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Abstract

We consider Markovian multi-server queues with two types of impatient customers: high-

and low-priority ones. The first type of customers has a non-preemptive priority over the other

type. After entering the queue, a customer will wait a random length of time for service to begin.

If service has not begun by this time he or she will abandon and be lost. We consider two cases

where the discipline of service within each customer type is FCFS or LCFS. For each type of

customers, we focus on various performance measures related to queueing delays: unconditional

waiting times, and conditional waiting times given service and given abandonment. The analysis

we develop holds also for a priority queue with mixed policies, i.e., FCFS for the first type and

LCFS for the second one, and vice versa. We explicitly derive the Laplace-Stieltjes transforms

of the defined random variables. In addition we show how to extend the analysis to more than

two customer types. Finally we compare FCFS and LCFS and gain insights through numerical

experiments.

Keywords: multi-server queues; queueing delays; abandonment; non-preemptive priority; FCFS;

LCFS; Laplace-Stieltjes transforms.
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1 Introduction

In this paper, we analyze queueing systems with multiple types of impatient customers. Customer

abandonment (or also reneging) is an important feature in a wide variety of situations that may be

encountered in telecommunication systems, manufacturing systems, and service systems such as call

centers and health care systems. Theoretical models incorporating abandonment are therefore closer

to reality and necessary to obtain more accurate analysis. Another important feature in practice

is the differentiation in the service given to different customer types. A priority mechanism is a

useful scheduling method that allows different customer types to receive differentiated performance

levels. Priority queueing comes up in many applications such as communication networks with

differentiated services, call centers with VIP and less important customers, and more. Priority

schemes are additionally known for their ease of implementation, explaining their prevalence in

practice. Much of the queueing literature is devoted to analyzing priority queues. Most papers are

restricted to two priority types. There are two possible refinements in priority situations, namely

preemption and non-preemption. In the preemptive case, a customer with high priority is allowed

to enter service immediately even if another one with lower priority is already present in service.

On the other hand, a priority discipline is said to be non-preemptive if there is no interruption. A

customer with higher priority just goes to the head of the queue and waits for his or her turn.

We consider a Markovian multi-server queueing system with two types of impatient customers:

high- and low-priority ones. The high-priority type has non-preemptive priority over the other type.

We assume common exponential distributions for service times as well as patience times for both

customer types. We analyze two different systems by considering different disciplines of service

within each queue. The discipline of service of a queue refers to the manner by which customers are

selected for service when a queue has formed. The most common discipline that can be observed in

everyday life is first-come first-served (FCFS). Some other in common usage are random order of

service (ROS) and last-come first-served (LCFS), which is applicable to many inventory systems

when it is easier to reach the nearest stored items which are the last in. In this paper, we consider

FCFS and LCFS policies and derive various performance measures related to queueing delays. Our

approach is based on the use of Laplace-Stieltjes transforms and on the characterization of the
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virtual waiting time of a “virtual” infinitely patient customer. We also describe the procedure to

extend the analysis to more than two customer types.

Our motivation for considering identical statistical behavior of customer types (service and

patience times) relates to the type of models that motivate our analysis. We are considering

firms where customers are segmented into different groups based on their value to the firm. This

segmentation can be based on lifetime value or profitability. The company then provides different

levels of service to these groups. This type of service-level differentiation is widely used in financial

service, telecommunication call centers, and more. In the presence of this type of segmentation, the

difference between customer types is not related to the statistical behavior of customers but to their

importance for the company, which we capture through priorities. In concrete terms, we assume for

our models that customer behavior and queries do not differ from one type to another. This is a

reasonable assumption for such systems, see Zeltyn et al. (2009).

In what follows, we review some of the queueing literature related to this paper. We distinguish

two streams of literature. The first deals with queueing models with impatient customers. The

second focuses on priority queues. The literature on queueing models with abandonments focuses

especially on performance evaluation. The importance of modeling abandonments in call centers

is emphasized by Garnett et al. (2002), Gans et al. (2003), and Mandelbaum and Zeltyn (2009).

Empirical evidence regarding abandonments in call centers can be found in Brown et al. (2005)

and Feigin (2006). We refer the reader to Garnett et al. (2002), and references therein, for simple

models assuming exponential patience. Garnett et al. (2002) suggest an asymptotic analysis of their

Markovian abandonment model under the heavy-traffic regime. Their main result is to characterize

the relation between the number of servers, the offered load, and system performance measures such

as the probability of delay and the probability to abandon. This can be seen as an extension of the

results of Halfin and Whitt (1981) by adding abandonments. A number of approximations for the

probability to abandon are developed by Boxma and de Waal (1994). The authors have considered a

multi-server queue with generally distributed service times and patience times. Brandt and Brandt

(1999, 2002) consider a state-dependent Markovian multi-server queue with generally distributed

patience times, in which the arrival rate depends on the number of customers in the system and
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in which the service rate depends on the number of busy servers. They derive the steady-state

distribution of the number of customers in the system and various waiting-time distributions. The

impact of the patience distribution on the performance is studied by Mandelbaum and Zeltyn

(2004). They observe an approximate linearity between the abandonment probability and the

average waiting time. To analyze multi-server queues with generally distributed service times

and patience times, Whitt (2005) develops an algorithm to compute approximations for standard

steady-state performance measures. One of his conclusions is that the behavior of the patience

distribution near the origin primarily affects the performance. Iravani and Balcıog̃lu (2008a) propose

two approximations that are based on scaling the single-server queue to obtain estimates for the

waiting-time distributions. Other papers have treated the impatience phenomenon under various

assumptions. Related studies include those by Baccelli and Hebuterne (1981), Altman and Borovkov

(1997), Ward and Glynn (2003), and references therein.

Let us now briefly mention some of the literature dealing with priority queueing systems. We

refer the reader to Davis (1966) and Kella and Yechiali (1985) for a simple Markovian non-preemptive

queue where all customer types have the same service-time distribution. Wagner (1997) considers

multi-server non-preemptive priority systems with a Markovian arrival process, service times having

phase type distributions, and both cases of finite and infinite queueing spaces are considered. Other

references considering more complicated models, but where abandonments are not allowed, include

those by Kao and Wilson (1999), Takine (1999), and Sleptchenko (2003). As for preemption schemes,

we refer the reader to Harchol-Balter et al. (2005), Sleptchenko and van der Heijden (2005), and

references therein. Sleptchenko and van der Heijden (2005) derive approximations for a wide range

of relevant performance characteristics, such as the moments of the number of customers of a

certain type, in a Markovian queue where customers have different expected values of service times.

Harchol-Balter et al. (2005) introduce a new technique to reduce the Markov chain dimensionality of

an M/PH/s model with an arbitrary number of preemptive-resume priority types. Some research on

priority queues has been dedicated to systems with mixed priorities that combine the two disciplines

(with and without preemption). Results for the single-server case can be found in Drekic and

Stanford (2000), and for those in the multi-server case, we refer the reader to Zeltyn et al. (2009).
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Although the two features of abandonment and priority have each received attention separately,

there is limited literature that deals with both of them. We refer the reader to Choi et al. (2001),

where the authors derive several performance measures for an M/M/1 queue with two types of

impatient customers in which type 1 customers have impatience of constant duration, and type 2

customers have no impatience and low priority level. An extension of the latter model is addressed

by Brandt and Brandt (2004) for general distributed patience times. For a healthcare application,

Wang (2004) considers a single-server non-preemptive priority queue with two classes of impatient

customers, exponential service times with identical rates, exponential patience times with possibly

different rates, and FCFS policy for each customer type. He proposes an approximation for the

probability to have an idle server, which allows to compute the expected values of the queue lengths

and the unconditional waiting times. Rozenshmidt (2007) considers a similar model to ours (under

FCFS) and derives expressions for the unconditional expected waiting times of all customer types.

Here we extend that analysis by considering additional performance measures, by considering also

LCFS, and by computing all moments of the random variables. We also refer the reader to an

interesting paper by Iravani and Balcıog̃lu (2008b), where the authors analyze different priority

models: single-server models with general service times, and multi-server models with exponential

service times and a call-back option. A more recent paper by Sarhangian and Balcıog̃lu (2011)

considers different priority models similar to Iravani and Balcıog̃lu (2008b). One of their models is

similar to the one analyzed in this paper. What is different is that they consider two customers

types possibly with different abandonment rates, but only the FCFS policy for each customer type.

They employ the level crossing technique to derive various performance measures as those analyzed

in this paper. Our main contributions can be summarized as follows.

• We compute the Laplace-Stieltjes transforms of various random variables related to queueing

delays: unconditional waiting times, and conditional waiting times given service and given

abandonment. We do so for both high- and low-priority customers. Our approach is based

on the computation of virtual waiting times. One can then easily numerically invert the

Laplace-Stieltjes transforms in order to obtain the cumulative distribution functions of these

random variables at any point of time, see Abate and Whitt (2006).
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• The analysis is detailed for two different non-preemptive priority models. One where the

discipline of service within each class is FCFS, and another one working under LCFS. Moreover,

the analysis we develop holds for a priority queue with mixed policies, i.e., FCFS for the first

type and LCFS for the second one, and vice versa. We also extend our approach to the case

of more than two customer types.

• We numerically compare between the effects of the FCFS and LCFS policies on performance,

and provide some insights to call center managers using such type of prioritization. A concrete

motivation of this work, coming from the call center industry, is that of the Bouygues Telecom

call center. Bouygues Telecom is a French mobile phone company where customers are grouped

into different classes as a function of the type of their mobile phone contracts. In other words,

customers are grouped into classes based on the monthly amount they are paying to Bouygues

Telecom. All customers from all classes ask the same type of questions, and the segmentation

is not related to their behavior. As mentioned above, it is then appropriate in such cases

to assume models where customer classes are statistically identical in terms of service and

abandonment times (Zeltyn et al. 2009).

The remainder of this paper is structured as follows. In Sections 2.1 and 2.2, we describe the

basic two-class queueing models, and define the performance measures of interest, respectively.

In Section 2.3, we then develop some preliminary results that would help us in the rest of the

analysis. In Section 3.1, we provide the results of performance evaluation when high- and low-priority

customers are served under the FCFS basis. Those when high- and low-priority customers are

served under the LCFS basis are given in Section 3.2. In Section 3.3, we explain how the analysis

can be extended to the case of more than two classes. In order to illustrate the results and compare

between FCFS and LCFS, we give some numerical experiments in Section 3.4. Finally in Section 4,

we provide some concluding remarks and directions for future research.
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2 Preliminaries

We first describe the two basic multi-class queues (for FCFS and LCFS) that we will analyze in this

paper. Then, we provide the definitions of the performance measures of interest. The performance

measures are related to the queueing delays of customers. Finally, we present some preliminary

derivations that we will need along the way.

2.1 Modeling

Consider a queueing model with two types of customers: important customers denoted by type 1,

and less important ones denoted by type 2. The model consists of two infinite-buffer queues for

types 1 and 2, and a set of s parallel, identical servers. All servers are able to handle all types of

customers. The system is work conserving, i.e., a server is never forced to be idle with customers

waiting. So upon arrival, a customer is addressed by one of the available servers, if any. If not, the

customer must join one of the queues. Newly arriving customers of types 1 and 2 are assigned to

queues 1 and 2, respectively. Customers of type 1 (waiting in queue 1) have priority over customers

of type 2 (waiting in queue 2) in the sense that agents are providing assistance to type 1 customers

first. The priority rule is non-preemptive, which simply means that a server currently serving a

type 2 customer, while a new type 1 customer enters the system, will complete this service before

turning to the queue 1 customer. Within each queue, we consider two cases for the discipline of

service: FCFS and LCFS. Arrival processes of types 1 and 2 follow a Poisson process with rates

λ1 and λ2, respectively. Let λ be the total arrival rate, λ = λ1 + λ2. Successive service times are

assumed to be independent and identically distributed (i.i.d.), and follow a common exponential

distribution with rate µ for both customer types.

In addition, we let customers be impatient. After entering the queue, a customer will wait a

random length of time for service to begin. If service has not begun by this time the customer

will abandon. Times before abandonment, for both customer types, are assumed to be i.i.d. and

exponentially distributed with a common rate denoted by γ. We describe patience times by the

random variable T . Finally, retrials are ignored, and abandonment is not allowed once a customer

starts service. Following similar arguments, the behavior of the system can be viewed as a two-class
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M/M/s + M queueing system. The resulting model where the policy for each queue is FCFS

(LCFS) is referred to as ModelFCFS (ModelLCFS). Note that owing to abandonments, ModelFCFS

and ModelLCFS are unconditionally ergodic.

2.2 Notation

We denote by m the type of a customer, m ∈ {1, 2}. During the stationary regime, we define the

following performance measures for ModelFCFS and ModelLCFS. To simplify the notations, we will

not add indices to these quantities in order to refer to one of the models (we will add a clarification

comment when it is necessary). In the remainder of this paper we refer to a customer as a she.

• W is the unconditional queueing delay of an arbitrary customer (regardless of her type).

• Wm is the unconditional queueing delay of a type m customer.

• Wm,s is the conditional queueing delay of a type m customer, given that she will enter service.

• Pm,s is the probability that a type m customer enters service.

• Wm,r is the conditional queueing delay of a type m customer, given that she will abandon.

• Pm,r is the probability that a type m customer abandons.

• Wm,d is the conditional queueing delay of a type m customer, given that she has to wait.

• Pd is the probability of delay, i.e., the probability that a new arrival has to wait. Since

ModelFCFS and ModelLCFS are work conserving, Pd is independent of the customer type.

• Wm,d,s is the conditional queueing delay of a type m customer, given that she was queued

and that she will enter service. (We do not define a similar quantity for abandoned customers,

since an abandoned customer is necessarily a delayed customer.)

• Pm,d,s is the probability that a type m customer waiting in the queue will enter service.

To clarify the numerous definitions, we depicted in Figure 1 a schema of the performance

measures of interest.
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Figure 1. Performance measures for a type m customer.

In what follows, we provide some relations between the performance measures. For the remainder

of the paper, we denote by EXk the k-th order moment of a given random variable X, for k ≥ 1.

We also denote by fX(·) and FX(·) the probability density function (pdf) and the cumulative

distribution function (cdf) of X. A customer who does not abandon will necessarily enter service,

then Pm,s + Pm,r = 1. A customer who joins the queue has two possibilities: either she abandons,

or she gets service, so Pd = Pm,r + Pm,d,s. Since the arrival processes are Poisson, the probability

that a new arrival is of type m is λm/λ. Therefore,

EW k =
λ1
λ
EW k

1 +
λ2
λ
EW k

2 ,

for k ≥ 1. For type m customers, one may write

EW k
m = Pm,sEW

k
m,s + Pm,rEW

k
m,r, (1)

for k ≥ 1. Upon arrival, a customer is immediately addressed by one of the available servers, if any.

If not, she has to wait and joins one of the queues (with probability Pd). Thus,

EW k
m = PdEW

k
m,d, (2)
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for k ≥ 1. For customers that join the queue, we have

EW k
m,d = Pm,d,sEW

k
m,d,s + Pm,rEW

k
m,r, (3)

which allows to determine EW k
m,d,s, for k ≥ 1.

2.3 Preliminary Analysis

We start by computing the stationary probability distributions of the system states for ModelFCFS

and ModelLCFS. At a given instant t, we denote by n1(t), n2(t), and n(t) = n1(t) +n2(t) the number

of type 1 customers in queue 1, that of type 2 in queue 2, and the total in both queues, respectively.

Computing the stationary distribution of the process {n2(t), t ≥ 0} or {(n1(t), n2(t)), t ≥ 0} is a

complicated task. We only consider the processes {n1(t), t ≥ 0} and {n(t), t ≥ 0} which are sufficient

for the derivation of the performance measures. Recall that all stationary probabilities exist due to

the ergodicity condition (which holds for any γ > 0).

Patience times are memoryless. Thus, as long as the scheduling policy within each queue is work

conserving, the number of type 1 customers and type 2 customers in the system remain unchanged.

Moreover, since patience as well as service times are identically distributed for both customer types,

a work-conserving policy (priority between the queues or not) does not affect the total number of

customers in the system. The following analysis holds for both ModelFCFS and ModelLCFS.

Let us consider the process {n(t), t ≥ 0}. With regard to the total number of customers in the

system (ModelFCFS or ModelLCFS), our system is equivalent to a multi-server queue with a single

type of customers. The arrival process is Poisson with intensity λ = λ1 + λ2. Hence, this system

corresponds to the basic M/M/s+M queueing system. The stationary probability distribution of i

customers in the system, denoted by πi for i ≥ 0, is given by

πi =


λi

µii!
π0, 0 ≤ i ≤ s,

λi

µss!
∏i−s
j=1 (sµ+ jγ)

π0, i > s,

with

π−10 =

s∑
i=0

λi

µii!
+

∞∑
i=s+1

λi

µss!
∏i−s
j=1 (sµ+ jγ)

.
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Figure 2. Markov chain for the number of customers in the queue.

Denote by p(i) the stationary probability that all servers are busy and there are i customers in total

in both queues, i.e., p(i) = πs+i, for i ≥ 0.

The probability of delay Pd is simply the probability that a new arrival finds all servers busy.

It is then independent of the type of the new arrival. Moreover since the arrival process of a type

m customer follows a Poison process, we use the PASTA property to state that the stationary

probabilities seen by a new arrival coincide with those seen at an arbitrary instant. Thus, Pd is

given by

Pd = 1−
s−1∑
i=0

πi.

Let us now characterize the stationary distribution of {n1(t), t ≥ 0}. To do so, we consider a

two-dimensional Markov chain as shown in Figure 2. The state of the system is defined by the total
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number of customers in the system (regardless of their type) if less than s customers are in the

system (i.e., all customers are in service), and defined by the couple (n1, n2) denoting the number of

queued customers of each type if s customers or more are in the system (i.e., all servers are busy).

Let p1(i) denote the stationary probability that all servers are busy and i type 1 customers are in

queue 1. By assembling all the states of each line in Figure 2, the balance equations lead to

p1(i) =
λi1∏i

j=1(sµ+ jγ)
p1(0), (4)

for i ≥ 0. To compute p1(0), we come back to the process {n(t), t ≥ 0}. It is clear that the

probability to be in state i, for 0 ≤ i ≤ s− 1, in the Markov chain of Figure 2 is equivalent to πi.

Next, the normalization condition gives

s−1∑
i=0

πi +

∞∑
i=0

∞∑
j=0

p1,2(i, j) = 1, (5)

where p1,2(i, j) is the stationary probability that all servers are busy, i type 1 customers are in

queue 1, and j type 2 customers are in queue 2. Observe now that

p1(i) =

∞∑
j=0

p1,2(i, j), (6)

for i ≥ 0. Combining thereafter Equations (4)–(6) leads to

p1(0) =

(
1−

s−1∑
i=0

πi

)( ∞∑
i=0

λi1∏i
j=1(sµ+ jγ)

)−1
.

Having in hand p1(i) and p(i), for i ≥ 0, the expected length of queue 1, say Q1, and that of

both customer types waiting in both queues, say Q, are therefore given by

Q1 =
∞∑
i=1

ip1(i), and Q =
∞∑
i=1

ip(i). (7)

As a consequence, the stationary expected length of queue 2, say Q2, is simply deduced by

Q2 = Q−Q1.

We are now ready to compute the stationary probability to abandon and that to enter service

for a new type m arrival. The probability Pm,r can be viewed as the fraction of the stationary

expected rate of type m abandoned customers over that of type m arrivals, seen at the epoch of a

new type m arrival. Using PASTA and the memoryless property of patience times, we deduce that
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the stationary expected rate of type m abandoned customers is γQm. So,

Pm,r =
γQm
λm

.

The probability to enter service is only the complementary probability (no possible events of blocking

or balking). Indeed, a customer who does not abandon will necessarily enter service,

Pm,s = 1− Pm,r.

Finally, we also have

Pm,d,s = Pd − Pm,r.

3 Analysis of Queueing Delays

In this section, we characterize the distributions of the random variables Wm, Wm,d, Wm,s, Wm,r

and Wm,d,s. We do so by computing their k-th order moments, for k ≥ 1. Although the stationary

probabilities of the number of type m customers in the system, as well as Pd, Pm,s, Pm,r and Pm,d,s

(computed in Section 2.3) are independent of the scheduling policy within each queue, the random

variables of queueing delays do depend on the policy (FCFS or LCFS). We separately address the

analyses for ModelFCFS and ModelLCFS in Sections 3.1 and 3.2, respectively.

Our approach is based on the computation of first-passage times in various birth-death processes.

As we will prove below, many of these random variables are equivalent to the length of an n-busy

period in an FCFS M/M/s+M queue, for n ≥ 0. For n ≥ 1, an n-busy period is defined as the

elapsed time from the arrival of a customer to a busy M/M/s + M system with n − 1 waiting

customers in the queue (n customers in the queue including the new arrival) until the epoch at

which one server becomes idle. The 0-busy period reduces to the classical busy-period definition

defined to begin with the arrival of a customer to a system with s− 1 busy servers and to end when

again one server becomes idle. We denote the length of an n-busy period by BPn,λ, for n ≥ 0. For

an FCFS M/M/1 +M queue, one can obtain from Rao (1967) or Iravani and Balcıog̃lu (2008b)

the Laplace-Stieltjes transform of the pdf of BPn,λ. Next, using Jouini (2012, Lemma 1) to state

that the busy-period distribution is unchanged for all work-conserving policies, substituting the
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expected service rate of a busy M/M/1 +M queue, µ, by that of an M/M/s+M queue, sµ, and

denoting the Laplace-Stieltjes transform of the pdf of BPn,λ (for an M/M/s+M queue with any

work-conserving policy) by F̃BPn,λ(x), we obtain

F̃BPn,λ(x) =

sµ
x+sµ +

∑∞
i=1(−1)i

[∏i−1
j=0

(
1− sµ

x+sµ+jγ

)]
sµ

x+sµ+iγΘ(n, i)

1 +
∑∞

i=1
λi

i!γi

[∏i−1
j=0

(
1− sµ

x+sµ+jγ

)] , (8)

with

Θ(n, i) =



i∑
j=0

(−1)jλj

j!γj

(
n

i− j

)
, 1 ≤ i ≤ n,

i∑
j=i−n

(−1)jλj

j!γj

(
n

i− j

)
, i > n,

for x ∈ R+, and n ≥ 0. We will later use Equation (8) to analyze queueing delays for low-priority

customers in ModelFCFS, and both customer types in ModelLCFS. The analysis for high-priority

customers in ModelFCFS is in turn simpler by extending existing results in the literature.

3.1 Analysis of ModelFCFS

For high- and low-priority customers, we compute the k-th order moment of Wm,s and Wm,r, which

also allows to derive the k-th order moment of Wm, Wm,d and Wm,d,s, for k ≥ 1 and m ∈ {1, 2}.

High-Priority Customers

Using an approach originally inspired by Whitt (1999a), Jouini et al. (2011a) derive all moments of

W1,s and W1,r in the case of a finite multi-server queue with a single type of impatient customers.

Here we further extend that approach for our priority queue. Consider a new type 1 arrival who

finds all servers busy and n1 waiting customers ahead of her in queue 1, n1 ≥ 0. It goes without

saying that for the remaining cases (at least one server is idle), our customer will immediately enter

service. Because of their lower priority, type 2 customers already waiting in queue 2, as well as

those who will arrive later, will not affect the sojourn time in the queue of our new type 1 customer.

Using Jouini et al. (2011a), we obtain

EW k
1,s =

1

P1,s

∞∑
n1=0

p1(n1)Ψn1+1EY
k
n1+1,
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with

Ψn1 =

n1∏
i=1

(
1− γ

sµ+ iγ

)
=

sµ

sµ+ n1γ
,

for n1 ≥ 1, and Yn1 , a random variable, is the summation of n1 independent exponential distributions

with parameters sµ+ γ, sµ+ 2γ, . . . , sµ+ n1γ. So, all moments of Yn1 may be derived in a closed

form. For example, its first two moments are

EYn1 =

n1∑
j=1

1

sµ+ jγ

and

EY 2
n1

=

n1∑
j=1

1

(sµ+ jγ)2
+

 n1∑
j=1

1

sµ+ jγ

2

,

respectively, for n1 ≥ 1

Let us now focus on deriving EW k
1,r. For a new type 1 arrival who finds at least one idle server,

W1,r is zero. Assume she is queued with n1 waiting customers and that she will abandon while

waiting in the queue. Let Zn1+1 denote the random variable measuring her sojourn time in the

queue before abandonment. Removing the condition on n1, we obtain

EW k
1,r =

1

P1,r

∞∑
n1=0

p1(n1)EZ
k
n1+1.

Note that computing the moments of Zn1 , for n1 ≥ 1, again involves summations of independent

exponential random variables, and are easy to obtain. One may see that the probability to abandon

at position j, for 1 ≤ j ≤ n1, is

γ

sµ+ jγ

n1∏
l=j+1

(
1− γ

sµ+ lγ

)
=

γ

sµ+ n1γ
.

Knowing that our customer will abandon at position j, the time to abandon, say Zn1(j), is the

sum of n1 − j + 1 independent exponential random variables with parameters sµ+ n1γ, sµ+ (n1 −

1)γ, . . . , sµ+ jγ. Averaging over all possibilities leads to

EZkn1
=

γ

sµ+ n1γ

n1∑
j=1

EZkn1
(j).

For example, the expected value of Zn1 may simply be written as

EZn1 =
1

sµ+ n1γ

n1∑
j=1

jγ

sµ+ jγ
.
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Using the results above combined with Equations (1)–(3), we obtain all moments of the random

variables W1, W1,d and W1,d,s.

Low-Priority Customers

Our approach to derive the performance measures of type 2 customers is based on computing their

virtual waiting time. Recall that the virtual waiting time is defined as the waiting time of an

infinitely patient customer. For a new type 2 customer, we denote it by V2. In what follows, we

compute the k-th order moment of W2,s and W2,r. Using the latter, all remaining performance

measures are easily obtained thereafter.

Let us focus on the conditional waiting time of a type 2 customer given service, namely W2,s.

Recall that patience times are described by the random variable T . We have

FW2,s(t) =
P(V2 < t, V2 < T )

P(V2 < T )
,

for t ≥ 0. First, observe that P(V2 < T ) = P2,s. Second, P(V2 < t, V2 < T ) =
∫ t
0 e
−γxfV2(x)dx. A

new type 2 arrival who finds at least one idle server with probability 1− Pd, will immediately enter

service. If not, assume that she finds n = n1 + n2 waiting customers. Thus, we may write for t ≥ 0

P(V2 < t, V2 < T ) = (1− Pd) · 1 +

∫ t

0
e−γx

∞∑
n=0

p(n)fV2,n(x)dx, (9)

where V2,n is the conditional virtual waiting time of a new type 2 customer, given that upon arrival

she finds in total n waiting customers in both queues. Her virtual waiting time is not affected by all

future type 2 arrivals because the discipline of service within queue 2 is FCFS. However, all future

type 1 arrivals have to be considered because of their higher priority. Note also that this virtual

waiting time does not depend on the couple (n1, n2) but on the total number of customers ahead

of her n = n1 + n2 (common distribution of service and patience times for both customer types).

As a consequence V2,n can be seen as the first-passage time at state −1 starting at state n in the

birth-death process as shown in Figure 3. It is the time to empty the queue ahead of our customer

and in addition one server becomes idle to handle her.

By considering a single-class M/M/s+M queue (with mean arrival rate λ1), one may see that

V2,n is equivalent to the duration of an n-busy period, for n ≥ 0. Let us denote the latter by BPn,λ1 ,
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Figure 3. Virtual waiting time of a type 2 arrival finding n customers in queues 1 and 2, FCFS.

V2,n ≡ BPn,λ1 , for n ≥ 0. Equation (9) then becomes

FW2,s(t) =
1

P2,s

{
1− Pd +

∫ t

0
e−γx

∞∑
n=0

p(n)fBPn,λ1 (x)dx

}
, (10)

for t ≥ 0. Taking the derivative in t on both sides of Equation (10), we obtain

fW2,s(t) =
1

P2,s

∞∑
n=0

p(n)e−γtfBPn,λ1 (t), (11)

for t ≥ 0. For the rest of the paper, we denote by F̃X(x), for x ∈ R+, the Laplace-Stieltjes transform

of the pdf fX(·) of a random variable X. Note that the Laplace-Stieltjes transform of e−γtfBPn,λ1 (t)

is F̃BPn,λ1 (x + γ), for x ∈ R+. Applying next the Laplace-Stieltjes transform to Equation (11)

implies

F̃W2,s(x) =
1

P2,s

∞∑
n=0

p(n)F̃BPn,λ1 (x+ γ), (12)

for x ∈ R+. Using Equation (12), one can obtain any k-th order moment of W2,s, for k ≥ 1. It is

given by

(−1)k
dkF̃W2,s(x)

dxk

∣∣∣∣
x=0

,

for k ≥ 1. Thus

EW k
2,s =

(−1)k

P2,s

∞∑
n=0

p(n)F̃
(k)
BPn,λ1

(γ),

where h(k)(·) denotes the k-th derivative of a function h(·), for k ≥ 1.

Let us now focus on the conditional waiting time of a type 2 customer given abandonment, W2,r.

We have

FW2,r(t) =
P(T < t, V2 > T )

P(V2 > T )
,
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for t ≥ 0. First, observe that P(V2 > T ) = P2,r. Second, we may write

P(T < t, V2 > T ) =

∫ t

0
γe−γx(1− FV2(x))dx,

for t ≥ 0. As a consequence, we obtain after some algebra

FW2,r(t) =
1

P2,r

{
1− e−γt −

∫ t

0
γe−γx

(
1− Pd +

∞∑
n=0

p(n)FBPn,λ1 (x)

)
dx

}
, (13)

for t ≥ 0. Taking the derivative in t on both sides of Equation (13) leads to

fW2,r(t) =
γ

P2,r

(
Pde

−γt − e−γt
∞∑
n=0

p(n)FBPn,λ1 (t)

)
, (14)

for t ≥ 0. Using that the Laplace-Stieltjes transform of FBPn,λ1 (t) is 1
x F̃BPn,λ1 (x), for x ∈ R+, and

applying the Laplace-Stieltjes transform to Equation (14) implies

F̃W2,r(x) =
γ

P2,r(x+ γ)

(
Pd −

∞∑
n=0

p(n)F̃BPn,λ1 (x+ γ)

)
,

for x ∈ R+. This finishes the characterization of W2,s and W2,r. One can now use Equations (1)–(3)

to obtain all moments of the remaining random variables W2, W2,d and W2,d,s.

To close the discussion, we note that one can obtain the expected queue lengths Q1 and Q2

(given by Equation (7)) by using the expressions for EW1 and EW2 derived in this section and by

applying Little’s law, λmEWm = Qm, for m ∈ {1, 2}.

3.2 Analysis of ModelLCFS

Similarly to the previous Section, we compute here for ModelLCFS the k-th order moment of Wm,s

and Wm,r, which also allows to derive the k-th order moment of Wm, Wm,d and Wm,d,s, for k ≥ 1

and m ∈ {1, 2}. We use the same approach based on the computation of the virtual waiting time of

high- and low-priority customers.

High-Priority Customers

Let us consider a new “tagged” type 1 arrival and assume that she is infinitely patient. We denote

her virtual waiting time by V1. If she finds at least one idle server with probability 1 − Pd, she

immediately enters service. So, her virtual waiting time is zero. In the complementary case (all
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Figure 4. Virtual waiting time of a type 1 arrival, LCFS.

servers are busy), she is queued. Type 2 customers already waiting and those who arrive later are

ignored because of their lower priority. Also, because the discipline of service within queue 1 is

LCFS, type 1 customers already waiting in the queue are ignored. Thus, the conditional virtual

waiting time, given delay for a new type 1 arrival is independent of the state of the two queues. Let

us denote this conditional virtual waiting time by V1,d, V1 = PdV1,d. One can see that V1,d is the

first-passage time at state −1 starting at state 0 in the birth-death process as shown in Figure 4.

From Figure 4, one can see that V1,d is equivalent to the duration of a 0-busy period in an

M/M/s+M queue with mean arrival rate λ1, denoted by BP0,λ1 . In a similar way as in Section 3.1,

we characterize W1,s as follows. We have

FW1,s(t) =
P(V1 < t, V1 < T )

P(V1 < T )
,

for t ≥ 0. We then obtain after some algebra

FW1,s(t) =
1

P1,s

{
1− Pd + Pd

∫ t

0
e−γxfV1,d(x)dx

}
, (15)

for t ≥ 0. Using V1,d ≡ BP0,λ1 and taking the derivative in t on both sides of Equation (15) gives

fW1,s(t) =
Pd
P1,s

e−γtfBP0,λ1
(t),

for t ≥ 0, which by applying the Laplace-Stieltjes transform leads to

F̃W1,s(x) =
Pd
P1,s

F̃BP0,λ1
(x+ γ),

for x ∈ R+. Finally, we obtain

EW k
1,s = (−1)k

Pd
P1,s

F̃
(k)
BP0,λ1

(γ),
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for k ≥ 1. We now move to characterize W1,r. We have

FW1,r(t) =
P(T < t, V1 > T )

P(V1 > T )
,

for t ≥ 0, which implies after some simplifications

FW1,r(t) =
1

P1,r

{
1− e−γt −

∫ t

0
γe−γx

(
1− Pd + PdFBP0,λ1

(x)
)

dx

}
, (16)

for t ≥ 0. Taking the derivative in t on both sides of Equation (16) leads to

fW1,r(t) =
Pdγ

P1,r

(
e−γt − e−γtFBP0,λ1

(t)
)
, (17)

for t ≥ 0. We now apply the Laplace-Stieltjes transform to Equation (17) and obtain

F̃W1,r(x) =
Pdγ

P1,r(x+ γ)

(
1− F̃BP0,λ1

(x+ γ)
)
,

for x ∈ R+. Finally, we close the discussion by mentioning that again one can use Equations (1)–(3)

to obtain all moments of the remaining random variables W1, W1,d and W1,d,s.

Low-Priority Customers

Our approach again relies on determining the virtual waiting time of an infinitely patient type 2

customer. Consider such a customer. She will have a zero virtual waiting time with probability

1− Pd. With the complementary probability, she is queued. In the latter case, she will get priority

over the type 2 customers already waiting. What matters for her virtual waiting time are the type

1 customers already waiting in queue 1 (denoted by n1, n1 ≥ 0), as well as all future arrivals of

types 1 and 2. Let us denote the conditional virtual waiting time of a type 2 customer, given a busy

system and n1 customers in queue 1, by V2,n1 , n1 ≥ 0. One can see that V2,n1 is the first-passage

time at state −1 starting at state n1 in the birth-death process as shown in Figure 5. It is then easy

to see that V2,n1 is equivalent to the duration of an n1-busy period, say BPn1,λ, of an M/M/s+M

queue (with mean arrival rate λ = λ1 + λ2), V2,n1 ≡ BPn1,λ.

Similarly to Equation (10), but by conditioning here on the state of queue 1, we obtain

FW2,s(t) =
1

P2,s

{
1− Pd +

∫ t

0
e−γx

∞∑
n1=0

p1(n1)fBPn1,λ(x)dx

}
, (18)
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Figure 5. A new type 2 arrival arriving to an LCFS queue.

for t ≥ 0. Taking the derivative in t on both sides of Equation (18) gives

fW2,s(t) =
1

P2,s

∞∑
n1=0

p1(n1)e
−γtfBPn1,λ(t),

for t ≥ 0. Next, we may write

F̃W2,s(x) =
1

P2,s

∞∑
n1=0

p1(n1)F̃BPn1,λ(x+ γ), (19)

for x ∈ R+. In a similar way as that for the FCFS case, but by using the random variable BPn1,λ

and averaging over all queue 1 states, we have

FW2,r(t) =

1

P2,r

{
1− e−γt −

∫ t

0
γe−γx

(
1− Pd +

∞∑
n1=0

p1(n1)FBPn1,λ(x)

)
dx

}
,

for t ≥ 0, and

F̃W2,r(x) =
γ

P2,r(x+ γ)

(
Pd −

∞∑
n1=0

p1(n1)F̃BPn1,λ(x+ γ)

)
, (20)

for x ∈ R+. Again, one can use Equations (1)–(3) to obtain all moments of the remaining random

variables W2, W2,d and W2,d,s.

Note that for all cases analyzed above (any customer type and any discipline of service),

one can check the relation EW k
m = Pm,sEW

k
m,s + Pm,rEW

k
m,r, for k ≥ 1 and m ∈ {1, 2}. In

what follows, we do it for type 2 customers and ModelLCFS. It suffices to prove that F̃W2(x) =

P2,sF̃W2,s(x) + P2,rF̃W2,r(x), for x ∈ R+. On the one hand, using Equations (19) and (20), we state

that

P2,sF̃W2,s(x) + P2,rF̃W2,r(x) =
γPd
x+ γ

+
x

x+ γ

∞∑
n1=0

p1(n1)F̃BPn1,λ(x+ γ), (21)
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for x ∈ R+. On the other hand, we may write

FW2(t) = 1−P(min{V2, T} > t) = 1−P(V2 > t)P(T > t), (22)

for t ≥ 0. We also have

P(V2 > t) = 1−

{
(1− Pd) · 1 +

∞∑
n1=0

p1(n1)P(V2,n1 < t)

}

= Pd −
∞∑

n1=0

p1(n1)FBPn1,λ(t),

(23)

for t ≥ 0. Then, Equations (22) and (23) lead to

FW2(t) = 1− Pde−γt + e−γt
∞∑

n1=0

p1(n1)FBPn1,λ(t),

for t ≥ 0, which implies

fW2(t) = γPde
−γt + e−γt

∞∑
n1=0

p1(n1)fBPn1,λ(t)− γe−γt
∞∑

n1=0

p1(n1)FBPn1,λ(t), (24)

for t ≥ 0. Finally, after some algebra, we deduce from Equation (24) that

F̃W2(x) =
γPd
x+ γ

+
x

x+ γ

∞∑
n1=0

p1(n1)F̃BPn1,λ(x+ γ), (25)

for x ∈ R+. By comparing Equations (21) and (25), we finish the proof.

3.3 More than Two Customer Types

The analysis in Sections 3.1 and 3.2 can be extended to a model with more than two customer types,

for both FCFS and LCFS cases. In what follows, we provide indications about the approach to use.

For FCFS or LCFS, consider the extended M/M/s+M queueing model with k customer types, for

k > 2. Type m has non-preemptive priority over type l, for 1 ≤ m < l ≤ k. We assume that for all

customer types, patience as well as service times are still statistically identical. Let us now focus on

the performance measures of a type m customer with mean arrival rate λm, for 1 ≤ m ≤ k.

First, we need to compute the stationary probabilities to have all servers busy and i waiting

customers in queues 1, 2, . . . ,m, denoted by p1→m(i), and those to have i waiting customers in all

queues, denoted by p(i), for i ≥ 0 and 1 ≤ m ≤ k − 1. To compute these probabilities, it suffices

to use the two-class analysis of Section 2.3 by transforming the k-class M/M/s + M queue into
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a two-class one. We do so by aggregating the first m types into a one type with mean arrival

rate
∑m

j=1 λj , and the rest of types into a second one with mean arrival rate
∑k

j=m+1 λj , for

1 ≤ m ≤ k − 1. This allows to compute Pd and also the expected number of customers in queues

1, 2, . . . ,m, denoted by Q1→m, for 1 ≤ m ≤ k − 1, and that in all queues, denoted by Q1→k = Q.

Thus, the expected length of queue m is Qm = Q1→m −Q1→m−1, for 1 ≤ m ≤ k. We then obtain

Pm,r = γQm
λm

, and Pm,s = 1− Pm,r, for 1 ≤ m ≤ k. In what follows, we focus on characterizing the

random variables Wm,s and Wm,r, which allows also to characterize the remaining random variables

Wm, Wm,d and Wm,d,s, for 1 ≤ m ≤ k. We use a similar approach as in the previous Sections, with

some changes that we mention next. Each time, the approach consists of finding an equivalent

two-class queue.

Consider the k-class model working under FCFS. For m = 1, we aggregate types 2, . . . , k into one

type. We then apply the same analysis as for high-priority customers in Section 3.1. For 2 ≤ m ≤ k,

we aggregate types 1, . . . ,m into one high-priority type, and types m+ 1, . . . , k into one low-priority

type. We thereafter use the stationary probabilities p1→m(i), and duration of the i-busy period of a

single-class M/M/s+M queue with mean arrival rate
∑m−1

j=1 λj , for i ≥ 0.

Consider now the k-class model working under LCFS. For m = 1, what we need is Pd and

the duration of the 0-busy period in a single-class M/M/s+M queue with mean arrival rate λ1.

For 2 ≤ m ≤ k, we in turn aggregate types 1, . . . ,m − 1 into one high-priority type, and types

m, . . . , k into one low-priority type. We thereafter use the stationary probabilities p1→m−1(i), and

the duration of the i-busy period of a single-class M/M/s+M queue with mean arrival rate
∑m

j=1 λj

(since for a new type m arrival, future type m arrivals have priority over her), for i ≥ 0. This closes

the discussion about the extension to a model with more than two customer types.

Remark 1. In what follows, we discuss the extension of the analysis to a mixed model similar to the

basic one described in Section 2.1. The difference is that we allow the discipline of service in one of

the two queues to be different from the one in the other queue. For example, type 1 customers are

served under FCFS, while type 2 customers are served under LCFS (or the opposite case). The

extension is very easy to do. All the expressions for the stationary probabilities in Section 2 hold

for the mixed model. Consider a given type. If it is served under FCFS (LCFS), then it suffices
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to apply the same analysis as shown for that type in Section 3.1 (Section 3.2). This finishes the

characterization of the mixed model.

3.4 Numerical Illustration

In this section we present numerical results to illustrate the usefulness of the performance evaluation

models described in the previous sections. In particular, we compare between the performance

measures of ModelFCFS and ModelLCFS and examine the effect of pooling on staffing levels. Further-

more, we discuss how our results are valid for more general models with different rates of service

and general patience times.

Comparison between FCFS and LCFS

In Figure 6, we plot the conditional expected waiting times given service and given abandonment of

each customer type, as a function of the staffing level s. We observe that the conditional expected

waiting time given service is better under LCFS that the one under FCFS. The opposite is however

true for the conditional expected waiting time given abandonment. For a single-class M/M/s+M

queue, Jouini (2012) proved that FCFS (LCFS) maximizes (minimizes) the conditional expected

waiting time given service, and minimizes (maximizes) the one given abandonment. Note that it is

easy to extend these results to each customer type in our multiple-type models here.

On the one hand, this observation concretely implies that a call center manager in practice

would prefer to use LCFS in order to improve the waiting time before service of a given customer

type. This is unfair from a customer perspective. On the other hand, Figure 6 also reveals that

in contrary to EWm,r, EWm,s is not highly impacted by the policy in queue m, for m ∈ {1, 2}.

Therefore, an appropriate decision for a manager would be to use FCFS for each customer type.

First, it allows to preserve fairness between customers with the same level of priority. Second, it

allows to achieve a good EWm,s not far from the optimal one. Third, it is optimal in order to

minimize the conditional waiting times given abandonment.

Let us focus on the behavior of EWm,s and EWm,r, for m ∈ {1, 2}. As mentioned above, the

experiments show that, in the contrary to EWm,r, EWm,s is quite insensitive to the scheduling
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Figure 6. Conditional expected waiting times given service and given abandonment (µ = 1, s = 2λ1 = 2λ2).

policy (LCFS and FCFS give the lower and upper bounds, respectively). This is however true for

a range of system parameters for which the performance is not too deteriorated, namely with a

probability of service higher 70%. A possible explanation is as follows. Let us denote by Wm,s,FCFS

(Wm,r,FCFS) and Wm,s,LCFS (Wm,r,LCFS) the conditional waiting times given service (abandonment)

under FCFS and LCFS for customers type m ∈ {1, 2}, respectively. Consider for example type 1

customers. Since EW1, P1,s and P1,r are unchanged for all work-conserving policies, Equation (1)

implies

P1,sEW1,s,FCFS + P1,rEW1,r,FCFS = P1,sEW1,s,LCFS + P1,rEW1,r,LCFS,
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or equivalently

EW1,s,FCFS −EW1,s,LCFS =
P1,r

P1,s
(EW1,r,LCFS −EW1,r,FCFS) . (26)

To understand the intuition behind the observation, consider now the two extreme cases as

follows. The first case is one where P1,s is very high (close to 1). This means that almost all

customers enter service. Our system is then very similar to the one with no abandonment. In the

latter, a sojourn in queue automatically ends with a service, and EW1 is unchanged in the scheduling

policy. Then, in our case with abandonments, EW1 is very close to the expected conditional waiting

time given service. In other words, EW1,s,FCFS −EW1,s,LCFS is very small. The observation that

EW1,r,LCFS − EW1,r,FCFS is higher than EW1,s,FCFS − EW1,s,LCFS can be now explained using

Equation (26), since P1,r/P1,s < 1.

The opposite is true in another extreme case with a very high P1,r. Most of the customers

abandon. Then any scheduling policy would lead to a conditional waiting time given abandonment

very similar to the unconditional one. Since the latter is unchanged in the scheduling policy,

EW1,r,LCFS −EW1,r,FCFS is very small. Using again Equation (26) and the fact that in this case

P1,r/P1,s > 1, we state that EW1,r,LCFS−EW1,r,FCFS is lower than EW1,s,FCFS−EW1,s,LCFS. More

generally, EW1,s,FCFS − EW1,s,LCFS is smaller than EW1,r,LCFS − EW1,r,FCFS if P1,r < P1,s and

vice versa. For the case P1,r = P1,s, the two quantities coincide. Figure 7 illustrates how the

difference EW1,s,FCFS −EW1,s,LCFS may considerably vary as a function of the system performance.

We consider in Figure 7 three different systems: the first with s = 2λ1 = 2λ2, the second with

s = λ1 = λ2, and the third with s = λ1/2 = λ2/2. Then the first system (P1,s around 0.9) performs

better than the second (P1,s around 0.7), which in turn performs better than the third (P1,s around

0.4). We observe that EW1,s,FCFS−EW1,s,LCFS is the lowest for the first system, then for the second

one, then for the third one, which agrees with the explanations above.

The same reasoning holds for customers of type 2. Moreover, since P1,s > P2,s, EW1,s,FCFS −

EW1,s,LCFS is smaller than EW2,s,FCFS − EW2,s,LCFS as we observe from Figure 6. In summary,

for real-life parameters for which the probability of service of a given customer type is likely to be

higher than 70%, it is appropriate to use FCFS as a scheduling policy. The results of the standard

deviations of queueing delays give another support to this idea. As one can see, Table 1 gives further
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Figure 7. Behavior of EW1,s for FCFS (upper lines) and LCFS (lower lines) (µ = 1, γ = 1).

arguments in favor of FCFS. Values of standard deviations are indeed lower for FCFS than those

for LCFS, except for the single-server case for type 2.

Staffing Levels

As expected we see from Figure 6 that performance improves in the system size, due to pooling

effects. The same observation holds for the extreme cases of the heavily loaded systems in Figure 7.

Pooling has however a diminishing return. The benefits in terms of the reduction of expected

conditional waiting times, given service or abandonment, are more apparent for very small systems

than for bigger ones.

For fixed customer arrival rates, we observe from Figure 8 as expected that waiting times

decrease in the number of servers. However, we again see a diminishing return. Waiting times very

quickly decrease when adding a server to a very small staffing level, but they are not reduced much

from a higher staffing level around s = 4 for instance. The system manager can then choose a

close-to-optimal staffing level while having an appropriate service level.

Also, we see that performance in terms of queueing delays improves in the abandonment rate γ.

Therefore, staffing levels decrease in the abandonment rate. As γ increases, patience times decrease,

so fewer customers are present in the system, and as a consequence virtual delays improve. For

each type, although the expected conditional waiting times given service and given abandonment

(see Figure 6) do vary with the scheduling policy (FCFS, LCFS, etc.), the unconditional expected
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Figure 8. Effect of the staffing level on the expected waiting times (µ = 1, γ = 0.5, λ1 = λ2 = 2).

Type 1, FCFS Type 2, FCFS

s EW1 σ(W1) σ(W1,s) σ(W1,r) EW2 σ(W2) σ(W2,s) σ(W2,r)

1 0.539 0.720 0.702 0.728 0.713 0.977 0.910 1.017

2 0.347 0.474 0.468 0.477 0.563 0.795 0.752 0.831

5 0.177 0.249 0.247 0.253 0.408 0.589 0.570 0.611

10 0.100 0.144 0.143 0.148 0.316 0.457 0.448 0.466

20 0.054 0.080 0.079 0.083 0.241 0.346 0.342 0.343

Type 1, LCFS Type 2, LCFS

s EW1 σ(W1) σ(W1,s) σ(W1,r) EW2 σ(W2) σ(W2,s) σ(W2,r)

1 0.539 0.807 0.719 0.927 0.713 1.069 0.887 1.216

2 0.347 0.569 0.513 0.711 0.563 0.923 0.755 1.121

5 0.177 0.327 0.303 0.467 0.408 0.765 0.614 1.033

10 0.100 0.201 0.189 0.315 0.316 0.662 0.524 0.985

20 0.054 0.116 0.111 0.197 0.241 0.570 0.446 0.948

Table 1. Comparison between standard deviations of queueing delays (µ = 1, s = 2λ1 = 2λ2, γ = 0.5).

waiting times are as expected unchanged (see Table 1).

Different Service Rates

Our analysis relies on the assumption that for all customer types, the service rates are identical.

This assumption is not unrealistic when customers are segmented into different groups based only

on their value, and not on type-dependent statistical behavior. However, we present here numerical
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Figure 9. Conditional expected waiting times given service and given abandonment (µ1 = 1, µ2 = 2, γ = 0.5,

s = 2λ1 = 2λ2).

results where the service rates do differ between customer classes. These results are therefore

necessarily based on simulations.

First of all, we may easily extend the results of Jouini (2012, Theorem 1), who proved that FCFS

(LCFS) maximizes (minimizes) the conditional expected waiting time given service, and minimizes

(maximizes) the conditional expected waiting time given abandonment. These results also hold for

any multi-class G/G/s+M queue where interarrival times or service times differ from class to class.

The only requirement is that patience times are exponential.

Let us denote by µ1 the service rate of type 1 customers, and by µ2 the service rate of type 2

customers. We depict in Figure 9 the conditional expected waiting times for each customer type

with µ1 = 1 and µ2 = 2. This figure confirms the previous findings. Compared with Figure 6,

the waiting times of both types of customers are lower due to the increased service rate of type

2 customers. Because the probability of service has increased, the difference between FCFS and

LCFS has also decreased.

General Patience Times

We mentioned earlier that the multiple-priority queues under consideration in this paper are

motivated by applications for the operations management of call centers. In our models, customer
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patience times are restricted to be exponentially distributed. However, empirical evidences reveal

that customer patience times are not exponentially distributed. We refer the reader for example

to Brown et al. (2005), Feigin (2006), and references therein. In what follows, we discuss how our

analysis is still of value for call centers in practice. All the arguments below concerns single-class

call centers, but they still hold for multiple-class models.

To analyze multi-server queues with generally distributed service and patience times, Whitt

(2005) develops an algorithm to compute approximations for standard steady-state performance

measures. One of his main conclusions is that the behavior of the patience distribution near the

origin primarily affects the performance. This is coherent with work by Mandelbaum showing that

the Erlang A is a robust model even though patience times are not necessarily exponential in practice.

Under the Quality-Efficiency-Driven regime where delays are short, Zeltyn and Mandelbaum (2005)

point out that the patience distribution near the origin determines the behavior of the system.

More recently, Dai and He (2011) and Ward (2012) confirm that conclusion in the context of an

M/M/s+G queue. Under the heavy-traffic regime, they propose to approximate the performance

of an M/M/s+G queue by that of an M/M/s+M queue with patience parameter equal to the

probability density function of the general distribution evaluated at t = 0. We refer also the reader

to Jouini et al. (2011a) and Jouini et al. (2011b) where the authors consider call centers relatively

smaller than those considered in the papers cited above. In the context of a call center with delay

announcement, for which the patience distribution is far from being exponential, the authors again

confirm the conclusion that what really matters is the patience distribution near the origin rather

than in the tail.

Finally, consider call centers with customer balking, which is the case in many call centers in

practice. In such cases, a newly arriving customer that finds all agents occupied may balk, i.e.,

immediately leave the system without service. An appropriate modeling of this behavior is to define

a balking probability that is independent of any other event, see for example Whitt (1999b). Under

this balking modeling, one may use the analysis in this paper, by simply multiplying the arrival

rates in some appropriate places by this balking probability.

In summary, the exponential approximation for the distribution of times before abandonment
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seems quite good. The analysis developed in this paper can then be applied for real-life call centers

where patience times are not often exponentially distributed.

4 Conclusion

We considered multi-server non-preemptive priority queueing systems in which customers wait for

service for a limited time only and leave the system if service has not begun within that time. Practical

examples of queueing systems with customer impatience include real-time telecommunication systems,

inventory systems with perishable items, and more. We considered two models: one where the

discipline of service within each class of customers is FCFS, and another one where it is LCFS.

For each customer type, we explicitly derived the Laplace-Stieltjes transforms of the unconditional

waiting times, the conditional waiting times given service, and the conditional waiting times given

abandonment. Numerical inversion methods for Laplace-Stieltjes transforms can be then used in

order to obtain the cdf values of these random variables at any point of time. Moreover, we described

the approach to extend the analysis to more than two customer types. The analysis in this paper

holds also for a priority queue with mixed policies, i.e., FCFS for the first type and LCFS for the

second one, and vice versa. Finally, we provided some numerical experiments in which we showed

how FCFS would be preferred by a manager in practice.

There are various ways for future research. A challenging and interesting step is to extend our

approach to the case of many customer types with different mean service and patience times. It is

also interesting to consider general service-time distributions. Another useful extension would be to

consider protocols with mixed priorities, i.e., both preemptive and non-preemptive priorities.
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