finite and customer

inter-arrival or service times depend on their positions in the arrival sequence. This hetero-

geneity arises naturally in many service systems, but could also be engineered into how these

systems are designed and managed. Accounting for this heterogeneity is important because

different inter-arrival and service time features, even if resulting in the same total workload for

the system, can lead to different levels of performance.

There are several possible avenues for future research. It would be useful to generalize

our results to a broader class of systems (including queueing networks, systems with general

service time distributions, and systems with customer priorities), and to investigate additional

applications where systems with the type of features we studied arise naturally. It would also

be interesting to study systems with other types of arrival processes such as those with time-

dependent arrival rates. Moreover, it would be useful to explore other types of approximations

(e.g., diffusion approximations). Finally, it would be meaningful to revisit principles that have

been shown to be effective in the design and operation of service systems under steady state

assumptions, and to determine whether or not they continue to be effective in systems with finite

arrivals and heterogeneous inter-arrival and service times. One such principle is the benefit of

pooling of servers and queues in systems with multiple servers.

26



Acknowledgments

The authors are grateful to Steve Graves, an anonymous associate editor, and three anonymous

reviewers for their many constructive comments and suggestions.

References

Cayirli, T., Veral, E. (2003). Outpatient Scheduling in Health Care: A Review of Literature.
Production and Operations Management. 12(4):519-549.

Chen, G., Shen, Z.M. (2007). Probabilistic Asymptotic Analysis of Stochastic Online Scheduling
Problems. IIE Transactions. 39(5):525-538.

Chou, M.C., Liu, H., Queyranne, M., Simchi-Levi, D. (2006). On the Asymptotic Optimality of
a Simple On-Line Algorithm for the Stochastic Single-Machine Weighted Completion Time
Problem and Its Extensions. Operations Research. 54(3):464-474.

Courtois, P.J., Georges, J. (1971). On a Single-Server Finite Queuing Model with State-
Dependent Arrival and Service Processes. Operations Research. 19(2):424-435.

Emmons, H., Vairaktarakis. G. (2013). Flow Shop Scheduling: Theoretical Results, Algorithms,
and Applications. Springer.

Green, L., Kolesar P., Svoronos, A. (1991) Some Effects of Nonstationarity on Multiserver
Markovian Queueing Systems. Operations Research. 39(3):502-511.

Griffiths, J.D., Leonenko, G.M., Williams, J.E. (2006) The Transient Solution to M/Ek/1
Queue. Operations Research Letters. 34(3):349-354.

Gupta, D., Denton, B. (2008). Appointment Scheduling in Health Care: Challenges and Op-
portunities. IIE Transactions. 40(9):800-819.

Hall, R.W. (1991). Queueing Methods: For Services and Manufacturing. Prentice Hall.

Haque, L., Armstrong, M.J. (2007). A Survey of the Machine Interference Problem. European
Journal of Operational Research. 179(2):469-482.

Hassin, R., Mendel, S. (2008). Scheduling Arrivals to Queues: A Single-Server Model with
No-Shows. Management Science. 54(3):565-572.

Hu, B., Benjaafar, S. (2009). Partitioning of Servers in Queueing Systems During Rush Hour.
Manufacturing & Service Operations Management. 11(3):416-428.

Jouini, O., Wang, R., Benjaafar, S. (2014). Queueing Systems with Appointment-Driven Ar-
rivals, Non-Punctual Customers, and No-Shows. Working Paper, University of Minnesota.

Kaandorp, G.C., Koole, G. (2007). Optimal Outpatient Appointment Scheduling. Health Care
Management Science. 10(3):217-229.

Kelton, W.D., Law, A.M. (1985). The Transient Behavior of the M/M/s Queue, with Implica-
tions for the Steady-State Simulation. Operations Research. 33(2):378-396.

Kleinrock, L. (1975). Queueing Systems, Volume 1: Theory. Wiley-Interscience.

27



Koeleman, P.M., Koole, G.M. (2012). Optimal Outpatient Appointment Scheduling with Emer-
gency Arrivals and General Service Times. IIE Transactions on Healthcare Systems Engineer-
ing. 2(1):14-30.

Mondschein, S.V., Weintraub, G.Y. (2003). Appointment Policies in Service Operations: A Crit-
ical Analysis of the Economic Framework. Production and Operations Management. 12(2):266-
286.

Ouelhadj, D., Petrovic, S. (2009). A Survey of Dynamic Scheduling in Manufacturing Systems.
Journal of Scheduling. 12(4):417-431.

Parlar, M., Moosa, S. (2008). Dynamic Allocation of Airline Check-In Counters: A Queueing
Optimization Approach. Management Science. 54(8):1410-1424.

Parthasarathy, P.R., Moosa, S. (1989). Transient Solution to the Many-Server Poisson Queue:
A Simple Approach. Journal of Applied Probability. 26(3):584-594.

Pinedo, M.L. (2012). Scheduling: Theory, Algorithms, and Systems. Springer.

Preater, J. (2001). A Bibliography of Queues in Health and Medicine. Keele Mathematics Re-
search Report, Keele University.

Robinson, L.W., Chen, R.R. (2010). A Comparison of Traditional and Open-Access Policies for
Appointment Scheduling. Manufacturing & Service Operations Management. 12(2):330-346.

Ross, S.M. (1978). Average Delay in Queues with Non-Stationary Poisson Arrivals. Journal of
Applied Probability. 15(3):602-609.

Ross, S.M. (2009). Introduction to Probability Models. Academic Press.

Sztrik, J. (2005). Finite-Source Queueing Systems and Their Applications. Ferenczi, M., Patar-
icza, A., Ronyai, L. (Editors) Formal Methods in Computing. Akademia Kiado.

Takagi, H. (1993). Queueing Analysis: A Foundation of Performance Evaluation, Volume 2:
Finite Systems. North-Holland.

Zeng, B., Turkcan, A., Lin, J., Lawley, M. (2010). Clinic Scheduling Models with Overbook-
ing for Patients with Heterogeneous No-Show Probabilities. Annals of Operations Research.
178(1):121-144.

28


