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1 Introduction

To achieve electromagnetic compatibility (EMC), one can try and improve
the links in the chain agressor–coupling path–victim. Often, the coupling
path comprises a coupling from an electromagnetic field to a wire-like
structure. These couplings remain difficult to grasp, particularly on realistic
structures. Therefore, this is a problem is of continuing interest for EMC.

Paul studied the coupling of arbitrary electromagnetic fields to multi-
conductor transmission lines (MTLs) in vacuum in his book on MTL theory.
In Chapter 11, he starts by analysing a bifilar transmission line with arbitrary
loads, which is generalised in Chapter 12 to multiconductor transmission
lines. The starting point of the analysis is Taylor’s representation [1], which
lumps the effect of the incident field as voltage and current sources all
along the line. Paul then uses chain matrices to spatially translate al the dis-
tributed sources to one end of the line. With this solutions, he calculates the
terminal currents of a bifilar, generally lossy transmission line, submitted to
a physical, but arbitrary electromagnetic field, terminated in arbitrary loads
(11.53). He reports that this solution agrees with that obtained by Smith [2].
Paul then presents various specialisations of this general solution, amongst
which the case of plane wave excitation [3, (11.65)].

Op ’t Land studied the coupling of plane waves to printed circuit board
(PCB) traces. In a first paper, he uses Taylor’s representation and geo-
metric reasoning to calculate the coupling of a grazing incident, vertically
polarised plane wave to a lossless microstrip transmission line with char-
acteristic loads [4]. In Chapter 2 of his thesis, it is extended to the case of
multiple segments and arbitrary loads, using plain transmission line theory
[5, (2.56)]. This solution agrees fairly with measurements and very well
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with 3D full-wave simulations. However, no analytic equivalence with
solutions from other authors (like Paul) are given.

This technical paper corroborates the equivalence of Op ’t Land’s and
Paul’s solutions.

2 Problem Definition

Op ’t Land and Paul studied similar, but different problems, as schematised
in Figure 1. Paul is more general in almost all aspects, except that he
assumes a homogeneous medium like the vacuum. Op ’t Land is much
more specific, except that he considers the inhomogeneous medium of a
microstrip (substrate-vacuum). Consequently, we can only expect both
solutions to agree on the intersection of both problem spaces: a grazing,
vertically polarised plane wave incident on a lossless line with arbitrary
loads.

In order to let both solutions agree on the medium, a bifilar line in
vacuum will be used. This corresponds to a microstrip on an air substrate
(εr = 1 and εr,eff = 1). The distance between both wires will be double that
of the substrate thickness h, because the ground plane creates an image of
the trace.

multiconductor in homogeneous space, 
lossy, arbitrary field, arbitrary loads

microstrip, 
lossless, grazing plane wave, arbitrary loads

bifilar in vacuum, 
lossless, grazing plane wave, arbitrary loads

Op 't Land

Paul

Figure 1: Problems treated by Paul [3] and Op ’t Land [5].

In order to compare both equations, all symbols will be replaced to
correspond to Op ’t Land’s definition, according to Table 1. The essential
variables are defined in Figure 2.

Both Op ’t Land and Paul provide solutions for the near and the far end.
Without loss of generality, we will only compare the near-end solutions,
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(a) Perspective on the grazing incident wave: the incident electric field is
perpendicular to the substrate and the wave vector makes an angle φ with
the transmission line axis.
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(b) Cross section of the transmission line. The incident and reflected plane
wave sources produce the shown substrate field.

Figure 2: Definition of the problem variables, after [5, Figure 2.16]
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Op ’t Land Paul Justification
Vne,final −ẐSÎ(0) Ohm’s law and [3, Figure 11.5]
Vfe,final +ẐLÎ(L) Ohm’s law and [3, Figure 11.5]

2h d Op ’t Land’s ground plane creates a mirror
wire at h below the ground plane, so it is like
a bifilar line with a wire separation of 2h

` L

Zc ẐC (Characteristic impedance)
Ei Êo
jβ γ̂ Specialisation to lossless lines [3, (1.33), p.

598]
φ φp + π/2 [3, Figure 11.6]

β cos(φ) βz
0 βx Under grazing incidence, the plane wave

propagates in Paul’s yz-plane [3, Figure 11.6,
(11.56)]

1 ex Under horizontally polarised, grazing inci-
dence, the E-field always points in Paul’s x
direction [3, Figure 11.6, (11.55)]. . .

0 ey,ez . . . and in no other direction [3, Figure 11.6,
(11.55)]

Table 1: Symbolic equivalences used to compare Op ’t Land’s and Paul’s
solutions.

because they can equally serve to find the far-end solution (by swapping
Vne with Vfe and augmenting φ by π).

Let us first copy Paul’s specialisation for plane wave excitation [3,
(11.65a/c)] whilst applying Table 1:

Vne,final = −Zne
2hEi

cos(β`) (Zne + Zfe) + j sin(β`)
(
Zc +

ZneZfe
Zc

)e−j0h
[
sin(0h)

0h

] {

−j0 0
∫ `

0

[
cos

(
β(` − τ)

)
+ j sin

(
β(` − τ)

) Zfe

Zc

]
e−j cos(φ)β`τdτ

+1
[
cos(β`) + j sin(β`)

Zfe

Zc
− e−j cos(φ)β`

] }
. (1)

Recognising that limx→0 sin(x)/x = 1 and that the integral has a finite value,
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we can simplify:

Vne,final,Paul = −Zne2hEi
cos(β`) + j sin(β`) Zfe

Zc
− e−j cos(φ)β`

cos(β`) (Zne + Zfe) + j sin(β`)
(
Zc +

ZneZfe
Zc

) . (2)

Let us also copy Op ’t Land’s solution [5, (2.56)], whilst correcting a typo
in his thesis (�����Zc − Zne → Zne − Zc):

Vne,final,Op’tLand = Vinc,ne + Vrefl,ne,final

=
(
Vne + ΓfeVfee−jβ`

) (
1 +

Zne − Zc

Zc

Zfe@ne

Zne + Zfe@ne

)
,

(3)

with the following definitions [5, (2.49), (2.53), (2.54)]:

Γfe =
Zfe − Zc

Zfe + Zc
(4)

Γfe@ne = e−2jβ`Γfe (5)

Zfe@ne = Zc
1 + Γfe@ne

1 − Γfe@ne
. (6)

The near-end (far-end) voltage on characteristic loads Vne (Vfe) is given by
[5, (2.27),(2.28)]:

Vne = VLF,neKne (7)

Vfe = VLF,feKfee−jβ`, (8)

where VLF is the low-frequency induced voltage and K is the cross-correlation
between the incident wave and the line’s eigenwave. Variants for either end
are written together; for example ’∓’ means minus for the near end (index
’ne’) and plus for the far end (index ’fe’). According to Op ’t Land, they are
[5, (2.27-2.29)]:

VLF = jkiEi
(
−

√
εr,eff

εr
∓ cos(φ)

)
h` (9)

K =
1

j(−kp ∓ β)`

(
ej(−kp∓β)`

− 1
)
, (10)

where ki is the incident wave number, which equals the line’s wave number
β, because of the vacuum. Consequently, the incident wave vector’s com-
ponent parallel to the line kp equals β cos(φ). Filling out εr,eff = εr = 1, we
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obtain:

VLF = jβEi
(
−1 ∓ cos(φ)

)
h` (11)

K =
1

j(− cos(φ) ∓ 1)β`

(
ej(− cos(φ)∓1)β`

− 1
)
, (12)

and, consequently:

Vne = +Eih
(
ej(− cos(φ)−1)β`

− 1
)
, (13)

Vfe = −Eih
(
ej(− cos(φ)+1)β`

− 1
)

e−jβ`. (14)

The challenge is to show that both solutions (i.e. (2) and (3)) are equiv-
alent, or whether

Vne,final,Paul − Vne,final,Op’tLand = 0. (15)

3 Demonstration

Three approaches to prove (15) will now be tried.

3.1 Manual Proof

First, I tried to solve (15) by hand. Apart from the obvious normalisation
by Eih, all my attempts were fruitless.

Moreover, extensive bookkeeping seemed inevitable, for example when
expanding all complex exponentials to canonical sines and cosines. Assum-
ing a significant probability of error during each manual transformation,
this did not seem a robust strategy. Finally, the published proof would be
lengthy and the probability of a peer being motivated to spot errors seemed
low.

All in all, a manual demonstration did not seem the best strategy to
advance science.

3.2 Symbolic Solver

Therefore, the normalised equation was entered into sympy, a free Python
library for symbolic mathematics (cf. Appendix A). A call on simplify()

was used to in the hope that the equation would reduce to 0. Various chains
of explicit simplification steps were tried (e.g. trigsimp(deep=True),
expand(complex=True), collect(sin(beta*ell))), but to no avail.
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With Python 2.7.10 andsympy0.7.6 on a 3.1 GHz Intel Core i7, simplify()
takes 13.9 s to conclude that it cannot solve the general problem (Zc, φ, β, ` ∈
R and Zne,Zfe ∈ C). That is, it does not simplify the equivalence equation
of (15). That does not prove the non equivalence, it just does not prove the
equivalence (and possibly my limited experience with symbolic solvers).

When the problem space is reduced by taking Zne = Zfe = Zc, however,
simplify() reworks (15) to 0 within 0.5 s. This means that there is proof of
equivalence for a subset of the general problem (characteristic loads).

3.3 Numerical Solver

As a last resort, the equivalence is evaluated on a finite sample of the
entire problem space, using numpy (cf. Appendix B). Because the sample
has a finite extent in the problem space, care had to be taken to define a
representative sample.

For simplicity, a hyperrectangular sample was defined. The character-
istic impedance Zc was swept logarithmically from 10 mΩ to 100 Ω on 5
values. The radians per line length β` was swept linearly in [0, 4π) on 29
values; the odd number of points avoids aliasing by modulus-π effects.
The azimuth of incidence φwas swept in [0, 2π) on 20 values. The complex
near-end (far-end) load impedance Zne (Zfe) was generated by sweeping the
modulus |Γne| (|Γfe|) in [0.001, 1) (passive loads) on 10 values, and the angle
∠Zne (∠Zfe) in [0, 2π) on 16 values. All in all, 5×29×20×(10×16)2 = 74 240 000
points.

On the aforementioned platform, the equivalence equation was eval-
uated in 2.0 s. Instead of a symbolic 0, a small error should be expected
because of numerical imprecisions. Therefore, the maximum of all absolute
errors is reported: 6.2 × 10−14, which is only three orders of magnitude
greater than the minimum float64 value and very small with respect to
the average outcome of 1.4. Hence, it can be considered a ‘numerical zero’.

4 Conclusion

I tried to show the equivalence of Paul’s and Op ’t Land’s solutions of the
induced voltages at the terminals of a bifilar transmission line in vacuum
under grazing, vertically polarised plane wave illumination. Manual re-
working of formulæ did not lead anywhere. Basic symbolic simplification
using sympy only proved equivalence for the special case of characteristic
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loads. Numerical evaluation on the entire problem space strongly suggests
that both solutions are equivalent.
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A Listing Symbolic Solution:
paulVsOptLandSymbolic.py

1 from sympy import sin, cos, exp, I, symbols, Function

2 from time import time

3

4 #%% Utility functions

5 class Gamma(Function): # Equation (4)

6 @classmethod

7 def eval(cls, Z):

8 return (Z-Zc)/(Z+Zc)

9

10 class Z(Function): # Microwave textbook formula

11 @classmethod

12 def eval(cls, Gamma):

13 return Zc*(1+Gamma)/(1-Gamma)

14

15 class Zatne(Function): # Equation (5)

16 @classmethod

17 def eval(cls, z):

18 return Z(exp(-2j*beta*ell)*Gamma(z))

19

20 class stopwatch(object):
21 def __init__(self,name=’That’):

22 self.name = name

23 def __enter__(self):

24 self.startTime = time()

25 def __exit__(self,*args):

26 print ’{0} took {1:.2f}s’.format(self.name,
27 time()-self.startTime)

28

29

30

31 #%% Definition of the problem space

32 Zc = symbols(’Zc’, real=True, finite=True, positive=True)

33 Zne,Zfe = symbols(’Zne Zfe’, finite=True)

34 phi, beta, ell = symbols(’phi beta ell’,

35 real=True,

36 finite=True,

37 positive=True)

38

39 #%% Sanity check: utility function unit tests

40 assert Gamma(0) == -1

41 #assert Gamma(oo) == +1 #TODO: take the limit for oo >> Zc

42 assert Gamma(Zc) == 0

43

44 assert Z(0) == Zc

45 assert Z(-1) == 0

9
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46 #assert Z(1) == oo #TODO: take the limit for oo >> Zc

47

48 assert Zatne(Zc) == Zc

49

50 #%% Reduction of the problem space by fixing one or more variables

51 #Zc = 50

52 Zne = Zc

53 Zfe = Zc

54 #phi = 0

55 #beta = 1

56 #ell = 2

57

58 #%% Input of Paul’s formulation

59 paulD = cos(beta*ell)*(Zne+Zfe) + I*sin(beta*ell)*(Zc+Zne*Zfe/Zc)

60 Vne_final_Paul = -Zne*2*(cos(beta*ell)+I*sin(beta*ell)*Zfe/Zc -

exp(-1*I*cos(phi)*beta*ell)) / paulD

61

62 #%% Input of Op ’t Land’s formulation

63 Vne = + (exp(I*(-cos(phi)-1)*beta*ell) -1)

64 Vfe = - (exp(I*(-cos(phi)+1)*beta*ell) -1) * exp(-1*I*beta*ell)

65 Zfe_ne = Zatne(Zfe)

66 Vne_final_OptLand = (Vne + Gamma(Zfe)*Vfe*exp(-1*I*beta*ell)) *

(1+(Zne-Zc)/Zc*Zfe_ne/(Zfe_ne+Zne))

67

68 #%% Attempt to prove their equivalence

69 equivalence = Vne_final_OptLand - Vne_final_Paul # Equation (15)

70 # print equivalence.evalf() #Useful when checking at one point in

the problem space

71

72 with stopwatch(’Solution using sympy heuristics’):

73 print equivalence.simplify()

74 #

75 #with stopwatch(’Being a bit more specific about the solution

strategy’):

76 # print equivalence.expand(complex=True).trigsimp()
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B Listing Numerical Solution:
paulVsOptLandNumerical.py

1 from numpy import *

2 from time import time

3

4 #%% Utility functions

5 class stopwatch(object):
6 def __init__(self,name=’That’):

7 self.name = name

8 def __enter__(self):

9 self.startTime = time()

10 def __exit__(self,*args):

11 print ’{0} took {1:.2f}s’.format(self.name,
12 time()-self.startTime)

13

14 def s2z(Gamma):

15 return Zc * (1+Gamma)/(1-Gamma)

16 def z2s(Z):

17 return (Z-Zc)/(Z+Zc)

18

19 def alignAlong(vector,axisNumber):

20 sizes = ones(dimensions)

21 sizes[axisNumber] = -1

22 return vector.reshape(sizes)

23

24 def sweepImpedance(startDimension):

25 rho = alignAlong(linspace(0.001,1,10,endpoint=False),

startDimension)

26 argGamma = alignAlong(linspace(0,2*pi,16),startDimension+1)

27 Gamma = rho * exp(1j*argGamma)

28 return s2z(Gamma)

29

30 def equals(title,equation1 ,equation2):

31 errors = (abs(equation2 - equation1))

32 threshold = finfo(errors.dtype).eps * 1000

33 assert len(errors.shape) == dimensions

34 print title

35 print ’Shape of the swept space:’,errors.shape

36 print ’Numerical equality: {0} (Error between {1:.1e} and 

{2:.1e} < {3:.1e}, average absolute value {4:.1e})’.format
(

37 all(errors < threshold),
38 errors.min(),

39 errors.max(),

40 threshold ,

41 abs(equation1).mean())

42 print ’’
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43

44 #%% Definition of the problem space

45 dimensions = 1+2+2+1+1

46

47 Zc = alignAlong(logspace(-2,2,5),0)

48 Zne = sweepImpedance(1)

49 Zfe = sweepImpedance(3)

50 betaEll = alignAlong(linspace(0,4*pi,29,endpoint=False),5)

51 phi = alignAlong(linspace(0,2*pi,20,endpoint=False),6)

52

53 #%% Input of Paul’s formulation

54 paulD = cos(betaEll)*(Zne+Zfe) + 1j*sin(betaEll)*(Zc + (Zne*Zfe)/

Zc)

55 Vne_final_Paul = -Zne * 2.0 * (cos(betaEll) + 1j*sin(betaEll)*Zfe/

Zc - exp(-1j*betaEll*cos(phi))) / paulD

56

57 #%% Input of Op ’t Land’s formulation

58 Vne = +1 * (exp(1j*(-1.0-cos(phi))*betaEll) -1.0)

59 Vfe = -1 * (exp(1j*(+1.0-cos(phi))*betaEll) -1.0) * exp(-1j*

betaEll)

60 Zfe_ne = s2z(z2s(Zfe)*exp(-2j*betaEll))

61 Vne_final_OptLand = (Vne + z2s(Zfe)*Vfe*exp(-1j*betaEll)) * (1 +

((Zne-Zc)/Zc) * Zfe_ne/(Zne+Zfe_ne))

62

63 #%% Attempt to prove their equivalence

64 with stopwatch(’Solution using numpy sweep over {0} samples’.

format(Vne_final_OptLand.size)):

65 equals(’Grazing incidence on bifilar line with (Zne,Zfe)’,

66 Vne_final_OptLand ,Vne_final_Paul)
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