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Hadamard states for the Klein-Gordon equation
on Lorentzian manifolds of bounded geometry

Christian GERARD, Omar OULGHAZI, and Michal WROCHNA

ABsTrRACT. We consider the Klein-Gordon equation on a class of Lorentzian
manifolds with Cauchy surface of bounded geometry, which is shown to include
examples such as exterior Kerr, Kerr-de Sitter and Kerr-Kruskal spacetimes.
In this setup, we give an approximate diagonalization and a microlocal decom-
position of the Cauchy evolution using a time-dependent version of the pseu-
dodifferential calculus on Riemannian manifolds of bounded geometry. We
apply this result to construct all pure regular Hadamard states (and associ-
ated Feynman inverses), where regular refers to the state’s two-point function
having Cauchy data given by pseudodifferential operators. This allows us to
conclude that there is a one-parameter family of elliptic pseudodifferential op-
erators that encodes both the choice of (pure, regular) Hadamard state and
the underlying spacetime metric.

1. INTRODUCTION & SUMMARY OF RESULTS

1.1. Introduction. Modern formulations of quantum field theory on curved space-
times allow for a precise distinction between local, model-independent features, and
global aspects specific to the concrete physical setup. In the case of non-interacting
scalar fields, the study of the latter is directly related to the propagation of singu-
larities for the Klein-Gordon equation, as well as to specific analytical properties
of its solutions, such as positivity. Thus, a careful implementation of methods from
microlocal analysis that takes into account asymptotic properties of the spacetime
is essential in the rigorous construction of quantum fields. The present paper is
aimed at generalizing known methods, in particular [GW1], by providing the nec-
essary tools to work on a much wider class of backgrounds that includes examples
such as Kerr and Kerr-de Sitter spacetimes.

Before formulating the problem in more detail, let us first recall how various no-
tions from quantum field theory are related to inverses of the Klein-Gordon operator
and to special classes of bi-solutions.

1.1.1. Klein-Gordon equation. Consider a Klein-Gordon operator
P=-V,+V(x)

on a Lorentzian manifold (M, g), where V : M — R is a smooth function. Assuming
global hyperbolicity' of (M, g), the operator P has two essential properties, the
proofs of which date back to Leray [Le, C-B, BGP].

The first one is the existence of retarded/advanced inverses of P, i.e. operators
Giret/adv, mapping Cg°(M) into C°°(M) such that

Po Gadv/ret = Gret/adv oP =1, supp Gret/advu - Ji (supp u)7
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1See Subsect. 3.2.
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where J*(K) is the future/past causal shadow? of a set K C M. The second is the
unique solvability of the Cauchy problem: if {¥;}:cr is a foliation of M by space-like
Cauchy hypersurfaces, and p(t) : C°(M) 3> u + (ulx,,i '0nuls,) € C>®(%;C?) is
the trace operator on ¥, then there exists a unique solution of the Cauchy problem

(1.1) P¢ =0,
p(t)p = f.

In the present setup the two properties are actually essentially equivalent.

These two facts are basic to the theory of quantum Klein-Gordon fields on the
curved spacetime (M, g), see e.g. |Di|, which we now briefly recall (see Subsect. 7.1
for more details).

1.1.2. Quantum Klein-Gordon fields. By a phase space we will mean a complex
vector space equipped with a non-degenerate hermitian form. The operator G =
Ghret — Gaay 1s anti-hermitian for the natural scalar product (ulv)y = [, 7 Wv dvoly,
which allows to equip C§°(M) with the hermitian form % - Qv = i~*(u|Gv)as. One
can show that the kernel of G equals to PC§°(M), hence if V = ISCT(?/[M), V,Q)
is a phase space — it is in fact the fundamental structure that defines the classical
content of the theory.

This allows one to introduce the polynomial CCR *-algebra CCR(V, @), by defi-
nition generated by the identity 1 and elements called the (abstract) charged fields,

which are of the form v ([u]),¥*([u]) for [u] € PCCT% and are subject to the
relations:
i) [u] = ¥([u]) is C — anti-linear,

1) [u] — ¥*([u]) is C — linear,

iy (POD VD] = (D), ()] =0
[((ul), v* ([W])] =i~ (ulGo)ar,

w)  Y([u])” =¥ ([u]).

The algebraic approach to quantum field theory provides a way to represent the
above canonical commutation relations in terms of closed operators on some con-
crete Hilbert space. The standard way to obtain such a representation is to specify
a state.

1.1.3. Hadamard states. A state w on CCR(V, Q) is a positive linear functional w
on CCR(V, Q) such that w(1) = 1. A particularly natural class of states for linear
Klein-Gordon fields is the class of quasi-free states, which are entirely determined
by the expectation values:

(12)  w(@(u)e (o)) = (ulA o), w(@*(W)e([u])) = (ulA"v)y

This definition implies in particular that Po AT = A* o P = 0. It is also natural to
require that A* : C§°(M) — C°° (M), in which case A* have distributional kernels
A*(z,2") € D'(M x M), called the two-point functions of the state w.

Among all quasi-free states, Hadamard states are considered as the physically
acceptable ones, because their short distance behavior reproduces the vacuum state
on Minkowski spacetime [KW]. Since the work of Radzikowski [Ra] Hadamard
states are characterized by a condition on the wave front set of their two-point
functions A*, see Def. 7.3 for the precise statement. The use of wave front sets
had a deep impact on quantum field theory on curved spacetimes, for example on

2The future/past causal shadow of K C M is the set of points reached from K by future/past
directed causal (i.e. non-spacelike) curves.
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the perturbative construction of interacting models, see e.g. [BF2, Da2, HW, KM]
and also [BDH, Dal, Da3| for some recent related mathematical developments.

The microlocal formulation of the Hadamard condition in [Ra] is intimately
linked to the notion of distinguished parametrices introduced by Duistermaat and
Hormander in their influential paper [DH]. Distinguished parametrices are para-
metrices of P (inverses modulo smoothing errors), which are determined uniquely
(modulo smoothing errors) by the wave front set of their Schwartz kernel. Duis-
termaat and Hormander demonstrated that there are exactly four classes of dis-
tinguished parametrices, the advanced/retarded and Feynman/ anti-Feynman ones,
see Subsect. 6.6 for details. The (uniquely defined) retarded/advanced inverses
Glret/adv are examples of retarded/advanced parametrices.

In contrast, there is no canonical choice of a Feynman /anti-Feynman inverse on a
generic spacetime. This is actually very closely related to the problem of specifying
a distinguished Hadamard state, see e.g. [FV2]. More specifically, the link between
Hadamard states and Feynman inverses discovered by Radzikowski is that if A*
are the two-point functions of a Hadamard state then the operator

Gr =i AT+ Gagy =1 "A™ + Gyt

is a Feynman inverse® of P.

There already exist a large number of existence results for Hadamard states.
First of all, the deformation argument of Fulling, Narcowich and Wald [FNW]
shows that Hadamard states exist on any globally hyperbolic spacetime, this con-
struction has however the disadvantage of being very indirect, which poses prob-
lems in applications®. Specific examples of Hadamard states on spacetimes with
special (asymptotic) symmetries include passive states for stationary spacetimes
[SV], states constructed from data at null infinity on various classes of asymptot-
ically flat or asymptotically de Sitter spacetimes [Mo, DMP1, BJ, VW] and on
cosmological spacetimes® [DMP2, JS, BT|. Furthermore, a remarkable recent re-
sult by Sanders [Sa| proves the existence and Hadamard property of the so-called
Hartle-Hawking-Israel state on spacetimes with a static bifurcate Killing horizon.

Finally, in a previous paper [GW1], pseudodifferential calculus on a Cauchy hy-
persurface ¥ was used to construct a large class of Hadamard states for P. Let
us emphasize that the calculus of properly supported pseudodifferential operators,
which exists on any smooth manifold, is not sufficient to address the positivity con-
dition AT > 0 and the CCR condition At — A~ = i~1G which have to be satisfied by
the two-point functions A* in order to be consistent with (1.2) (see Subsect. 7.1.4).
This was tackled in [GW1] by assuming that the Cauchy surface ¥ is diffeomorphic
to R? (so that the spacetime M is diffeomorphic to R!*%), with some uniformity
conditions on g at spatial infinity, which allowed to use the uniform pseudodiffer-
ential calculus on R?. Correspondingly, earlier works by Junker [Jul, Ju2| and
Junker and Schrohe [JS] used the pseudodifferential calculus on compact Cauchy
hypersurfaces to give sufficient conditions for a state to be Hadamard.

Unfortunately, many spacetimes of interest, like for instance blackhole spacetimes
fall outside the hypotheses in [GW1, Jul, Ju2].

30ne could call Gr a ‘time-ordered Feynman inverse’ to make the distinction with the Feynman
propagator of Gell-Redman, Haber and Vasy |[GHV, Va|, which is a generalized inverse of P
considered as a Fredholm operator on suitably chosen spaces; here we just stick to the shorthand
terminology.

4An alternative existence proof on arbitrary globally hyperbolic spacetimes was given in [GW1],
it has however another severe drawback, as it does fail to produce pure states is general.

5Let us also mention that on static and cosmological spacetimes with compact Cauchy surface,
a different construction of Hadamard states was recently proposed by Brum and Fredenhagen
[BF1].
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1.2. Content of the paper. In this paper we rework and extend the results of
[GW1] in two essential directions. First of all, we greatly generalize the framework
of [GW1] by basing our analysis on the pseudodifferential calculus on manifolds of
bounded geometry, due to Kordyukov and Shubin [Ko, Sh2|. This allows us to work
on a much larger class of spacetimes, including examples such as Kerr and Kerr-de
Sitter spacetimes. Secondly, the construction of Hadamard states is now obtained
as a consequence of a microlocal decomposition of the Cauchy evolution operator
Ua(t,s) associated to P. Beside simplifying the proofs, this allows us to derive
many formulas of independent interest, including for instance expressions for the
Feynman inverses canonically associated to the Hadamard states we construct.

Let us now describe in more detail the content of the paper.

The background on Riemannian manifolds of bounded geometry is presented in
Sect. 2. We use an equivalent definition of bounded geometry which is much more
convenient in practice. In rough terms, it amounts to the existence of chart diffeo-
morphisms {1, }zear such that the pull-back metric (on R™) (7 !)*g is bounded
with all derivatives and equivalent to the flat metric, uniformly w.r.t.x € M.

This leads naturally to the notion of Lorentzian manifolds of bounded geometry
and of Cauchy hypersurfaces of bounded geometry, developed in Sect. 3, which is
an interesting topic in its own right. The main ingredient is the choice of a refer-
ence Riemannian metric § used to define bounded tensors. We then introduce in
Subsect. 3.3 a class of spacetimes and associated Klein-Gordon operators for which
parametrices for the Cauchy problem can be constructed by pseudodifferential cal-
culus:

Hypothesis 1.1. We assume that there exists a neighborhood U of a Cauchy sur-
face X in (M, g), such that:

(H) (U, g) is conformally embedded in a Lorentzian manifold of bounded geometry
(M, g) and the conformal factor ¢ is such that V;1In¢ is a bounded (1,0)-
tensor, moreover X is a so-called Cauchy hypersurface of bounded geometry
in (Mvg)z

(M) @V is a bounded (0,0)-tensor.

We refer to Subsect. 3.3 for the detailed definitions. It turns out, see Sect. 4, that
most standard examples of spacetimes, like cosmological spacetimes, Kerr, Kerr-de
Sitter, Kerr-Kruskal spacetimes, or cones, double cones and wedges in Minkowski
space belong to this class of spacetimes.

The pseudodifferential calculus on a manifold of bounded geometry is recalled
in Sect. 5. A new result of importance for the analysis in the later sections of the
paper is a version of Egorov’s theorem, see Thm. 5.15.

Sect. 6 contains the main analytical results of the paper. The condition that X
is a Cauchy hypersurface of bounded geometry allows to identify the neighborhood
U with I x ¥ (with I an open interval), and the Klein-Gordon equation on U can
be reduced to the standard form

(1.3) D2p+r(t,x)0up + a(t,z,0,)d = 0,

where a(t,x,d,) is a second order, elliptic differential operator on ¥. Denoting
by Ua(t,s) the Cauchy evolution operator for (1.3), mapping p(s)¢ to p(t)¢p, we
construct what we call a microlocal decomposition of Uy, i.e. a decomposition

(1.4) Ualt,s) =UL(t,s) +U; (2, s),

where Z/{jf have the following properties, see Thm. 6.5:
(1) {Ux(t,8)}t.ser are two-parameter groups, and Ui (t,t) =: ¢*(t) are projec-
tions,
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(2) Z/{X (t,s) propagate the wave front set in the upper/lower energy shells N'F,
i.e. the two respective connected components of the characteristic set of (1.3),
(3) the kernels of UZ(t,s) are symplectically orthogonal for the canonical sym-
plectic form preserved by the evolution.
We demonstrate in Thm. 6.8 that to such a decomposition one can associate a
unique Feynman inverse for P.

Sect. 7 is devoted to the construction of Hadamard states from a microlocal
decomposition, which can be summarized as follows. We use the ‘time-kernel’
notation for two-point functions A*, that is we write AT (¢, s) to mean the associated
operator-valued Schwartz kernel in the time variable. We say that a state is regular
if A*(t,t) is a matrix of pseudodifferential operators on ¥ for some .

Theorem 1.2. Let (M,g) be a spacetime satisfying Hypothesis 1.1 and consider
the reduced Klein-Gordon equation (1.3). Let to € I. There exists a pure regular
Hadamard state with two-point functions given by

(1.5) AE(t,8) = Frols (t, s)7,

where wy, ™ are the projections to the respective two pieces of Cauchy data and
{L{j (t,8)}i,ser is a microlocal decomposition, such that

(16)  Uk(to,to) = ( gﬁb(;__bg_?:_ fgf)(;__bg_l )(to)

for some pair b*(to) of elliptic first order pseudodifferential operators. Moreover,
the two-point functions of any pure regular Hadamard state are of this form.

The detailed results are stated in Thm. 7.8 and 7.10, see also Prop. 7.6 for
the arguments that allow to get two-point functions for the original Klein-Gordon
equation on the full spacetime (M, g) rather than for the reduced equation (1.3) on
Ix%.

Since one can get many regular states out of a given one by applying suitable
Bogoliubov transformations as in [GW1], Thm. 1.2 yields in fact a large class of
Hadamard states.

1.3. From quantum fields to spacetime geometry. In our approach, microlo-
cal splittings are obtained by setting

U (L, ) = Ua(t,to)U (to, to)Ualto, 5)

where U (to, to) is defined by formula (1.6) with b*(t) constructed for t € I as
approximate solutions (i.e. modulo smoothing terms) of the operatorial equation

(1.7) (0y +ib™ + 1) 0 (0 — ibF) = 0F + 10, + a,

and satisfying some additional conditions, see Sect. 6 (in particular Thm. 6.1) for
details. Thus there is a pair of time-dependent elliptic pseudodifferential operators
b*(t) that uniquely determines the choice of a pure regular Hadamard state. It is
interesting to remark that b*(t) also determines the spacetime metric. First, by
subtracting the members of (1.7) one gets r(¢) modulo smoothing errors. Then
(1.7) gives a(t) modulo smoothing terms. But since a(t) and r(t) are differential
operators (the latter is just a multiplication operator), they can be determined
exactly. Furthermore, the reduced operator on the r.h.s. of (1.7) is just the Klein-
Gordon operator in Gaussian normal coordinates near a Cauchy hypersurface ¥,
(see Subsect. 7.2), so the metric can be read in these coordinates from the knowledge
of a and r.

This way, both quantum fields (derived from pure Hadamard states) and the
underlying spacetime metric are encoded by a time-dependent elliptic pseudodiffer-
ential operator bt (¢) @ b~ (t). As long as one considers only pure Hadamard states
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(and spacetimes for which Gaussian normal coordinates make sense globally), this
provides in particular a solution to the problem discussed in [ST]. It would be
thus interesting to try to build a theory where b (t) @ b~ (¢) is treated as a dynam-
ical quantity that accounts for both quantum degrees of freedom and spacetime
geometry.

1.4. Notation. - if X,Y are sets and f : X — Y we write f : X = Y if f
is bijective. If X,Y are equipped with topologies, we use the same notation if
f: X — Y is a homeomorphism.

- the domain of a closed, densely defined operator a will be denoted by Dom a.

- if a is a selfadjoint operator on a Hilbert space H, we write a > 0 if a > 0
and Kera = {0}. We denote by (a)*H the completion of Dom |a|® for the norm
lulls = [I(1 + a?)*/?ul|.

- if a, b are selfadjoint operators on a Hilbert space H, we write a ~ b if

1 1
a,b>0, Doma? = Domb2, ¢ b <a < ch,

for some constant ¢ > 0.

- similarly if I C R is an open interval and {H;}:c; is a family of Hilbert spaces
with H; = H as topological vector spaces, and a(t), b(t) are two selfadjoint operators
on H;, we write a(t) ~ b(t) if for each J € I there exist constants ¢; y,c2.7 > 0
such that

(1.8) a(t),b(t) > c1,7 >0, c2,5b(t) <a(t) < cyhb(t), t € J.

- from now on the operator of multiplication by a function f will be denoted
by f, while the operators of partial differentiation will be denoted by 9;, so that

[0, f] = 0if.
- we set (z) = (1+22)2 for z € R™.

2. RIEMANNIAN MANIFOLDS OF BOUNDED GEOMETRY

2.1. Definition. We recall the notion of a Riemannian manifold of bounded geom-
etry, see [CG, Ro]. An important property of Riemannian manifolds of bounded
geometry is that they admit a nice ‘uniform’ pseudodifferential calculus, introduced
in [Sh2, Ko|, which will be recalled in Sect. 5.

2.1.1. Notation. We denote by ¢ the flat metric on R™ and by B, (y,r) C R™ the
open ball of center y and radius r. If (M, g) is a Riemannian manifold and = € M
we denote by BY,(x,r) (or BI(z,r) if the underlying manifold M is clear from the
context) the geodesic ball of center z and radius r.

We denote by r, > 0 the injectivity radius at « and by exp? : B%iaf,\)/[ (0,7) > M
the exponential map at z.

If 0 < r < ryitis well known that expg(B%g\)/[(O,r)) = BY,(x,r) is an open
neighborhood of z in M. Choosing a linear isometry e, : (R",§) — (T, M, g(x)) we
obtain Riemannian normal coordinates at = using the map exp? oe,.

If T is a (g, p) tensor on M, we can define the canonical norm of T'(x), x € M,
denoted by ||T||., using appropriate tensor powers of g(z) and g~ (x). T is bounded
if sup, s (|72 < o0.

Let U € R"™ be open, relatively compact with smooth boundary. We denote
by C°(U) = C*°(R") [y the space of smooth functions on U, bounded with all
derivatives.

If V' is another open set like U and x : U — V is a diffeomorphism, we will
abuse slightly notation and write that x € Cg°(U) if all components of x belong to
Ce°(U) and all components of x~! belong to C° (V).
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One defines similarly smooth (g, p) tensors on U, bounded with all derivatives.
For coherence with later notation, this space will be denoted by BT#%(U, ), where
¢ is the flat metric on U. We equip BT (U, 0) with its Fréchet space topology.

Definition 2.1. A Riemannian manifold (M, g) is of bounded geometry if

(1) the injectivity radius rq := infyep 74 15 strictly positive,

(2) V’g"Rg is a bounded tensor for all k € N, where Ry, V4 are the Riemann
curvature tensor and covariant derivative associated to g.

We give an alternative characterization, which is often more useful in applica-
tions.

Theorem 2.2. A Riemannian manifold (M, g) is of bounded geometry iff for each
x € M, there exists U, open neighborhood of x and

Yy : Uy = By(0,1)

a smooth diffeomorphism with 1, (x) = 0 such that if g, := (¢, 1)*g then:
(C1) the family {g.}eers is bounded in BTY(B,(0,1),0),
(C2) there exists ¢ > 0 such that:

c_léggzgcé, e M.

A family {U, Ywenrr resp. {0z toenm as above will be called a family of good chart
neighborhoods, resp. good chart diffeomorphisms.

Proof. Let us first prove the = implication. We choose
r r
U, = expf oe, (B, (0, 5)) = Bg/[(x’ 5)7

for e, : R™ — T, M a linear isometry and ¥, (v) = exp¥(5e,v) for v € By(0,1).

It is known (see e.g. [CGT, Sect. 3|) that if (M, g) is of bounded geometry, then
{gs}oenr is bounded in BTY(B,,(0,1),4). In fact by [Ro, Prop. 2.4] the Christof-
fel symbols expressed in normal coordinates at x are uniformly bounded with all
derivatives. Since V;gjr = 0;gjr — Féjglk = 0, this implies that all derivatives of g,
in normal coordinates are bounded, hence (C1) holds. Moreover, by [Ro, Lemma
2.2] we know that

e = (splex2). Xl + lexw). X151, ).

where X ranges over all unit vector fields on B, (0, 1), is uniformly bounded in
2 € M. This is equivalent to property (C2).

Let us now prove <. We first check that V¥R is a bounded tensor for k € N.
Since ¥y : (Uy, g) = (Bn(0,1), g5) is isometric, it suffices to show that

(2.1) sup ||[VE Ry (0)] < oo.
xeM

In (2.1), the norm is associated to g,, but by condition (C2) we can replace it by the
norm associated to the flat metric §. Then the Lh.s. of (2.1) is a fixed polynomial
in the derivatives of g, and g;! computed at 0, which are uniformly bounded in
x € M, by condition (C1). Therefore (2.1) holds.

It remains to prove that the injectivity radius ry is strictly positive. Let us
denote for a moment by r(x, N,h) the injectivity radius at z € N for (N,h) a
Riemannian manifold.

Clearly

(2.2) r(@,Us,9) <r(z,M,g), x€M.
By the isometry property of v, recalled above, we have:
(2.3) r(z,Us, g) = 7(0, By (0,1), ).
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Conditions (C1), (C2) and standard estimates on differential equations imply that
infenr (0, B,(0,1), g,) > 0 hence r, > 0 by (2.2), (2.3). O

Lemma 2.3. Let {U,}rcnr be the good chart neighborhoods in Thm. 2.2. Then
there exists v > 0 such that B, (z,r) C U, for all x € M.

Proof. From condition (C2) in Thm. 2.2 we obtain the existence of some r; > 0
such that for any € M By, (0,71) C B, (0, 3). Since ¢y : (Uy,g) — (Bn(0,1), 92)
is isometric, this implies that By(z,r1) C U, as claimed. O

Theorem 2.4. Let (M, g) be a manifold of bounded geometry and e < inf(1,7,7,),
where T is given in Lemma 2.3. Set

Xz 1= g 0 exploe, : By(0,€) — 1, (B, (x,€)).
Then for any multi-index o one has:

(2.4) sup |[Dyxa(y)ll + sup 1Dy Xz W)l < oo
TEM,y€Bn(0,€) zEM,yer (Bj, (7,€))
Proof. Set V, = ¢,(BY,(z,€)). Since BY,(z,€¢) C U, by Lemma 2.3, we see that
Ve C By (0,1). This implies (2.4) for a = 0.
Let us now consider the case |a] = 1. Since g, = (¥;1)*g, we have x%g, =
(exp? oe,)*g. Since (M, g) is of bounded geometry, there exists ¢ > 0 such that

(2.5) ¢ 16 < (exp¥oe,)*g < cd.
Using also condition (C2) of Thm. 2.2, we obtain ¢; > 0 such that
61_16 < gr < 19,

hence
X0 < Xage < XG0

Since x% g, = (expd oey)*g, we obtain:
(2.6) ci ' (expd oes)*g < x50 < c1(expd oer)*yg.
Combining (2.5) and (2.6) we obtain ¢z > 0 such that

c3 10 < X6 < eod.

This is equivalent to (2.4) for |a] = 1.

To bound higher derivatives we use that x. is the exponential map transported
by the chart diffeomorphism 1,,. Denoting by I‘fj@ the Christoffel symbols for g,
we obtain that if v € B,(0,¢) C T, M and [t| < 1 and (x'(t),...,2"(t)) := xu(tv)
we have:

B (t) =T o (x(1)3" (£)3 (1),
x(0) =0,
z(0) = v.
Since {Ffj’m}meM is a bounded family in Cg°(B,(0,1)), it follows from standard
arguments on dependence on initial conditions for differential equations that x, is
uniformly bounded in C£°(B,,(0,€)) for € M. Since we already know that Dy, *
is bounded in C°(V,.), we also obtain that y, ! is bounded in C£°(V;,) uniformly in
x € M as claimed. This completes the proof of the theorem. O
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2.2. Chart coverings and partitions of unity. It is known (see [Sh2, Lemma
1.2]) that if (M, g) is of bounded geometry, there exist coverings by good chart
neighborhoods:
M=U, U;=U,, vieM
ieN

which are in addition uniformly finite, i.e. there exists N € N such that (), U; = 0
if g1 > N. Setting ; = 1., we will call {U;,9;}ien & good chart covering of M.

One can associate (see [Sh2, Lemma 1.3]) to a good chart covering a partition
of unity:

1= "x, xi € C°(Uy)
ieN

such that {(z/{l)*xi}ieN is a bounded sequence in Cg°(B,(0,1)). Such a partition
of unity will be called a good partition of unity.

2.3. Bounded tensors, bounded differential operators, Sobolev spaces.
We now recall the definition of bounded tensors, bounded differential operators
and of Sobolev spaces on (M, g) of bounded geometry, see [Sh2].

2.3.1. Bounded tensors.

Definition 2.5. Let (M,g) of bounded geometry. We denote by BT} (M, g) the
spaces of smooth (q,p) tensors T on M such that if T, = (exp%oe;)*T then the
family {Ty }zenr is bounded in BT} (B, (0, 5),6). We equip BT} (M, g) with its nat-
ural Fréchet space topology.

By Thm. 2.4 we can replace in Def. 2.5 the geodesic maps exp? oe, by ¢!,
where {¢; }zenr is any family of good chart diffeomorphisms as in Thm. 2.2.

The Fréchet space topology on BT} (M, g) is independent on the choice of the
family of good chart diffeomorphisms {t¢; }zen-

2.3.2. Bounded differential operators. If m € N we denote by Diff " (B, (0, 1), ) the
space of differential operators of order m on B,,(0,1) with C:°(B,(0, 1)) coefficients,
equipped with its Fréchet space topology.

Definition 2.6. Let (M, g) of bounded geometry. We denote by Diff™ (M, g) the
space of differential operators P of order m on M such that if P, = (17 1)*P then
the family { Py }zenm is bounded in Diff™ (B, (0,1),9).

2.3.3. Sobolev spaces. Let —A, be the Laplace-Beltrami operator on (M, g), defined
as the closure of its restriction to C5°(M).

Definition 2.7. For s € R we define the Sobolev space H*(M, g) as:
H*(M, g) i= (~0)"**L*(M, dg),
with its natural Hilbert space topology.

It is known (see e.g. [Ko, Sect. 3.3]) that if {U;,;}ien is a good chart covering
and 1 =), x? is a subordinate good partition of unity, then an equivalent norm
on H*(M,g) is given by:

(2.7) el = > 1@ xaulle 5, 0.0
ieN
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2.4. Embeddings of bounded geometry. We now recall the definition of em-
beddings of bounded geometry, see [El].

Definition 2.8. Let (M, g) an n—dimensional Riemannian manifold of bounded
geometry, X an n — 1 dimensional manifold. An embedding i : ¥ — M is called
of bounded geometry if there exists a family {Uy, ¥z }oem of good chart diffeomor-
phisms for g such that if ¥, := ¢, (i(X) NU,) for we have

Y. ={(v',v,) € Bp(0,1) : v, = Fp(v")},
where {Fy} e s a bounded family in C5°(B,-1(0,1)).
The following fact is shown in [El, Lemma 2.27].

Lemma 2.9. Assume i : X — M is an embedding of bounded geometry of ¥ in
(M,g). Then (X,i*g) is of bounded geometry.

Lemma 2.10. Let i : ¥ — M an embedding of bounded geometry. Then there
exists a family {Uy, Vs tzenmr of good chart diffeomorphisms as in Def. 2.8 such that
if x € i(X) one has

Do = 1 (i(2) N U,) = {(v/,vn) € Bn(0,1) : v, = 0}.

Proof. Since the family {F, },ex in Def. 2.8 is uniformly bounded in C§°(B,,—1(0, 1))
we can find «, 8 > 0 such that if ¢, (v', v,) = (v, a(vy, — F(v"))) we have B, (0,1) C
¢(Bn(0,1)) C B,(0,8). Clearly {¢,}zex is a bounded family of diffeomorphisms
in C°(B,(0,1)). For x € ¥ we replace U, by (¢, 01,) "B, (0,1) and 9, by ¢y 00,.
For x ¢ %, U, and v, are left unchanged. O

2.5. Equivalence classes of Riemannian metrics. The results of this subsec-
tion are due to [Ou].

Proposition 2.11. Let (M, g) be of bounded geometry. Let k be another Riemann-
ian metric on M such that k € BTY(M,g) and k=' € BT5(M,g). Then

(1) (M, k) is of bounded geometry;

(2) BTH(M,g) = BT} (M, k), H*(M,g) = H*(M, k) as topological vector spaces.
Let us write k ~ g if the above conditions are satisfied. Then ~ is an equivalence
relation on the class of bounded geometry Riemannian metrics on M.

Proof. Let us first prove (1). We equip M with a good chart covering {Us, ¥y }zem
for g. Then conditions (C1), (C2) of Thm. 2.2 are satisfied by k, hence (M, k) is
of bounded geometry and {U,, ¥, }zen is a good chart covering for k. Using that
k € BT9(M,g) and k=' € BT3(M, g) this implies that BT2(M, g) = BT?(M, k).
The statement about Sobolev spaces follows from the equivalent norm given in
(2.7).

Let us show that ~ is symmetric. If g1 ~ g2, then we have seen that BT? (M, g1) =
BTH(M, g2). Since (M, g2) is of bounded geometry, we have g € BTY(M, go) =
BTY(M, g1), g5 ' € BT3(M, g2) = BT3(M, g1), hence g» ~ g1. The same argument
shows that ~ is transitive. O

We conclude this subsection with an easy fact.

Proposition 2.12. Let g;, i = 1,2 be two Riemannian metrics of bounded geometry
having a common family of good chart diffeomorphisms {Uy,Vy}ren. Then g1 ~
g2-

Proof. This follows directly from the remark below Def. 2.5 and the definition of
the equivalence relation g1 ~ go.0
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2.6. Examples. We now recall some well-known examples of manifolds of bounded
geometry, which will be useful later on.

2.6.1. Compact manifolds and compact perturbations. Clearly any compact Rie-
mannian manifold is of bounded geometry. Similarly if (M,g;) is of bounded
geometry and if go = g; outside some compact set, then (M, gs) is of bounded
geometry and g1 ~ go.

2.6.2. Gluing of Riemannian manifolds. Let (M;, g;), i = 1,2 be two Riemannian
manifolds of bounded geometry, K; C M; be open and relatively compact and
j : K1 — K- an isometry. Then the Riemannian manifold (M, g) obtained by

gluing M; and Ms along K3 L K5 is of bounded geometry.

2.6.3. Cartesian products. If (M;, ¢;) ¢ = 1,2 are Riemannian manifolds of bounded
geometry then (M7 x My, g1 @ ¢2) is of bounded geometry.

2.6.4. Warped products. We provide a further useful argument that gives manifolds
of bounded geometry in the form of warped products.

Proposition 2.13. Let (K,h) be a Riemannian manifold of bounded geometry,
and M =R, x K, g = ds? + F?(s)h, where:

(1) F(s) > co >0, Vs € R, for some ¢y > 0;

(2) |[F®)(s)] < e F(s), Vs €R, k> 1.

Then (M, g) is of bounded geometry.

Proof. Let r the injectivity radius of (K, h), and e, : (R"71,8) — (T,,K, h(y)) for
y € K be linear isometries. We set for z = (0,y) € M and ¢ the constant in (1):

) = 11X Bu-1(0, 5e0) ) = 1, 1[x By, 35)

P
(s,0) = (s 4 o,expl(F (o) teyv)).
We have:
F?(s+0)
RS N -1 2
g = (Y )'g=ds" + ng(g)hy(eyF(U) v)dv®,
where hy, = (exploe,)*h. By (2) we have |ln(%)| < f;+a |I;((§))|du < alsl,
hence:
F
—a g (S+U)§6017UER7S€]—171[.
F(o)

This implies that g, is uniformly equivalent to the flat metric 6. Moreover from con-
ditions (1), (2) we obtain that {g, }zeas is bounded in BTS(] — 1, 1[x B, _1 (0, 5¢0))-

We now choose p > 0 such that B, (0,p) C] —1,1[xB,_1(0, §¢o), and compose
;1 with a fixed diffeomorphism between B, (0, p) and B, (0, 1). Conditions (C1),
(C2) of Thm. 2.2 are then satisfied. O

3. LORENTZIAN MANIFOLDS OF BOUNDED GEOMETRY

In this section we consider Lorentzian manifolds (M, g). Reference Riemannian
metrics on M with be denoted by g. We still denote by expd the exponential map
at © € M for g. The results of this section are due to [Ou].
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3.1. Definitions.

Definition 3.1. A smooth Lorentzian manifold (M, g) is of bounded geometry if
there exists a Riemannian metric § on M such that:

(1) (M, §) is of bounded geometry;

(2) g € BT5(M, §) and g~ € BTG(M, §).

Clearly the above conditions only depend on the equivalence class of § for the
equivalence relation ~ introduced in Subsect. 2.5. The following theorem is a
partial converse to this property.

Theorem 3.2. Let (M, g) a Lorentzian manifold and §;, i = 1,2 two Riemannian
metrics on M such that:
(i) (M, q;) is of bounded geometry;
(i) g € BT5(M,§;) and g~ € BT3(M, §:).
Then the following are equivalent:
(1) g1~ G,
(2) there exists ¢ > 0 such that ¢ 1ga(x) < g1(z) < cga(x), Vo € M,
(3) there exists ¢ > 0 such that §2(x) < cgr(z), Yo € M.

Proof. We start by some preparations. Let (M, ¢g) be a smooth Lorentzian manifold
and § a Riemannian metric on M such that (M, §) is of bounded geometry and
g € BIY(M,§), g°! € BT%(M,{}). Let {Usz, ¥z }eem be a family of good chart
diffeomorphisms for § and let g, = (¥ 1)*g.

By the above property of g and g—!, we obtain that there exists 0 < r,7’ < 1
such that expd” is well defined on B,,(0,r), is a smooth diffeomorphism on its image,
and moreover B,,(0,7) C exp” B,,(0,7), and the family {exp{” },en is bounded in
Gy (Bn(0,1)).

Let us identify B9*)(0,1) c T,M with B,(0,1) C R" with isometries e, :
(T, M, §(x)) — (R™,§) and set

¢z 2 Br(0,1) 3 v exp? oe,(rv) € M,
Vi i= ¢(Bn(0,1)), xo = ¢5 1. Since exp§® equals exp? transported by 1, it follows
from the properties of {exp)” }rcn shown above that {Vi, xz}zen is a family of
good chart diffeomorphisms for g.

Let now g;, i = 1,2 as in the theorem and let r = inf(r1, ), where r; is the radius
r above for g;. We choose isometries e; , : (R"”,8) — (T, M, §;(x)) and denote by
{Vi,z» Xi,» fze m the families of good chart diffeomorphisms for g; constructed above.

Let us compute the map T := x1,20Xa, i, which is defined on some neighborhood
of 0 in B,(0,1). Denoting by A, : R™ — R™ the multiplication by r, we have:

X1,z © Xz_}; =\, o (exp? 06171)71 o (A o (exp? 062737)71)71
(3.1)
=)\.0 eii 0eg O )\T_l = eii ceg .
We claim that property (1) is equivalent to

(3.2) sup || 75| + |75 ]| < oo,
rzeM

where || - || is the norm on L(R™) inherited from ¢. To prove the claim we set:
Gix = (Xi;lp)*ﬁm Gz = (X;;)*ﬁia

so that

(3.3) 920 =T, 92,0

We have seen above that {x;s}sem is a family of good chart diffeomorphisms
for g;. Therefore {g2,}zenm and {g;;}IeM are bounded in BTY(B,(0,1),5) and
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BT%(B,(0,1),6). Moreover by Prop. 2.11 we know that gy ~ ¢ iff {92,2}wem
and {g;;}weM are bounded in BTY(B,(0,1),8) and BT5(B,(0,1),5). By (3.3),
this is equivalent to the fact that {(7;')*6}sear and {(T,1)*6~ !} are bounded
in BTY(B,,(0,1),) and BT3(B,(0,1),6). Since T, are linear maps this is clearly
equivalent to (3.2), which completes the proof of the claim.

Let now g;, = (X:;)*g = (A7Y)*(esz)*(exp?)*g. The same argument as in
(3.1) shows that:

92,0 = T;gl,m = th ©d1,z© Tx

Computing the determinant of the quadratic forms g; ,,(0) using d, this implies that

(det T;,)? = det go - (0) det g1 1 (0).

Since g; and g; ! are bounded tensors, we obtain that there exists ¢ > 0 such that
c¢~! < |det T,| < c. This implies that (3.2) is equivalent to

(3.4) sup || T, < oo.
zeM

Finally the discussion above shows that property (2) is equivalent to ¢='gs, <
G20 < Cfa2,p Yx € M, which is equivalent to (3.2). Property (3) is equivalent to

G20 < €G24 Yo € M which is equivalent to (3.4). Since we have seen that (1), (3.2)
and (3.4) are equivalent, the proof is complete. O

3.2. Cauchy hypersurfaces of bounded geometry. A time orientable Lorentzian
manifold (M, g) equipped with a time orientation is called a spacetime. Spacetimes
are naturally endowed with a causal structure. We refer the reader to [Wa, Chap.
8] or [BGP, Sect. 1.3] for details.

In the sequel we denote by Ij\ijg(U), (resp. J]i\/[’g(U)) for U C M the future/past
time-like (resp. causal) shadow of U. If (M, g) is clear from the context we use
instead the notation I*(U) (resp. J*(U)). We denote by C°(M) the space of
smooth space-compact functions, i.e. with support included in J™(K)U J~(K) for
some compact set K € M.

A smooth hypersurface ¥ is a Cauchy hypersurface if any inextensible piecewise
smooth time-like curve intersects ¥ at one and only one point.

A spacetime having a Cauchy hypersurface is called globally hyperbolic. Global
hyperbolic spacetimes are natural Lorentzian manifolds on which to study Klein-
Gordon operators.

Definition 3.3. Let (M, g) be an n—dimensional Lorentzian manifold of bounded
geometry and § a Riemannian metric as in Def. 3.1. Assume also that (M, g) is
globally hyperbolic. Let ¥ C M a spacelike Cauchy hypersurface. Then ¥ is called
a bounded geometry Cauchy hypersurface if:
(1) the injection i : 3 — M is of bounded geometry for g,
(2) if n(y) fory € X is the future directed unit normal for g to ¥ one has:
supn(y) - §(y)n(y) < occ.
yeD
We recall now a well-known result about geodesic normal coordinates to a Cauchy
hypersurface 3.

Proposition 3.4. Let X be a space-like Cauchy hypersurface in a globally hyperbolic
spacetime (M, g). Then there exists a neighborhood U of {0} x ¥ in R x X and a
neighborhood V' of ¥ in M such that the map:

U—->V

X5 (s,y) = expd(sn(y))
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is a diffeomorphism. Moreover x*glv= —ds?4+hs where h, is a smooth, s—dependent
family of Riemannian metrics on 3.

Proof. The first statement is shown in [O’N1, Prop. 26]. To prove the second
statement, we can work near a point in ¥ and introduce local coordinates y on
Y. In [Wa, Sect. 3.3] it is shown that the normal geodesics are orthogonal to the
hypersurfaces 3; = {s = t}. Since in the normal coordinates, Js is a tangent vector
to the normal geodesics, and 0, span T'Y; this implies that the metric does not
contain dsdy’ terms. If n is the future directed normal vector field to the family
3, then n - gn = —1 first on ¥y and then on all 3; by the geodesic equation. This
completes the proof. O

In the next theorem we study properties of the normal coordinates for Cauchy
hypersurfaces of bounded geometry.

Theorem 3.5. Let (M,g) a Lorentzian manifold of bounded geometry and ¥ a
bounded geometry Cauchy hypersurface. Then the following holds:
(1) there exists § > 0 such that the normal geodesic flow to X.:
|=96,6[x2—= M
(s,y) — expf(sn(y))
1s well defined and is a smooth diffeomorphism on its image;
(2) x*g = —ds*+h, where {hs}sec)—s5] is a smooth family of Riemannian metrics
on X with
1) (X, ho) is of bounded geometry,

ii) s> hs € C2(] — 6,8[, BTY(X, hy)),
iii) s> hyl € O°(] — 8,6[, BTa(%, ho)).

Proof. Let us first prove (1). The proof consists of several steps.

Step 1: since g is of bounded geometry for the reference metric g, we first see by
standard arguments that there exists pa, co > 0 such that for all x € M,

exp? : BEY (0, p2) — M

is well defined and cy-Lipschitz if we equip B%%(O, p2) with the distance associated
to g(x) and M with the distance associated with g.

Step 2: Recall that ¢ : ¥ — M is the natural injection. For y € X, we set
Ay = D)X € LR x T,%,T,M). We have:

Ay(o,v) = an(y) + Dyiv, a € R,v € Ty%,

Ayt w = (=n(y) - g(w)w, (Dyi) " (w + n(y) - g(y)wn(y))).
If we equip 7,3 with the metric ¢*§(y) and T,,M with §(y), we deduce from condi-
tions (1) and (2) in Def. 3.3 that the norms of A, and A, are uniformly bounded
in y.
By the local inversion theorem, there exists d; > 0 such that for any y € ¥ x is
well defined on | — 1,6, [xB9(y,8;) N'Y and is a diffeomorphism on its image.
Step 3: let now c; = sup,cx n(y) - §(y)n(y) < oo and

§ = min(8y, p2)(2 + 2¢1 + 4erep) 7,
where po, co are introduced at the beginning of the proof. We claim that
X:]—0,0[xX = M

is a smooth diffeomorphism on its image, which will complete the proof of (1). By
the above discussion, x is a local diffeomorphism, so it remains to prove that y is
injective. Let (s;,y;) €] — 9, 6[x X such that x(s1,y1) = x(82,y2) = =.
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If y € ¥ and |s| < ¢, we have ||sn(y)
property of exp? in Step 1 we have:

g < c16 < p2, hence by the Lipschitz

dg(y, exp§(sn(y))) < calsl[n(y)ll5-
This yields
dg(y1,y2) < dg(yr, @) + dg(y2, x)

= dg(y1, expy, (s11y,)) + dg(y2, expd, (sany,))

< cals1lllny, |5 + cals2|lny, [l

)
S 20261(5 S 51

It follows that (s;, ;) €] — d1,61[x B9 (y1,d1) N X. Since by Step 2 x is injective on
this set, we have (s1,y1) = (82,¥2), which completes the proof of (1).

Let us now prove (2). For z € X, we choose U,, 9, as in Lemma 2.10. We
recall that ¥, = ¢,(XNU,), g. = (¥;')*g and denote by n, the future-directed
unit normal vector field to X, for g,. We have ¥, = {v € B,(0,1) : v, = 0} ~
B,-1(0,1) and we can decompose n, as n, = n, + Aye,, where nl is tangent
to ;. Then {g,}ees, {95 aes, {1 }zes, As are bounded in BTY(B,(0,1),6),
BT%(B,(0,1),6), BT§(B,_1(0,1),) and BTH(B,,_1(0,1),8) respectively.

By standard estimates on differential equations, this implies that there exists
0’ > 0 such that the normal geodesic flow

] = 6,0 [xBn_1(0,%) — By (0,1)

(3.5) Xo o (5,07) 5 expl, ) (sna (v, 0))

is a diffeomorphism on its image, with {X, }sex bounded in Cg°(]—¢', 8'[x B,—1(0, 3)).
Moreover if V, := x4(] — 0,8’ [xB,—1(0, 3)), then x;! is the restriction to V, of a
map ¢, : B, (0,1) — R™ such that {¢,}ex is bounded in CP°(B,(0,1)).

We have x%g, = —ds® + hy(s,v')dv?, where h,(s,v')dv"? is an s—dependent
Riemannian metric on B,,_1(0,1).

To prove statement (2) it remains to check that {h,},ex and {h;'},ex are
bounded in BT3(]—d",0'[x B,—1(0, 3)) and BT5(]— 0", 0'[x Bn—1(0, 1)) respectively.
This follows from the same properties of g,., g, 1 and Y, recalled above. The proof
is complete. O

Remark 3.6. Since the diffeomorphisms x. in (3.5) are bounded with all deriva-
tives (in good coordinates for the reference Riemannian metric §), we see that x*§
is equivalent to ds® + hody®on I x X, or more precisely that one can extend x*§ to
R x X such that the extension is equivalent to ds®> + hody? on R x X.

3.3. A framework for Klein-Gordon operators. In Sects. 6, 7 we will consider
Klein-Gordon operators on a globally hyperbolic spacetime (M, g):

(3.6) P=-V'V,+V, VeC®M;R),

and in particular the Cauchy problem on a Cauchy hypersurface . In this subsec-
tion we formulate a rather general framework which will allow us later on to apply
tools from the pseudodifferential calculus on manifolds of bounded geometry, see
Sect. 5 for the construction of parametrices for the Cauchy problem for P.

If (M;, g;) are two spacetimes, a spacetime embedding i : (M1, g1) — (Ma, g2) is
by definition an embedding that is isometric and preserves the time-orientation. In
addition, if (M;, g;) globally hyperbolic, one says that i is causally compatible if:

L (U) =i (13;(U)), YU € M.
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We fix a globally hyperbolic spacetime (M, g), a Cauchy hypersurface ¥ and a
function V € C°(M;R). We assume that there exist:
(1) a neighborhood U of ¥ in M,
(2) a Lorentzian metric g on M,
(3) a function ¢ € C*°(M;R), ¢ > 0,
such that:
(H1) (M, ¢%g) is globally hyperbolic, i : (U, g) — (M, ¢%§) is causally compatible,
(H2) g is of bounded geometry for some reference Riemannian metric §, ¥ is a
Cauchy hypersurface of bounded geometry in (M, §),
(H3) dlné belongs to BTY(M, §),
(M) &V belongs to BTH(M, §).

Proposition 3.7. Assume hypotheses (H). Then there exist:
(1) an open interval I with 0 € I, a diffeomorphism x : I x ¥ — U,
(2) a smooth family {hi}icr of Riemannian metrics on X with

(X, ho) is of bounded geometry,
I3t hy € OX(LBTYE, ho)), I3t byt € CO(I;BTA(X, ho)),
(3) a function c € C*°(I x X), ¢ > 0 with
Vi, Inc € C°(I; BTH(X, ho)), 0 Inc € C(I;BTY(S, ho)),

or equivalently
de € BTV(I x X, dt? + hy),

such that

(3.7) X*g = A(t,y)(—dt® + hy(y)dy*) on U.
If moreover hypothesis (M) holds then:

(3.8) AV ox e CR(I;BTY(E, ho)).

Proof. We apply Thm. 3.5 to § to obtain I, U, x. We set ¢ = ¢ oy, so that (3.7)
follows from g = ¢§ on U. Property (2) of t — hy follow from Thm. 3.5, property
(3) of ¢ from hypothesis (H3) and the fact that x*§ is equivalent to dt? + hody? on
I x ¥, by Remark 3.6. Finally (3.8) follows from hypothesis (M). O

The following proposition is a converse to Prop. 3.7.

Proposition 3.8. Let (M, g) be a globally hyperbolic spacetime with
M =Ry x 5, §=—dt* + h(y)dy?,

such that ¥ is a Cauchy hypersurface in (M,g). Let ¢ € C*°(M), ¢ > 0 and
W e C®(M;R). Assume that conditions (2), (3) and identity (3.7) in Prop. 3.7
are satisfied by {hi}ier, ¢ for some bounded open interval I and x = 1d.

Then for any J € I conditions (H1), (H2), (H3) are satisfied for g = ¢*g, ¢ = c
and U = J x % . If moreover V€ C®(M;R) is such that (3.8) is satisfied for
x = 1d, then there exist Ve C®(M;R) such that V.=V on J x ¥ and V satisfies
condition (M).

Proof. We extend the maps ¢t — h; and ¢ — ¢(¢,-) from I to R, in such a way
that conditions (2) and (3)are satisfied with I replaced by R, taking h; = ho,
c(t,-) = ¢(0,-) for |t| large. As reference Riemannian metric on M we take § =
dt? 4+ hy(y)dy?. The fact that (M, §) is of bounded geometry is easy. The remaining
conditions in (H2), (H3) follow immediately from (2) and (3). If (3.8) holds, we
can similarly construct V with V.=V on I x X, V = 0 for |t| large such that V
satisfies (M). O
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4. EXAMPLES

In this section we give several examples of spacetimes to which the framework
of Subsect. 3.3 applies.

4.1. Cosmological spacetimes. Let (X, h) a Riemannian manifold, a € C*°(R; R)
and consider M = R; x 3, with metric

g = —dt* + a*(t)hi; (y)dy'dy’ .
If (X, h) is of bounded geometry, (M, g) satisfies conditions (H) for ¥ = {t = 0},

¢=1,U=1x3%,I&R an interval. Condition (M) is satisfied in particular for
V=m2 meR.

Remark 4.1. The construction of propagators and Hadamard states for Klein-
Gordon equations on cosmological spacetimes can be done without the pseudodiffer-
ential calculus used in Sects. 6, 7 in the general case. Instead one can rely on the
functional calculus for e = (—Ah)%. All objects constructed in Sects. 6, 7, like the
propagators U (t,s) (see Subsect. 6.5) or the covariances \*(t) (see Thm. 7.8) can
be written as functions of (t,s) and of the selfadjoint operator €. This amounts to
what is known in the physics literature as the mode decomposition, see e.g. [JS, BT]
for related results.

4.2. Kerr and Kerr-de Sitter exterior spacetimes.

4.2.1. The Kerr-de Sitter family. Let us recall the family of Kerr-de Sitter metrics.
One sets M = Ry x I, ng’W where I is some open interval and 0 € [0, 7], ¢ € R/27Z
are the spherical coordinates on S?. The metric is given in the coordinates (¢, 7,6, )
(Boyer-Lindquist coordinates) by:

dr?  do? Agsin® 6 2
P’ ( ) (072 (adt2 — (r* + 32)d<p)

g:

A, + Ay 1+ a)?p
A, :
— m(dt — asm2 6d(p)2

L gudt? + gopdp® + 2gipdtde + grrdr® + goad6?,
for
A, = (1 - %r2) (r? + a%) — 2Mr,
a
Ap =14 acos®h, p> =r?+ a’cos® b,
o? = (r* + a?)?Ay — a?A, sin? 4.

Here a = AT*‘Q, M,a, A > 0 are respectively the mass of the blackhole, its angular
momentum and the cosmological constant. The Kerr metric corresponds to A = 0.
If A = 0 (Kerr) one assumes that |a|] < M (slow Kerr) which implies that for

7, = M + /M2 — a2 one has:
rp >0, Ap(rp) =0, A, >0 on |ry, +o0]

and one takes I =|rp,, +oo[. If A # 0 (Kerr-de Sitter) one assumes that there exists
rp < 7. such that

i) >0, Ar>0o0n |y, 1, Ar(rn) = Ar(re) =0,
i) 8, An(rp) >0, 0.An(r,) <0,
iii)  supy,, ,.(Ar > supjg . A,
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and one takes I =|rp,r.[. The set S of parameters (a, M,A) such that such
rh,Tre exist is open and contains the set {|a] < M, A = 0} (slow Kerr) and
{a=0, 9AM? < 1} (Schwarzschild-de Sitter).

It is easy to check that if (a,M,A) € S then there exists ¢ > 0 such that
a%(r,0) > c for all 6 € [0, 7].

The part of the boundary r = r;, of M is the (outer) black hole horizon, the part
r = r. in the Kerr-de Sitter case is the cosmological horizon. Condition 7)) means
that the region A, > Ay where % is time-like is not empty; one chooses the time
orientation so that % is future oriented in this region. The spacetime M is usually
called the outer region of the Kerr or Kerr-de Sitter spacetime.

T M +00 or 7,
& »
Th +00 or 7.

Fig. 1 Kerr-de Sitter exterior region

4.2.2. Verification of conditions (H). The first step consists in expressing the metric
in rotating coordinates. We have:

9= (91t = 9709508 + 9o (Ao + Gro9ppdt)? + grrdr? + goad6?.
We set R = gip9,4, ¢ = @ + tR(r,8). Denoting again ¢ by ¢ we obtain:
9= (9t — G1p950)dt” + g (dp — t0, Rdr — tOp Rd)* + grrdr® + ggod6?.
Then one introduces Regge- Wheeler coordinates on I, defining s = s(r) by

ds 72 + a?

@~

(The integration constant is irrelevant). The spacetime M becomes R; x Ry x S2,
and we choose the Cauchy hypersurface:

S=Mn{t=0} ~R, x S2.

We set now:
(4.1) &= =g + 91 9
and write
g = &g for § = —dt®> + hy, hy Riemannian metric on %,
with hy =: hg — 2thy + t2hs.

Proposition 4.2. (1) (X, hg) is of bounded geometry;
(2) for J = [—€, €] and € > 0 small enough one has

J 3t hy € C°(J; BTS(X, ho)), J 3t hyt € C2°(J; BT5(X, ho)),

(3) One has
Ve Iné € BTH(E, ho), &€ BTH(E, ho).



Hadamard states on Lorentzian manifolds of bounded geometry 19

Remark 4.3. By Prop. 3.8 we see that conditions (H) are satisfied. Moreover
V = m? satisfies condition (M).

Some technical computations used in the proof of Prop. 4.2 are collected in

Subsect. A.1, where the reader can also find the definitions of the function classes
Stas and SpP, see Def. A.4.

Proof of Prop. 4.2. A routine computation gives:

(12)  po Bl o w0
. (1+Ol)20'2, Jop (1+a)2p27 9rr Ar7 966 Agl
We set also:

2 212 2

+ a®) o
F(s):=(1 27(T 0) :=
() =(1+a) A, G(s,0) (r2 + a2)27y’
and
1 2
dw? = d6? + w sin? 0dy?.
1+«

By Lemma A.2 dw? is a smooth Riemannian metric on S?. From the identity in
Lemma A.2 we have

2 2 2
_ o 2, (I+a) 2 2
"= e @, " Y A B 90H H e0d)
F
= G(s,0) (d52 + ﬂclw2 + F(s)w) ,
Ay
for
a? 2ma’r . 9 9 0
w = <(1 ) + i a)2p4> (sin® Odp)” € TH(X).

From Lemma A.7 v) we obtain that inf F/(s) > 0 and |02 F(s)| < C,F(s), hence if
ko = ds® + F(s)dw?, (2, ko) is of bounded geometry by Prop. 2.13.

Next we see from Lemma A.7 vi) that G,G~' € BTH(X, ko) since inf G > 0 and
9% (F(s)~28,)PG is bounded on ¥ for any (o, ) € N2,

The factor in front of (sin® #dp)? in w belongs to S%,q resp. to SIQQ’O. The
same argument as the one used for GG, using the estimates in Lemma A.7 shows
that F(s)w € BTY(X, ko). This implies that hg € BTY(Z, ko). Since w > 0 we
immediately have that hy' € BT3(X, ko), i.e. ho ~ ko, which proves (1).

To prove (2) we need to compute hy and hy. We have:

hy = 29, Redrdy + & 2g,, Ry (sin 20d6)dy

4 ) 0.4
err(sm Gdnp) + mR

4 o 04
ers(sm de) + m

g

. )
= A Al o (sin 20d0) (sin” Ody)

g
~ Dgpt(1+a)(r? + a?)

Ry (sin 20d0) (sin® 0dy)

=: hy s,ds(sin® 0dp) + hy g, (sin 20d6)(sin® Odyp).
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Similarly:

hy = ¢ 200 (Ry)2dr? 4+ ¢ 2 gpu(Re)*(sin 20d0)? + 262 g,, R, Rodr(sin 20d6)

ot

.2 2.2
sin® 0(R,)“dr= + A A

__9 02 2 2
= A A, sin® 0( Ry)” (sin 260d6)

4
o ) .
+ 2ATTGp4 Sin HRTRQdT(Sln 29d9)

ot

" B (7 PP a)?

ot

2 sin? O R, Ryds(sin 20d6
+ (1+a)(r2+a2)A9p4bm R, Rpds(sin )

=: hg g5ds® + ha pg(sin 20d0)? + 2hy, spds(sin 20d0).

4
sin2 9A, (R,)2ds? + Arngp‘l sin? 0( Ry )2 (sin 20d6)>

We now collect the properties of the coefficients of ﬁl, hsy. From (A.1) and estimates
similar to those in Lemma A.7 we obtain:

-1,0 0,0

hi,sp € Skag, T€SP. € Si 7, higy € Skqgs TESP. € S,
—1 —4,—1 —1 —2,—-1
hoss € Sgagy resp. € Sk , haee € Skass Tesp. € Sy ,

-1 —3,—-1
haso € Skgg, Tesp. € Sk .

Since sin 20d6 and sin? fdp are smooth forms on S2, this implies that h; € BTS(Z, ho),
i=1,2. If J = [—¢, €] for € small enough we have hence

J >t hy € C°(J,BTY(Z, ko)), J Dt hyt € C°(J,BT5(S, ho)),

which proves (2).
From (4.2) we obtain that ¢ € S iq, resp. € S%_l. This implies (3). O

4.3. Kerr-Kruskal spacetime. In this subsection we consider the Kerr-Kruskal
extension of the outer Kerr region considered in Subsect. 4.2. In the slow Kerr case
(la] < M, A =0), A, has tworoots 0 < r_ < ry, (ry was previously denoted by 7).
The region 7 > 71 of Ry x R, x S2 considered earlier is called the (Boyer-Lindquist)
block I, the region r_ < r < r4 is called the block II.

The construction of the Kerr-Kruskal extension of block I is as follows (see [O’N2,
Chap. 2] for details): a block IT is glued to the future of block I along r =r4,¢t >0
using Kerr-star coordinates, and a block II’; i.e. a block II with reversed time
orientation, is glued to the past of block I along r = ry,t < 0 using star-Kerr
coordinates. Then a block I’; i.e. a block I with reversed time orientation, is glued
to the past of block I and the future of block II'. The four blocks can be smoothly
glued together at » = ¢t = 0 (the so-called crossing sphere), see [O’N2, Sect. 3.4].
The time orientation of block I can be extended to a global time orientation, and
it can be shown that the resulting spacetime (M®*, g) is globally hyperbolic, with
Yext = {1 = 0} as a Cauchy hypersurface.
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Fig. 2 Kerr-Kruskal extension

We claim that the Kerr-Kruskal extension M®** satisfies the conditions (H). In
fact let U be a neighborhood of ¥ in block I of the form {|t| <€, » > R}, such that
Prop. 4.2 holds on [—¢, €], and let U’ be its copy in block I. We also fix a relatively
compact neighborhood Uy of the crossing sphere such that V. =U"U Uy UU is a
neighborhood of ¥ in Mt Tt is clear that the hypotheses of Prop. 3.8 are
satisfied, since they are satisfied over U and U’, and Uy is relatively compact.

4.4. Double cones, wedges and lightcones in Minkowski. In this subsection
we consider the Klein-Gordon operator P = —V®V, +m? on double cones, wedges
and lightcones in Minkowski spacetime.

4.4.1. Double cones.

Fig. 3 The double cone

The standard double cone is
M = {(t,x) e R™: |t| < 1—|z|}, ds® = —dt* + da?.
We follow the framework of Subsect. 3.3 with X = M N {t =0}, V = m?2. We set
U={]t| <51 —|z]), *+ (1 —|z|) <} for 0 < <1,

and fix a relatively compact open set Uy such that U U Uy is a neighborhood of ¥,
see Fig. 3. It suffices to check conditions (H) over U, since U is relatively compact
in M. We introduce polar coordinates x = rw and set

X X

r=1—e “cosT, t=e " sinT.

We are reduced to

U :] _a7a[TX]Ca +OO[XXSi_17 Y= {T = 0}7

ds® = e *X cos(2T) (—dT? + dX? + 2tan(2T)dTdX + (e* — cos T)*dw?)
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We take &(T, X) = e~X cos(27T') and choose the reference Riemannian metric
G=dT? +dX? + > dw?,
which is of bounded geometry by Prop. 2.13. The Lorentzian metric
G =—dT? +dX? + 2tan(2T)dTdX + (e* — cos T')?dw?

is of bounded geometry for §. Clearly ¥ = {T" = 0} is a bounded hypersurface
of (U,§). Its normal vector field for ¢ is dr, from which it follows that ¥ is a
Cauchy surface of bounded geometry, hence (H2) is satisfied. One easily checks
that ¢ satisfies (H3) and that (M) is satisfied for V' = m?2.

4.4.2. Wedges.

Fig. 4 The standard wedge
The standard wedge is

M= {(t,z1,2') e R |t| <y}, ds® = —dt® + da? + da'.
We take again ¥ = M N {t = 0}. We take:
Up = {|t| < 6wy, t?* 427 <1}, U = {[t| <6, 2 <21}

We check hypotheses (H) over Uy as above, replacing 1 — r by x; and w by z’.
Hypotheses (H) over Uy, are immediate since g is the Minkowski metric. Thus, (H)

is satisfied over Uy U U,,. Hypothesis (M) is again satisfied for V = m?2.

4.4.3. Lightcones in Minkowsksi.

Fig.5 The future lightcone

The future lightcone is
M ={(t,z) e R™*: ¢t > |z|}, ds® = —dt* + da?.
We choose ¥ = M N {t? — 2% = 1}, use polar coordinates = = rw and set

r=e IshX, t =e TchX,
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so that
M =Ry xRy x $71 ¥ = {T =0},

ds? = e 2T (—dT? 4+ dX? + sh® X dw?).
We take U =] — §,8[rxRx x S¢~1 as neighborhood of ¥. As before it suffices to

check hypotheses (H) over U N {|X| > 1}. We take &(T, X) = e~ and choose the
reference Riemannian metric

G =dT? + dX? + 2 Xl gw?

which is of bounded geometry by Prop. 2.13. Then §j = —dT? + dX? + sh® X dw?
and hypotheses (H) are clearly satisfied, as is hypothesis (M) for V = m?2.

5. PSEUDODIFFERENTIAL CALCULUS ON MANIFOLDS OF BOUNDED GEOMETRY

5.1. Introduction. In this section we recall the uniform pseudodifferential calculus
on a manifold of bounded geometry, due to Kordyukov [Ko| and Shubin [Sh1].
This calculus generalizes for example the pseudodifferential calculus on a compact
manifold and the uniform pseudodifferential calculus on R™. An important result
for us is the generalization of Seeley’s theorem [Se|, originally proved on a compact
manifold.

More precisely, if A € ¥ (M) is an elliptic pseudodifferential operator of order
m > 0 on M, symmetric and strictly positive on C§°(M), then A has a unique
selfadjoint extension, still denoted by A, with domain H™(M). Then Seeley’s
theorem asserts that A® is a holomorphic family of pseudodifferential operators of
order mRez.

The extension of Seeley’s theorem to pseudodifferential operators on manifolds
of bounded geometry is due to [ALNV], which we will closely follow.

Another important result proved in this section is Egorov’s theorem. It is usually
formulated as the fact that if A is a pseudodifferential operator and U a Fourier
integral operator then B = U~ AU is again a pseudodifferential operator. In our
case we will take U = U,(t, s) equal to the evolution group generated by a smooth
time-dependent family €(t) of elliptic first order ¥DOs, with real principal symbol.

It will be convenient to consider also time-dependent pseudodifferential operators
A = A(t) € C°(I; ¥™(M)) for I C R an open interval. It turns out that the
framework of [ALNV] is general enough to accommodate this extension without
much additional work.

5.2. Symbol classes. In this subsection we recall well-known definitions about
symbol classes.

5.2.1. Symbol classes on R™. Let U C R™ be an open set, equipped with the flat
metric 0 on R”.
we denote by S™(T*U), m € R, the space of a € C>°(U x R™) such that

<£)7m+|’8‘3§‘3?a(:c,§) is bounded on U x R", Vo, 8 € N,

equipped with its canonical seminorms || - ||im,a.8-
We set

STTU) = () S™(T*U), S®(T*U) = ] S™(T*V),
meR meR

with their canonical Fréchet space topologies.
If m € R and a,,,—; € S™H(T*U) we write

a =~ E A —i

ieN
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if for each p € N

p
(5.1) rp(a) i=a— Y am_; € S"PTHTU).
=0
It is well-known (see e.g. [Shl, Sect. 3.3]) that if a,,_; € S™~H(T*U), there exists
a € S™(T*U), unique modulo S™>°(T*U) such that a ~ ), @m—i-

We denote by S (T*U) C S™(T*U) the space of a such that a(z, A) = A™a(x,§),
forzeU,|¢|>C,C>0.

We denote by S (T*U) C S™(T*U) the space of a such that a ~ 37,y am—;
for a sequence a,,—; € S| (T*U).

Following [ALNV], we equip SJ} (1*U) with the topology defined by the semi-
norms of a,,—; in S™~(T*U) and rp,(a) in S P~1(T*U), (see (5.1)). This topology
is strictly stronger than the topology induced by S™(T*U).

The space ST} (T U)/ng;l(T*U) is isomorphic to S{"(T*U), and the image of
a under the quotient map is called the principal part of a and denoted by ap,.

Finally we note that if U = B,(0,1) (more generally if U is relatively compact
with smooth boundary), there exists a continuous extension map E : S™(T*U) —
S™(T*R") such that Ealr«y= a. Moreover £ maps Sp (1™U) into Spj (T*R") and
is continuous for the topologies of Si} (T*U) and SJ} (T*R™), which means that all
the maps

a— (Ea)py—i, arp(Ea),

are continuous.

5.2.2. Time-dependent symbol classes on R™. let I C R an open interval. We will
also need to consider time-dependent symbols a(t,z,&) € C*(I x T*U).

The space Cp°(I; S™(T*U)) is naturally defined as the space of a € C*°(IxT*U)
such that

(f)fmﬂﬂlag’@?@?a(x,f) is bounded on I x U x R", Va, 3 € N", v € N,

equipped with its canonical seminorms || - ||;n,a,8,y- The notation a ~ >, ap—;
and the subspaces Cp°(1; Sy (T*U)) are defined accordingly, by requiring uniform
estimates on I of all time derivatives.

5.2.3. Symbol classes on M.

Definition 5.1. We denote by S™(T*M) the space of a € C°°(T*M) such that for
each x € M, a, = (¢;1)*a € S™(T*B,(0,1)) and the family {a;}zen is bounded
in S™(T*B,(0,1)). We equip S™(T*M) with the seminorms

lallm.a.p = sup [lag|[m,a,p-
xeM
Similarly we denote by ST} (T* M) the space of a € S™ (T M) such that for each x €

M, a, € S5 (T*By(0,1)) and the family {a; }zen is bounded in S (T By (0,1)).
We equip ST (T* M) with the seminorms

lallm,i,p.a.6 = SUp lazlim,ip,a.p-
rxeM

where || - |lm,i,p,a,5 are the seminorms defining the topology of S (T* By, (0, 1)).

It is easy to see that the definition of S™(T*M), ST} (T*M) and their Fréchet
space topologies are independent on the choice of the {Uy, ¥, } e, with the above
properties.

The notation a ~ »; yam—; for am_; € Sﬁl—i(T*M) is defined as before. If

a € S} (T*M), we denote again by ay,, the image of a in S&(T*M)/Sg}l_l(T*M).
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If I C Ris an open interval, the spaces Cp°(I; S™ (1™ M)) and Cp°(I; ST, (T* M)
are defined as in 5.2.2.

5.3. Pseudodifferential operators. We now recall standard facts about the as-
sociated pseudodifferential operators, see [Ko, Sh1, ALNV].

5.3.1. Pseudodifferential operators on R™. If a € S™(T*R"™), we denote by Op" (a)
its Weyl quantization, defined by

Op™(a)u(x) = (2m) ™" / 0 (T €)uly)dydE.
We recall the following well-known properties:
(1) Op¥(a) : C§°(R™) — &'(R™) is continuous,
(2) Op: S™(T*R") = ,er B(H*(R™), H*~™(R")) is continuous, where H*(R")
is the Sobolev space of order s on R™.
(3) there exists a bilinear continuous map

S®(T*R"™) x S*®(T*R"™) > (a,b) — affb € S (T*R")
such that Op"(a)Op™(b) = Op™(afb).
5.3.2. Time-dependent pseudodifferential operators on R™. If I C R is an open
interval and a = a(t) € C°(I; S™(T*M)) we can consider the time-dependent
pseudodifferential operator Op™(a(t)). We have
(1) Op“(a(t)) : C(L; CER™)) — C(I; E'(R™)) is continuous,
(2) Op : (L5 S™(T"RY)) — (1, scq BUH (I3 HH(R™)), HY(I; H*=™ (R"))) is con-
tinuous, where H"(I; H*(R™)) is the Sobolev space of bi-order r, s on I x R™.

5.3.3. Quantization maps. We now recall the quantization procedure on a manifold
of bounded geometry. Let {U;,¥;}ien be a good chart covering of M and

doxi=1
€N
a subordinate good partition of unity, see Subsect. 2.2. Let
(v, 1) dg = midz,
so that {m;};en is bounded in CP°(B,(0,1)). We set also:
T,: L*(U;,dg) — L?(B,(0,1),dx),
wes mf (67,
so that T; : L2(U;,dg) — L?*(B,(0,1),dx) is unitary.
Definition 5.2. Let a = a(t) € C°(1; S™(T*M)). We set
Op(a) := Z x:I; 0 Op™(Ea;) o Tixi,
ieN

where a; = ay, (see Def. 5.1), and E is the extension map (see Subsect. 5.2).
Clearly Op(a) : C°(I; Cg°(M)) — Co(I; E'(M)) is continuous.

Such a map Op obtained from a good chart covering and partition of unity will
be called a good quantization map.

Note that Op(1) = 1, and that Op(a)*(t) = Op(@)(t) on C5°(M), where A* is
the adjoint of A for the scalar product

(u|v)M=/ v dvoly.
M
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Note that if A(t) € C°(I; Op(S™(T*M))), then its distributional kernel A(¢,z,y)
is supported in
{(z,y) e M x M : d(z,y) < C},
for some C' > 0, where d is the geodesic distance on M. It follows that Op(a) :
C(M) — C§°(M), hence Op(a) o Op(b) is well defined. However because of
the above support property Op(S°°(T*M)) is not stable under composition. To
obtain an algebra of operators, it is necessary to add to Op(S°°(T*M)) an ideal of
smoothing operators, which we introduce below.
The Sobolev spaces H*(M, g) defined in 2.3.3 will be simply denoted by H?*(M).
We will set:
(5.2) H>(M)= () H™(M), H>=(M) = | J H™(M),
meZ meZ
equipped with their natural topologies.
Definition 5.3. We set:
W™ (M) = () B(H ™ (M), H™(M)),
meN
equipped with its natural topology given by the seminorms
1Allm = 1(=8g + D)™ 2A(=Ag + 1) 2| pz2(a0))-
Similarly we equip
Coo (LW (M))
with the topology given by the seminorms
[Allmp = sup (107 A() -
tel,k<p

The following result, showing the independence modulo Cg°(I; W=°°(M)) of
Op(CP°(I;S°(T*M))) of the above choices of {U;, ¥, x;}, is easy to prove.

Proposition 5.4. Let Op’ another good quantization map. Then
Op — Op : C°(1; S=(T*M)) — C°(I; W™ (M)).
18 continuous.

5.3.4. The azioms of a Weyl algebra. In [ALNV], a set of abstract axioms was
introduced, with the aim of defining pseudodifferential operators on a manifold in
a very general framework. The main result of [ALNV] is the extension of Seeley’s
theorem [Se]. We will now check the abstract axioms of [ALNV, Sect. 1] in our
situation. Namely, we need to specify a tuple (Up>1 W, *°, M, q, ) that satisfies the
following properties (we refer the reader to [ALNV, 1.2] for the precise formulation
in the general case):

Aziom (i): the LF-algebra and the Hilbert space: One requires that H is a Hilbert
space and W™ = Up>1 W, is a LF-algebra®, continuously embedded in B(H)
and such that the adjoint operation * maps W~ — W™ continuously. We choose
H = L*(I; L*(M,dg)) and W= = W, = C°(I;W~>°(M)). The LF-algebra
properties are immediate. Furthermore, we have indeed Cg°(I; W~>°(M)) C B(H)
and

(CE2(LW™=(M)))" = O (I; W= (M).

Aziom (ii): existence of an injective, self-adjoint operator in W~>°: We choose

the (time-independent) operator R = e~ (8¢t Clearly R = R* € C°(I; W~°(M)).

6This means that W~ is a strict inductive limit of Fréchet spaces and is endowed with an
algebra structure with some additional grading and continuity properties, see [ALNV, 1.2].
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Aziom (iii): quantization map q: We choose g(a) := Op(a). One needs to check
in our case that

Op(a) « L*(I3 H>(M)) — L*(I; H=>*(M)),
Op : G (I; S==(T*M)) — C§=(I; W= (1)),
which is straightforward from the properties of Op already listed.

Aziom (iw): Tt is easy to check using for example the norm given in (2.7) that
Op(a) € C°(I; B(H*(M), H=™(M))) for a € C°(I; S™(T*M)). This implies
that

Op(Cy (15 §7(T M)))C= (I; W= (M) € G2 (L, W™ (M),
which is in our setting the required property of the quantization map q.
Aziom (v): existence of a symbolic calculus: from the symbolic calculus in
Op™ (S™(T*R™)) we obtain the existence of a bilinear map
(a,b) — afb defined on Cg°(I; S*°(T*M))
such that
Op(a)Op(b) — Op(afth) € Cy°(I; W™ (M)), for a,b € Ci°(I; S*(T™M)).
Concretely we have
afb = > XU (aithi),
i€N
where a;fb; is recalled at the beginning of Subsect. 5.2. The fact that afb as
an asymptotic expansion in terms of homogeneous bi-differential operators follows
from the analogous property of the symbolic calculus on R™.

Aziom (vi): boundedness of WDOs: from the analogous property on R" we easily

obtain that
Op : C2(I; S°(T*M)) — B(L?(I; L*(M))) is continuous.

Aziom (vii): One requires that the map
Co(I; S™(T™M)) x G2 (W™ (M)) 3 (a,T) = Op(a) o T € G (L, W™ (M)
is continuous. This follows from axiom (vi) in our situation.

Two further important conditions are introduced in [ALNV].

The first condition, called condition (¢) in [ALNV] amounts to the property
that if a € C°°(I; ST}, (T*M)) and Op(a) € C°(1;W>°(M)), then a belongs to
C(I; S=°(T*M)). In our case we deduce from the properties of the ¥DO calculus
on R” that the sequence {a; }ien is uniformly bounded in C£°(1;.S~°°(T* B, (0, 1))),
which implies that a € C°(1; S~ (T*M)).

The second condition, called condition () in [ALNV], is the spectral invariance

of the algebra 1+ C°(I;W~°°(M)). This condition is stated and proved in the
lemma below.

Lemma 5.5. Let R_o. € Cp°(L;W>°(M)) such that 1 — R_ is invertible in
B(L?(I; L*(M))). Then

(I1-R_0) ' =1~ Ry o for Ri—oo € C(I; W™°(M)).
Proof. On L2(I; L2(M)) ~ [,° L*(M)dt we have:

@
IR . = / = R (1)t
I
hence

D
(1-R_.)" = / (1= R_oo(t)dt,
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and
I(0 = Roo) ™l B(z2 (1222 (ary)) = €58 5upser[|(1 = Reoo ()~ || 322 (ar)
=sup |(1 = R (1)) "I B(z2(a1)»
tel
since

I>te (1—R_(t)" € B(L*(M))
is norm continuous. We have
(5.3) (1- R_oo(t))*1 =14+ R_(t)+ Roo(t)(1 — R_m(t))*lR_oo(t).

Since (I—R_(t)) ™! € B(L3*(M)) and R_(t) € W=°(M), we see that R_..(t)(1—
R_oo(t)) ' R_oo(t) € W™°(M). To prove that Ry o € C2°(I;W™°(M)) we dif-
ferentiate (5.3) w.r.t. ¢ using the Leibniz rule and the identity

(1= Roo()™ = (1= Roo() 0 R—co(1)(1 — R (£)) ™. D
5.3.5. Time-dependent pseudodifferential operators on M. We can now define classes
of time-dependent pseudodifferential operators on M, by applying the abstract

framework of [ALNV, Sect. 1]. We will only consider classical pseudodifferential
operators, i.e. operators obtained from poly-homogeneous symbols.

Definition 5.6. We set for m € R:
Coo(I;W™(M)) = Op(Cp=(I; Spi (T M) + C52 (L, W™ (M)).
Remark 5.7. An element of C°(I; ¥™(M)) will usually be denoted by A, while

A(t) fort € I will be an element of W™ (M). Writing for example L?(I; L*(M)) as
f;B L?(M)dt, we have

o
A= / A(t)dt.
I
Note that C2°(I; ¥ ~°(M)) = C°(I; W~>°(M)). If necessary we equip the space
C(I; ¥™(M)) with the quotient topology obtained from the map
Co (L Spi (T M) x Co(I; W™ (M) € (a, R) — Op(a) + R € Cp°(1; U™ (M)).
It follows that the injection:

Co (1, @™ (M) — () C°(I; B(H® (M), H* ™™ (M)))
seR
is continuous.

Definition 5.8. Let A = Op(a)+R_ € C2°(1; Y™ (M)). We denote by o, (A) €
C(I; S|P (T* M) the principal symbol of A defined as

oor(A) = [a] € CF(I; S (T M) /CE2 (1 S~ (T M),

By property (o) and Prop. 5.4 op(A) is independent on the decomposition of A as
Op(a) + R_o and on the choice of the good quantization map Op.

Definition 5.9. A € C°(I; ¥™(M)) is elliptic if there exists C > 0 such that
|0-PT(A)(tvx7£)| Z C(f : g—l(x)é-)m/Q’ t S I7 (LC,S) € T*M

The main property of elliptic operators is that they admit parametrices, i.e.
inverses modulo Cg°(I; W~>°(M)).

Proposition 5.10. Let A € C°(I; ¥™(M)) be elliptic. Then there exists B €
C(I; $~™(M)), unique modulo C2°(I; W=°°(M)) such that

AB — 1€ CP(I; W= (M)), BA—1¢€ C(I; W™>(M)).
Such an operator B is called a parametrix of A and denoted by AV,
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Proof. The proof given in [Ko, Thm. 3.3] or [Sh2, Prop. 3.4] extends immediately
to the time-dependent situation. O

We recall that the notation a ~ b for a,b are two selfadjoint operators on a
Hilbert space H is defined in Subsect. 1.4.

Proposition 5.11. Let A € C°(I; @™ (M)), m > 0 be elliptic such that A(t) is
symmetric on H>® (M) for allt € I. Then
(1) A(t) is essentially selfadjoint on H*(M) and
Dom A°(t) = H™(M).

(2) If in addition op (A)(t,z,€) > c(&- g~ (x)€)™/? for some ¢ > 0, then A°\(t) is
bounded below, uniformly fort € I. Moreover there exists R € C°(I; (W~ (M))
such that

A(t) + R_oo(t) ~ (=2, + 1)™2, uniformly fort € I.

(3) A (considered as a linear operator on L*(I; L?(M))) is essentially selfadjoint

on L*(I; H*(M)) and
Dom A = L2(I; H™(M)).
Proof. statement (1) follows from [ALNV, Prop. 2.2] and the alternative charac-

terization of Sobolev spaces given in [ALNV, Sect.3]. To prove (2) we may assume
that A = Op(a) since W=>°(M) C B(L?(M)). Then
At) = ZXiTi*Ai(t)TiXiy
ieN
where {A4;}ien is a bounded family in Op™ (Cg°(I; S™(T*R™))) such that
opr(Ai)(t, 2, &) > c|§|™, uniformly fori € N, t € I.

From the DO calculus on R"™ we deduce that A4;(¢) > ¢/1 uniformly in ¢ € N and
which shows that A(t) is bounded below uniformly in ¢ € I. This also implies that
for ¢ > 1 one has A(t) + ¢ ~ (=A, + 1)™/2. By functional calculus we can find
X € C§°(R) such that A(t) + x(A(t)) ~ A(t) + c¢. By elliptic regularity we know
that x(A) € C°(I; W—°°(M)), which completes the proof of (2). (3) follows from
(1). O

We now state the main result of this subsection, which follows directly from
[ALNV], for the simpler case of real powers.

Theorem 5.12. Let A € C°(I; ¥™(M)) be elliptic, selfadjoint with A(t) > cl
forc>0,tel. Then A® € CP°(L; ™ (M)) for any s € R and
opr(A”)(1) = ope(A(1))”.

Proof. We consider A as a selfadjoint operator on L?(I; L?(M)) and apply [ALNV,
Thm. 8.9], noting that A°(t) = A(¢)®. O

The following lemma will be used in Subsect. 7.4.
Lemma 5.13. Let A € U°(M) such that A : &'(M) — C>®(M). Then A €
W=>(M).

Proof. We can assume that A = Op(a) for a € SJ} (T M), i.e (see Def. 5.2):

A= Z xiT; o Op™ (Ea;) o Tixi,
i€eN
where {Ea;};en is bounded in ST} (T*R™). We can fix cutoff functions X; such that
TiXi = XiTiXh {)Zi}iEN is bounded in Cgo(B(O, 1)) and define bi by 5(1 9 OpW(Eai) o
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Xi = Op™(b;). The family {b;};en is bounded in ST} (T*R") hence for each p € N
one has:
P
bi = bim—k +Tip,
k=0

where {b; yn—k }ien, resp. {7 ptien is bounded in S}Z"_k(T*]R”) resp. ST P=H(T*R™).
Since A : &'(M) — C>=(M) it follows that Op™(b;) : L2(R") — H~-™%*(R") for
any k € N. Taking k = 1 we obtain that Op"(b; ) : L*(R"?) — H-™(R"),
hence b; ,,, = 0 since b; ,,, is homogeneous of degree m. Iterating this argument we
obtain that b; = r;, hence {Op™ (b;)}ien is bounded in B(H*(R™), H5~™+P(R™)).
But this implies that A € B(H*(M), H~™%P(M)), using the characterization of
Sobolev spaces in 2.3.3. Since p is arbitrary we have A € W~>°(M).O

5.4. Egorov’s theorem. Let us consider an operator €(t) = €1(t) + €o(t), such
that:

€i(t) € C(1; VY(M)), i = 0,1,
€1(t) is elliptic, symmetric and bounded from below on H*(M).

(see Def. 5.9). By Prop. 5.11 we know that €;(t) with domain Dome(t) = H'(M)
is selfadjoint, hence €(¢) with the same domain is closed, with non empty resolvent
set. We denote by U,(t, s) the associated propagator defined by:

ZU(t,s) = ie(tUe(t,s), t,s €1,
DUt s) = —ilU(t, 8)e(s), t,s €1,

Uc(s,s) =1, sel.

Note that the propagator U, (t,s) exists and is unitary on L?(M), by e.g. [RS,
Thm. X.70]. Since €(t) — €1(¢) is uniformly bounded in B(L?(M)), one easily
deduces the existence of U, (t,s), which is strongly continuous in (¢,s) € I? with
values in B(L?(M)), uniformly bounded on I? in B(L?*(M)).

Lemma 5.14. Assume (E). Then

(1) Uc(t,s) € B(H™(M)) for m € Z U {+oo}, I? > (t,8) v U.(t,s) is strongly
continuous on H™ (M),

(2) if o € WT(M) then Uc(t, $)r oo, T—oclle(t,s) € CF°(IF,, W™ >°(M)).

Proof. Note that (2) follows from (1). If clearly suffices to prove (1) for m finite.
We set a = (—Ag + 1)z and compute
Oy (L{E(s, t)a™U.(t, s)a_m)

= —ilU(s,)[e(t), a™U(t, s)a™™

= —il(s,t) X [e(t),a™]a”™™ x a™U(t,s)a™™.
We know that a™ € W™(M), hence [e(t),a™]a™™ € C(I; ¥°(M)). Moreover
U (t, s) is locally bounded in B(L?*(M)) on I?. Therefore
| U(s,8)a™Uc(t, s)a" " < CUc(s,t)a™U(t, s)a "ul|, (t,s) € I?, u € L*(M).

m

For m < 0, taking u € Doma™™ and using Gronwall’s inequality yields (1). For
m > 0 we argue similarly, replacing the unbounded operator a™ by af* = o™ (1 +
ida)™™ for 6 > 0. We obtain from Gronwall’s inequality that:

e (s, t)ag"Ue(t, s)a™™|| < Cllag’a™™]|, (t,s) € I

We conclude the proof by using that ||a™u|| = supg; ||aj u|.O
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The following theorem is a version of Egorov’s theorem.
Theorem 5.15. Let a € V™ (M) and €(t) satisfying (E). Then
a(t, s) == U(t, s)ald(s,t) € C2(I%, U™ (M)).
Moreover
opr(a)(t, s) = opr(a) 0 (s, 1),
where ®(t,s) : T*M — T*M is the flow of the time-dependent Hamiltonian op,(€)(t).

Proof. The proof consists of several steps.
Step 1. we write a = Op(c) + a—oo, ¢ € S} (T*M), a0 € W™°. Then

U (t, s)aldc(s,t) = U (t, s)Op(e)Ue(s,t) + Ue(t, 8)a—oole(s,1)

= Uc(t, s)Op(c)Ue(s,t) + C° (I, W™ (M),
by Lemma 5.14. Therefore we can assume that a = Op(c).
Step 2: we write e(t) = Op(b)(t) +€_oo(t) for b(t) € CP°(I; S}, (T* M), € oo(t) €
Ce(I2, W=(M)).
We write:
Ue (ta 8) = qu(b) (ta S)V(t? 5)7
where
O V(t,8) = —iUopp) (5, 1)e—oo()Uc(t, 8) =t E_o (L, 5),
V(s,s) =1.
By Lemma 5.14 we know that é_o.(¢,s) € C2°(I2, W=°°(M)), hence
V(t,s) = 1+ C2 (12, W™ (M)).
It follows that:
Ue(t, 5)Op(c)lUe(s,t) = Uopw) (L, s)V(t,5)Op(c)V(s, t)Uopw) (s, t)
= Uop(s) (t, $)OP()Uop) (s, 1) + C5° (1, W™ (M),
again by Lemma 5.14. Therefore it suffices to consider
ay (t7 S) = qu(b) (ta S)Op(c)qu(b) (37 t)
Step 3: We try to construct d(t,s) € Cg°(I?, S0y (T*M)) such that

2:0p(d)(t, s) = —[Op(b)(1),i0p(d)(t, s)], t,s € I,
Op(d)(s,s) = Op(c), s €1,

(5.4)

modulo error terms in W~°(M). As in [Ta, Sec. 0.9], we write

€™ ienCm—is Cm—i € Sﬂki(T*M),

b(t) =D enb1-i(t), b1(t) = ope(e)(t), bi_s(t) € C(I; S;}Ti(T*M)),
and solve (5.4) with the ansatz

d(t,s) =Y " dm_i(t,s), dm—; € C(I;SI"(T*M)).
€N

We obtain the sequence of transport equations:
(50) {@dm(t, )+ {ope(0).dn(t.)} =0,

dm(sa 5) = Cm,

(Bi) Ordp—i(t,s) + {opr(e(t)s dm(t, )} = 22 5 kr1-1=m—i i (dm—: b1-1)(t, 5),
dm—i(s,s) =0,
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where {-,-} is the Poisson bracket and
Pj - SPY(T*M) x SP*(T* M) — SV P2 =9 (T* M)

is a bi-differential operator homogeneous of degree j (see [ALNV, Sect. 1.1]).
This sequence of transport equations can be solved inductively in

CEe (I, Sp=(T" M),
using that op,(€(t)) is real-valued and elliptic. We have in particular:
(5.5) dm(t,8) = ¢ 0 D(s,1).
Now we choose d(t,5) ~ >, .y dm—i(t,s) and obtain:
9;0p(d)(t, 5) = —[Op(b)(t),i0p(d)(t, 5))] + C5° (12, W™ (M))
Op(d)(s, s) = Op(c) + Cg°(I; W= (M)).
It follows that
Oy (Uop(w) (s, )Op(d)(t, s)Uopw) (L, s))
= Uop(v) (,1) (9:0p(d)(t, s) —i[Op(b)(t), Op(d)(t, 5)]) Uop(v) (£, 5)
€ Cpo(I2, W==(M)),
Uop(v)(s,5)0p(d)(s, s)Uop(w) (s, 5) = Op(c) + W™ (M).
Hence by integrating from s to ¢ and using again Lemma 5.14:
Op(d)(t,s) = ai(t,s) + C2(I2, W™>°(M)).
Hence a4 (t,s) € C°(I?,¥™(M)) as claimed. By (5.5) we have:
opr(a1(t, s)) = ope(a) o O(s, t).

The proof is complete. O

5.5. The wave front set. In this subsection we recall the characterization of the
wave front set of a distribution u € £'(M) using pseudodifferential operators on M.
One says that A € U™ (M) is elliptic at (xo, &) € T*M\{0} if

Upr(A) (1'0, 50) # 0.

Proposition 5.16. Let u € D'(M). Then (x9,&) € T*M\{0} does not belong
to WF(u) iff there exists A € WO(M), elliptic at (w9,&) and x € C§°(M) with
X(xo) # 0 such that Axu € H*® (M), or equivalently xAxu € C§°(M).

Let us also recall some more notation. If M;, i = 1,2 are two manifolds one
identifies T*(My x My) and T* My xT*Ms. If K : C§°(Ms) — D’ (M) is continuous,
denoting again by K € D'(M; x Ms) its distributional kernel, one sets:

WE(K) = {(X1, X2) € (T*M, x T*M)\{0} : (X1, X2) € WF(K)},
where (z,€) = (z, —€).
Proposition 5.17. Let U.(t, s) be as in Thm. 5.15. Then:

WEF(U,(t, s)u) = D(t,s)(WF(w)), ue H (M),

WEF (U(t,s)) = {(X,Y) € T*M\{0} x T*M\{0} : X =®(¢,5)(Y)}

Proof. This follows immediately from Prop. 5.16, Thm. 5.15 and the fact that
U (t, s) preserves H>*(M). O
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6. PARAMETRICES AND PROPAGATORS

6.1. Introduction. In this section we consider a class of model Klein-Gordon equa-
tions of the form

(KG) Do+ r(t,2)0:6 + a(t,,03)¢ = 0

on I; x X, where I C R is an open interval. We will see that the Klein-Gordon
equations introduced in Subsect. 3.3 can be reduced to such model equations.
We will consider the associated Cauchy evolution operator Ua(t, s), mapping p(s)¢
to p(t)¢ for p(t)¢ := <i_1q§)(tt<;(t))' It is well-known (see e.g. [Ch]) that Ua(t,s)
can expressed microlocally as the sum of two Fourier integral operators, associated
with the symplectic flow ®*(t,s) generated by :t(ag(t,x,f))%, where as(t,z,§) is
the principal symbol of a(t, x,d,).

This fact is not sufficient for our purposes, namely the construction of pure
Hadamard states for Klein-Gordon fields. We need a more precise decomposition
of Uy (t, s) as a sum

Ua(t,s) =UL(t,s) +U; (L, s)

which we call a microlocal decomposition (see Subsect. 6.5). The essential properties
required of Z/ljE (t,s) is that they are evolutions groups, propagate the wave front
set by the flows ®*(¢,s) and that their ranges are symplectically orthogonal for the
natural symplectic form preserved by U4 (t, ).

On a technical level, we avoid the use of the Fourier integral operators machinery
and rely instead on propagators Uy (t, s) generated by time-dependent ¥DOs, which
were studied in Subsect. 5.4. As a by-product of the construction of Z/{j(t, s), we
also obtain a Feynman inverse for the operator P in (KG), canonically associated
with the corresponding state, see Subsect. 6.6.

6.2. The model Klein-Gordon equation. In this subsection we give the precise
assumptions on our model Klein-Gordon operator (KG), to which the Klein-Gordon
operators considered in Subsect. 3.3 can be reduced.
We fix an open interval I C R with 0 € I and a smooth d—dimensional manifold
3, equipped with a Riemannian metric kg, such that (3, ko) is of bounded geometry.
We fix the following objects:
(1) atime-dependent Riemannian metric h; on X such that h; € C2°(I; BTS(Z, ko))
and byt € C°(I;BT5(%, ko)),
(2) a differential operator a(t,z,d,) € C2°(I; Diff*(%, ko)) such that

Z) UPr(a)(tvxag) =¢- h;l(x)§>
ii) a(t,z,0,) = a*(t,x,0,)

where the adjoint is defined using the time-dependent scalar product
(6.1) (ulv) = / ﬂv\ht\%daz.
b
We define then the model Klein-Gordon operator:

P = 5? +r(t, )0 + a(t,xz,0,),

for 7(t,x) := |he|"20;|hy|2. This way P is formally selfadjoint for the scalar prod-
uct:

(u\v)Mz/ wolhy|? dtda.
Ix%
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6.3. Solutions to a Riccati equation. Let us abbreviate a(t,z,9,), r(t, ) sim-
ply by a, r. The essential step in the construction of parametrices of the Cauchy
problem for the model Klein-Gordon equation introduced in Subsect. 6.2 is to find
time-dependent operators b*(t) € C>(I; ¥!(3)) such that the associated evolution
operators Uy« (t, s) solve

(53 +70; + a) Uy« (t, s) = 0, modulo smoothing errors.

The above equation is equivalent to the following Riccati equation:

(6.2) i0,b% — b2 + a4 irbt =0,
again modulo smoothing errors. In [GW1] (6.2) was solved in the special case
Y, = R% r = 0, using the uniform pseudodifferential calculus on R%. In this

subsection we extend the construction to the case when ¥ is a manifold of bounded
geometry, using the pseudodifferential calculus described in Sect. 5, allowing also
for r # 0.

Applying Prop. 5.11 to a, we can find ¢ > 0 and c_o € CP(I;W™(X))

such that a(t) + c_oo(t) > cl for t € I. We set €(t) = (a(t) + c_oo(t))?, so that
€2(t) = a(t) + C°(I;W=°(X)). Since a is elliptic, we know from Thm. 5.12 that
€ € CP°(R, ¥(X)), with principal symbol (£ - hy L (z)€)z.
Theorem 6.1. There exists b € Co°(1; W1(X)), unique modulo C2°(I; W~>°(X))
such that
b=e+Cr(I;9°(x)),
(b+b7) 7t = (2072 (14 7-1)(26) 2, roy € CR(LTTH(E)),
(b+b*)"t > cet, for some c € C°(I;R), ¢ >0,
10,0 — b*2 - a +irb* = rE € CR(L;W-2(%)),
for bt :=0b, b~ 1= —b*.
Proof. We follow the proof in [GW1, Appendix A3]. We can first replace in
(6.2) a by €%, modulo an error term in C°(I; W~>°(X)). Discarding error terms
in Cp°(I; W~(X%)), we can assume that € = Op(c), ¢ € Cp°(I; 5}, (T*Y)), with
cor(t,2,€) = (€ h7'(z)€)2. We look for b of the form b = Op(c) + Op(d) for
d € C° (I, Sgh(T*Z)). Since Op(c) is elliptic, it admits parametrices, see Prop.
5.10. We fix a symbol é € C°(I; Sp_hl (T*%)) such that Op(é) is a parametrix of
Op(0).

The equation (6.2) becomes, modulo error terms in Cp°(1; W~>°(X)):

(6.3) Op(d) = %(Op(é)Op(c‘?tC) + Op(é)rOp(c)) + F(Op(d)),
for:
F(Op(d)) = %Op(é) (i0p(9:d) + [Op(c), Op(d)] + irOp(d) — Op(d)?) .
From symbolic calculus, we obtain that:
F(Op(d)) = Op(F(d)) + C*(I; W™=(%)),
for
F(d) = %éﬁ (i0,d + ctd — dfc + irfd — dtd) ,

where the operation # (the Moyal product) is recalled in 5.3.4. The equation (6.3)
becomes:

(6.4) d = ap + F(d),
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for
a = 5 (e0hc + éfrtc) € CF° (1 Spy (T°Y).

The map F has the following property:

dy,dy € CP°(1; S94(T*X)), dy — dy € C°(I; S,/ (T*%))
(6.5) - |

= F(dy) — F(dy) € C*(1; S/ HT*D)).
This allows to solve symbolically (6.4) by setting

d_y =0, dy :=ag+ F(d,—1),

d =~ Zdn _dn—h

neN

which is an asymptotic series since by (6.5) we see that d,—d,—1 € Cp°(1; S, (T*Y)).
It follows that Op(c + d) solves (6.2) modulo Cg°(I; W~=(%)).

We observe then that if b € Cp°(I; (X)) we have:

(Opb)" = O(b*) + rb* — b™r,

(recall that the adjoint is computed w.r.t the time-dependent scalar product (6.1)).
This implies that —Op(d)* is also a solution of (6.2) modulo C°(I; W~ >°(X)).

To complete the construction of b*, we consider

s = Op(c+d) + Op(c +d)",

which is selfadjoint, with principal symbol equal to 2(¢ - h; ! (x)€)
there exists r_, € CP°(I; W™°°(X)) such that

(6.6) S+ T_oo ~ €

and

[N

. By Prop. 5.11,

where we recall that the notation ~ is defined in (1.8). We set now:
1
b:=O0p(c+d)+ 57 —oo-

Properties i) and iv) follow from the same properties of Op(c + d). Property iii)
follows from (6.6) and the Kato-Heinz theorem. To prove property i) we write

b+ b* = (26)7 (14 7_1)(26)7,
where 7_; € C2°(I; ¥~1(X)), by Thm. 5.12. Since (1+7_1) is boundedly invertible,
we have again by Thm. 5.12
(Q47) ' =T+r_y, rog € CR(L VD)),

which implies #). The proof is complete. O

Note that by iv) one has (by subtracting the two identities)

r=itT +b7) = (bt —b7) (0T —b7)

modulo smoothing errors. Thus, the pair b* contains full information about r, and

thus about a (using iv) again).

6.4. Approximate diagonalization. In this subsection we perform a diagonal-
ization modulo smoothing errors of the Cauchy evolution operator U(t,s), see
6.4.1.

We extend the notation in Sect. 5 to matrix-valued symbols, operators, etc., by
introducing the sets C5°(1; W™ (3,Cp)), n,p € N etc. We will frequently omit the
extra symbol C} when the nature of the objects is clear from the context. We also
extend to this situation the notation U (¢, s) when e € C°(I; ¥™(%,CY)).
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6.4.1. KG equation as a first order system. As usual we write
(07 + ()0 +a(t)e(t) =0

as a first order system:

(6.7) iTow(t) = A(t)e(t),  where A(t) = < a?t) ir](lt) >
by setting

00 = (i) = o09.

We equip L?(¥;C?) with the time-dependent scalar product obtained from (6.1),
by setting:

mm:AGﬂ+%%Mﬁm.

We will use it to define adjoints of linear operators and to identify sesquilinear
forms on L?(X;C?) with linear operators. Note that if ¢; are C°° solutions with
¢;s compactly supported then

10y - a¢a = (p(t)¢1]gp(t)pa)

-(20)

is independent on ¢. The evolution operator U (t, s) is symplectic:

for:

(6.8) q=Ux(s,t)qUa(s,t), s,t € 1.
6.4.2. First reduction. The Riccati equation
(6.9) 10,6F — b2 + a4 irbt = r

implies that:
(6.10) @ +ibE +1) 0 (By — ibF) = F; + 10, +a — 1=,

which is a factorization of the Klein-Gordon operator P modulo smoothing errors.
One can also deduce from (6.10) a time-dependent diagonalization of the evolution
operator for P, which we now define. We set

a0 = (5T 00) e

and obtain ¥ (t) = S~ (t)(t) with
(6.11)

sto=i( ) 1) so=i (L Ly ) ero-rert

which makes sense thanks to b (¢) —b™ () being invertible by Thm. 6.1. We obtain
from (6.10) that

J— 72 —
Oy +1ib~ +r 0 ~ 0, +a+rdy —r_
_ =" e 00 t
< 0 8t+1b++r>¢() <3f+a+r@t—rfw>¢()
(6.12)

Let
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for
o= ( T 0 ) s = (5 T e
Then since P¢ = 0 we deduce from (6.12) that:
(9 —iB(1))3(t) = 0,
hence:
(6.13) Ua(t,s) = St)UB(L, s)S(s)" .

We have thus a formula that relates U4 (t, s) and the evolution generated by a time-
dependent operator B(t) that is diagonal up to W~°°(X) remainders and whose

on-diagonal terms have principal symbols +(¢& - h; ' (x)€)3.
Let us now discuss the symplectic properties of Ug(t, s). Since

57050 = 07 =07 () ) = ams)

we obtain from (6.13), (6.8) that:
qp(t) =Ug(s,t)qp(s)Up(s,t), s,t € 1.
6.4.3. Second reduction. To get rid of the (b* — b~)~1(s) factor in gp(s) we set
Uc(t,s) = (b — b )2 (OUB(t, s)(bT — b7 )2 (s).
It follows that:

(6.14) Ua(t,s) = T(t)U(t,s)T(s) ™,
for:
o 7o) = st -0 b0 =i (4 5 ek
| 0 -0t -0 (0 ])
Note that:
(6.10) oo - (o ) =i
so that Uc(t, s) is symplectic for §:
(6.17) Uc(t, ) qUc(t, s) = §.
The generator of U (¢, s) is:
(6.18) C(t) = C(t) + R_oo(t),
for
C(t):=(bT = b7 ) 2B)(bT —b7)7 —idy(bT — b7 ) 2(bT —b7)2
(6.19) b4 0
B ( 0 ’ —bt +rd )
where
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Remark 6.2. Let us explain another motivation for the introduction of the maps
T(t). There are two natural topologies on the space of Cauchy data for (6.7). The
first is the energy space topology given by the topology of H*(X)® L*(X), ubiquitous
in the PDE literature. The second is the charge space topology, given by the topology
of H2(X) ® H~2(X), related to the quantization of the Klein-Gordon equation. It
is easy to see that S(t) is an isomorphism from L*(X) @ L*(X) to HY(X) @ L (%),
while T(t) is an isomorphism from L*($) & L%(X) to H2(X) & H™2(%).
6.4.4. Interaction picture. From (6.18) we know that the generator of Uc(t,s) is
diagonal, modulo a smoothing error term. It follows from standard arguments
that U (¢, s) is also diagonal, modulo smoothing errors. We review this argument,
known as the ‘interaction picture’ in the physics literature.
Let H(t) = Ho(t) + V(t) be a time-dependent Hamiltonian, U(-,-) and Up(-, ")
the associated propagators. We fix t; € R and set:
Z/[(t, 8) =: UQ(t, tl)th (t, S)Z/{O (tl, S)
(Typically Hy does not depend on time and one sets t; = 0). It follows that Vy, (-, )
is an evolution group and solves
OV, (t,8) = Vi, ()W, (t, 5) for Vi, (t) = Uo(t1, t)V ()U(t, t1),
Vi, (s,8) = 1L
Note the following covariance property:

Vt2 (t, S) = Z/{O (tl, tQ)th (t, S)UO (tg, tl), t1,tg € R.

6.4.5. Parametriz for the Cauchy problem. We apply the above procedure to C' =
C+ R_4, fix some t; € I and set:

Uc(t,s) = Us(t, t1) Ve (t, s)Us(L1, S),
where Vy, (t, s) is the evolution generated by Ry, oo (t) = Up(t1, 1) R—oo () Ua (L, 1),
ie.

(6.21)

8tth (t, S) = iRtl,foo(t)th (t, 8)7
Vi, (s,8) = 1.

Note that C(t) is diagonal, with entries satisfying condition (E) in Subsect. 5.4.
Therefore by Lemma 5.14 we know that Ry, _o(t) € C2°(I;W~°°(X)). For any
s € R, the equation (6.21) can be solved in C°(I%; B(H*(X))) by a convergent
series. This implies easily that:

Vi, (t,5) = 1+ Cgo(I2, 97(%)),
Uc(t,s) =Ua(t, s) + Co (12, 02(%)).

We summarize this discussion with the following theorem.

(6.22)

Theorem 6.3. Let
(6.23) Uji(t,s) =T OU(, s)T(s)".
Then {Uz(t,s)}t,s)er2 is an evolution group and:
Ua(t,s) =Uj(t,s) + C (12, 02(%)).
It follows that the group {U;(t,s)}t,s)er2 is a parametriz for the Cauchy problem.

Note that since C(t) is diagonal, we have:

(6.24) Ut s) = ( u—b*+60— (ts) 0 > .

u7b++r3' (t7 S)
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6.5. Decomposition of the Cauchy evolution. Basing on the constructions in
Subsect. 6.4 it is easy to construct a microlocal decomposition of the evolution
Ua(t,s). In fact let

o2 e (10) e (00,

We fix a reference time ty € I for example {35 = 0 and set:

020 =0 =ror0) = (S0 ST o

We have:
¢E(0)2 = c¢E(0), ¢™(0) + ¢ (0) = 1, ¢*(0) € C(I; T=(R)).

It follows that ¢ (0),c¢™(0) is a pair of complementary projections. Moreover from
(6.16), we obtain that:

(6.27) cT*(0)gc(0) = 0,
i.e. the ranges of the projections ¢*(0) are g—orthogonal. We set:
(6.28) UE (L, s) == Ua(t,0)cE(0)UA(0, 5).

Definition 6.4. A pair {UE(t, 8)}(t,s)erz as in (6.28) will be called a microlocal
decomposition of the evolution group {Ua(t,s)}.s)er2-

Theorem 6.5. The following properties are true:
i) Us(t, U (s, ') =Us (L),
i) UZ(85) + Uz (8,5) = Ualt, ),
i) UE(t,s) aU (t,s) =0,
iv) (9 —1A@)UZ (t,s) = U (t,5)(Ds —1A(s)) =0,

v) WEUL(t,s)) = {(X, X)) e T*E x T*%: X = &E(¢t,5)(X))},
where ®*(t,s) : T*X — T*Y is the symplectic flow generated by the time-dependent
Hamiltonian +(£ - hy ' (2)€)*.

Proof. i) and ii) follow from the fact that ¢*(0) are complementary projections.
1i1) follows from (6.8) and (6.27). iv) is immediate. From (6.24) and Prop. 5.17
we obtain that Uc(t,0)7TUc (0, s) has the wave front set stated in v). The result
follows then from the fact that U3 (t,s) = T(t)Uc(t,0)m U (0, )T~ (s). O

We now gather a couple of formulae that relate various objects at different times.
The proof is a routine computation that uses the first three statements in Thm.
6.5.

Proposition 6.6. Let
(6.29) E(t) == UE(t,t) = Ua(t,0)cE(0)UA(0,1).
Then:

cE)?2 =), ¢tt)+e(t) =1,

E(t) =Ua(t, s)cE(s)Ua(s, t),
cF(t)ge™ ()" =0, = (tUa(t, s)cT(s) =0,

Z/lAi(t, s) = ci(t)Z/{A(t, s)cﬂE (s) = ci(t)L{A(t, s) =Ualt, s)ci(s).
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6.6. The Feynman inverse associated to a microlocal decomposition. In
this subsection we work in the setup of Subsect. 6.2

6.6.1. Distinguished parametrices for the Klein-Gordon operator. In our terminol-
ogy, a continuous map G : C°(M) — C>®(M) is a (two-sided) parametriz of the
Klein-Gordon operator P if PG — 1 and 1 — GP have smooth kernels. In what
follows we recall the classification of parametrices of P due to Duistermaat and
Hoérmander in [DH].
For x € M we denote by V,+ C T, M the future/past solid lightcones and by

* C TrM the dual cones VJy ={{e€TiM: £ -v>0, Vo€ Vyy, v#0} We

write
E>0 (resp. £<0) if £ € V7, (resp. V).

For X = (x,¢&) € T*M\{0} denote p(X) = £-g~1(x)¢ the principal symbol of P and
N =p~1(0)nT*M\{0} the characteristic manifold of P. If H, is the Hamiltonian
vector field of p, integral curves of Hy, in N are called bicharacteristics. N splits
into the upper/lower energy shells

N=NTUNT, NE=NnN{+{>0}.

For X1, X, € N we write X; ~ X5 if X1, X, lie on the same bicharacteristic. For
X1 ~ Xs, we write X7 > X5 (resp. X1 < X) if X; comes strictly after (before) Xo
w.r.t. the natural parameter on the bicharacteristic through X; and X5. Finally
one sets

C={(X1,Xs) EN XN : X1 ~Xo}, A={(X,X): X € T*M\{0}},
and
Cret/adv = { (X1, X2) €C: 21 € JE(z9)},
Cr ={(X1,X2) €C: X1 < X},
Cr={(X1,X2) €C: X1 = Xo}.

The main results of [DH]| relevant to us is the following theorem.

Theorem 6.7. [DH, Thm. 6.5.3] For t = ret,adv,F,F there exists a parametriz
Gy of P such that

(6.30) WF(Gﬁ)/ =AU Cﬁ.
Any other parametriz G with WF(G)" C AUCy equals Gy modulo a smooth kernel.

A parametrix satisfying (6.30) for § = ret/adv resp. § = F/F will be called a
retarded/advanced resp. Feynman/anti-Feynman parametrix (or inverse if PGy = 1
and Gy P = 1 hold exactly).

6.6.2. The Feynman inverse associated to a microlocal decomposition. We now show
how to associate to the decomposition of the Cauchy evolution constructed in Sub-
sect. 6.5 a Feynman inverse for the Klein-Gordon operator P.

In the next theorem, we will use the ‘time kernel’ notation: namely if A :
C§°(M;CP) — C>°(M;C?) we denote by A(t,s) : C§°(XL;CP) — C>(3;C9) its
operator-valued kernel, defined by

Au(t) = /RA(t, s)u(s)ds, u € Cg°(M;CP).

We denote by m; : L?(3;C?) — L%(X) for i = 0,1 the projection on the first or
second component and by 6(s) the Heaviside function.
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Theorem 6.8. Let Uj (t,s) be a microlocal decomposition and let

(6.31) Gr(t,s) =1""mo (UL (t,s)0(t —s) — U4 (t,5)0(s — 1)) 7}

Then Gr : C§°(M) — C*°(M) is continuous and:
PoGr=GrpoP =1.

Moreover WF(Gr)' = AUCr, hence Gy is a Feynman inverse.

Proof. The fact that Gy : C§°(M) — C*° (M) is continuous follows from Thm. 6.3,
Lemma 5.14 and the fact that C5°(M) C C°(R; H* (X)) C C*°(M) continuously.
In the rest of the proof we will use freely the time-kernel notation. We will denote
by p the map C§°(M) 3 u + (u,i"*0u) € C§°(M;C?), whose kernel is 6(t—s)p(s).

To prove that P o Gy = 1, we set R(t,s) = UL (t,8)0(t — s) — U5 (t,8)0(s — t).
Since (9; — iA(t)) oUF = 0, we obtain

(@ —1A(1)) 0 R)(t, 5) = UL (1, $)5(t — ) + U (£,5)5(s — 1)
= (¢ () + ¢ (5)d(t — ) = Dnd(t — s),
hence (9; —iA(t)) o R = 1. This implies that
00 (J; —iA(t) o Ronl =0, mpo (J; —iA(t)) o Roxl = 1,

which by an easy computation implies that P o Gg = 1.
To prove that Gg o P = 1 we note that

i o P =i(0; —iA(t)) op, O(F(t—5))0ds=0,00(£(t—s))£3(t—s).
Using then that
UE o0 (8, —iA()) =0, UL(s,8) +U;(s,8) =cT(s) +c (s) =1,

we obtain that Gp o P = mp o p = 1. Writing X = (¢,z,7,&) € T*(R x £)\{0} we
have:

X1 §X2 e ==x(&- h_l(ti,xi)&)%, (21,61) = ¢F(t1, t2) (22, &2).

Using Thm. 6.5 v) this easily implies that WF(Gg)' = AUCp. O

7. HADAMARD STATES

In this section we associate to a microlocal decomposition as in Def. 6.4 a unique
pure Hadamard state w. The Cauchy surface two-point functions (see Def. 7.4) are
(matrices of) pseudodifferential operators on ¥. We give the relation between the
spacetime two-point functions of w and the operators Z/{j(-7 -) in Def. 6.4.

A state is regular if its Cauchy surface two-point functions are (matrices) of
pseudodifferential operators. We show that any pure regular Hadamard state is
actually associated to a microlocal decomposition.

7.1. Klein-Gordon fields. We start by reviewing classical material about quasi-
free states for Klein-Gordon fields, see e.g. [DG, KM, HW]. We use the complex
formalism, based on charged (i.e., complex) fields ¢, ¢*, which turns out to be more
convenient for our analysis.
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7.1.1. Bosonic quasi-free states. Let V be a complex vector space, V* its anti-dual
and let us denote Ly, (V,V*) the space of hermitian sesquilinear forms on V. A pair
(V, q) counsisting of a complex vector space V and a non-degenerate hermitian form
g on V will be called a phase space. We denote by U(V, ¢) the pseudo-unitary group
for (V, q).

As outlined in the introduction, given a phase space (V, ¢) one can define the CCR
x-algebra CCR(V, q) (see e.g. [DG, Sect. 8.3.1]) ” The (complex) field operators
V 3 v — ¢(v),¥*(v), which generate CCR(V, q), are anti-linear, resp. linear in v
and satisfy the canonical commutation relations

[Y(v), ¥(w)] = ["(v), " ()] = 0, [P(v), " (w)] =vqwl, v,we.
The complex covariances A+ € Ly(V,V*) of a state w on CCR(V, q) are defined in
terms of the abstract field operators by

(7.1) - Atw = w(W () (w), T-Awi=w@ (w)Y(v), v,weV

Note that A* > 0 and AT — A~ = ¢ by the canonical commutation relations.
Conversely if A* are Hermitian forms on V such that
(7.2) AT —A" =¢q, AT >0,

then there is a unique quasi-free state w such that (7.1) holds, see e.g. [DG, Sect.
17.1]. One can associate to w the pair of operators c¢* € L(V):

(7.3) cti=+4q o AT
The properties (7.2) become then:
(7.4) ct+e =1, ¢q=qct, +qct > 0.

The following characterization of pure quasi-free states is well-known, see e.g. [DG,
Sect. 17.1], [GW1, Prop. 2.7].

Proposition 7.1. The following are equivalent:

(1) the state w is pure,

(2) ct+c =1, (ch)? =cF, ¢t*qg=qct, £qct >0,

(3) n:i=AT+A" >0, ng"n=q.

7.1.2. Phase spaces for Klein-Gordon fields. Let (M, g) be a globally hyperbolic
spacetime and P = —V*V, 4+ V (), for V € C*°(M,R) a Klein-Gordon operator
on (M, g). More generally P can be any formally selfadjoint second order differential
operator, whose principal symbol o, (P) equals £ - g~1(z)&.

We denote by Giet/aav the retarded /advanced inverses for P and by G := Gret —

Gladv, the Pauli-Jordan commutator. We set

(7.5) (uv)pr = / v dvoly, u,v € Cg°(M).
M
The classical phase space associated to P is (V,Q), where

_ OM) 1
(7.6) V= W, [u] - Qv] :== i (u|Gv) -

Let 3 be a Cauchy hypersurface,

- ul'y
pEU = (llanurz) )

where n is the future unit normal to ¥ and Vs = C§°(X;C?). We equip Vs with
the scalar product

(7.7) (f9)s = / Fogo + Frgndos,

See [GW1] for the transition between real and complex vector space terminology.
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Then psG : V — Vs is bijective, it makes thus sense to define Gy : Vs =
C§°(%;C?) — C°°(%;C?) by the identity:

G =: (p=G)"GxpsG,

where the adjoint is taken with respect to the scalar products (7.5), (7.7). Finally
we set

(7.8) fasg =1""(f|Gxg)s,
so that the map:
psG: (V,Q) = (Vs,qx)

is pseudo-unitary. One can use equivalently either of the above phase spaces. By a
computation that uses Stoke’s theorem, one has concretely (see e.g. [DG])

(7.9) qg(‘f é)

By the definition of Gy,
(7.10) 1=G"p%Gsps on GCGC(M).

This also implies py = psG*p5Gsps on GCF(M). On the other hand, denoting
C22(M) the space of space-compact smooth functions (i.e. smooth functions whose
restriction to ¥ have compact support), it is well-known that GC§° (M) is exactly
Ker P|C§§(M), see e.g. [BGP]. Furthermore, since the Cauchy problem

Pu =0,
(7.11) {pzu _

is well-posed in u € Cg2 (M) for any f € C5°(3; C?), the map px. : Ker Ploee (ar) —
C§°(3; C?) is bijective and therefore

(7.12) 1= psG*psGs, on C§°(%;C?).

7.1.3. Cauchy evolution operator. It is useful to introduce the Cauchy evolution
operator:

(713) Z/[E = G*pEGz.

By (7.10) and (7.12), it satisfies psldss = 1 on C§°(X;C?) and Usps = 1 on
Ker P|ceo(ar)- Moreover, since G* = —G we get PUs. = 0 hence for f € C5°(3; C?),
u = Ux f is the unique solution in CS2 (M) of the Cauchy problem (7.11).

7.1.4. Spacetime two-point functions. We use the phase space defined in (7.6). Let
us introduce the assumptions:

i) AT O (M) — C™(M)

i) A >0 for () on Cg° (M),
i) AT — A" =i"'G,
iv) PAT =A*P =0.

Note that (7.14) implies that A* : &' (M) — D'(M). Let us set with a slight
abuse of notation:

(7.14)

T - Ao = (u[ATv), u,v € C(M).
If (7.14) hold, then A* define a pair of complex pseudo-covariances on the phase
space (V, q) defined in (7.6), hence define a unique quasi-free-state on CCR(V, Q).

Definition 7.2. A pair of maps AT : O (M) — C>(M) satisfying (7.14) will be
called a pair of spacetime two-point functions.
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7.1.5. Hadamard condition. By the Schwartz kernel theorem, we can also identify
A* with a pair of distributions A*(z,2') € D'(M x M), and one is especially
interested in the subclass of Hadamard states, subject to a condition on the wave
front set of A*(z,z'). We recall that the sets N were defined in 6.6.1.

Definition 7.3. A pair of two-point functions AT satisfying (7.14) is Hadamard
if
(Had) WE(A%) ¢ NE x NE.

This form of the Hadamard condition is taken from [SV, Hol|, see also [Wr|
for a review on the equivalent formulations. The original formulation in terms of

wave front sets is due to Radzikowski [Ra|, who showed its equivalence with older
definitions [KW].

7.1.6. Cauchy surface two-point functions. We will need a version of two-point func-
tions acting on Cauchy data of P instead of test functions on M.
Let us introduce the assumptions:

i) AL 05 (D;C?) — 0 (%;C?),
(7.15) i) A >0 for (),
i) AL — Ay =i71Gs.

Definition 7.4. A pair of maps /\32E satisfying (7.15) will be called a pair of Cauchy
surface two-point functions.

Proposition 7.5. The maps:
X o A% = (puG)" M (o),

A% o MY = (p8Gx) A% (p5Gx)

are bijective and inverse from one another. Furthermore, A% are Cauchy surface
two-point functions iff AT are two-point functions.

Prop. 7.5 is proved in [GW2] in a slightly more general context.

7.2. Reduction to the model case. In this subsection we consider a Klein-
Gordon operator P on (M, g) in (3.6) satisfying hypotheses (H), (M) introduced
in Subsect. 3.3. We show that the construction of Hadamard states for P can be
reduced to the case of a model operator Pon I x ¥ as introduced in Subsect. 6.2.

We use the notation in Subsect. 3.3. We equip M = I x ¥ with the Lorentzian
metric § = —dt® + hy(y)dy®. We recall that U = x(M) is an open neighborhood of
¥ in M. We equip C3°(U) and C§° (M) with their canonical scalar products (-|-)as
and (-]-) -

Proposition 7.6. Let us set W : Cg°(U) 3 u — @ D/2y0x € C°(M). Then

the following holds:

(1) There exists a(t,y,d,) satisfying the conditions in Subsect. 6.2 for ko = ho,
such that

P:= (W hyPw!= 5? +1(t,y)d: + alt,y, dy).

(2) if G is the Pauli-Jordan commutator for P one has G = WGW*.

(3) Let AE be the spacetime two-point functions of a Hadamard state & for P on
M. Then there exists a unique Hadamard state w for P on M with two-point
functions AT such that

AF = WAt
Moreover w is pure iff @ is pure.
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Proof. Without loss of generality we may assume that x = Id. Let us first prove
(1). We set hy = c2h; so that g = —c2dt? + hydz?. We have:

P=—|g|"29,lg|29"D, +V
= ¢ YR 720, Y R|2D, — ¢ M |h| 20,k |R| 2D, + V.

A routine computation shows that:

¢ YR T2 0,7 A2 D,

= (8 + MRl BB, + BB O ) ) ¢

=:c ' Py(t,y,0¢)c 1,

c_1|ﬁ|_%5icﬁij|iz|%5j +V

=l (|ﬁ|*%a«cﬁij|ﬁ|%5jc + 02V) e

= (IR0 1138, + B3R A0 e + 2V ) ¢!

=: ¢ 'Py(t,y,0,)c "
Using that |h|2 = ¢?|h|2, we can rewrite these two operators as follows:

Po(t,y,0;) = B, + (|| "2 04[h|* + (d+ 1)0, n ),
+ k|72 0 |h|Z 0, Inc + d(8; Inc)? + &2 Inc,
Ps(t,y,8,) = |h|"20;h" |n|28; + dd; In ch D),
+9;h¥0;Inc — 8;|h|"2|h|ZhY 0, Inc + dd; Inch” 9; In ¢ + V.
Let now U be the operator of multiplication by ¢~ (#+1)/2, Since
U~'o,U =0, — %(d +1)0;In¢, UT'O,U = 09; — %(d+ 1)9;1Inc,

we obtain:

U~ PUc =0, + r(t,y); + alt, Y, 0y).
By hypotheses (H), (M) we have r € C2°(I; BTY(Z, ho)), a € C°(I; Diff*(%, ho)),
with principal symbol:

op(@)(t,y,m) = - by (y).

If S: C&oU) 3 u — 3/2y ¢ C°(M) we check that W* = S~! hence
cU~'PUc = SPW~' = P. Since P is selfadjoint for the scalar product (:|-),;
it follows using dvolz = |he|2 dtdy that

r=|h| 28 k|2, alt,y,dy) = a*(t,y,8,).

This completes the proof of (1). From the uniqueness of retarded /advanced inverses
we obtain that éret/adv = WGietjaav W™, which proves (2).

To prove (3) we use two well-known arguments: the first one is the time-slice
property, which means that V = PCCQOOMS(UU)), i.e. we can replace M by U in (7.6),
since U is a neighborhood of a Cauchy surface. In other words, a pair of two-
point functions A* € D'(U x U) satisfying (7.14) over U x U uniquely extends to
AT € D'(M x M) satisfying (7.14) over M x M.

The second follows from a result based on Hérmander’s propagation of singular-
ities theorem, see [Ra, SV]: if AT satisfy (Had) over U x U, then they satisfy (Had)
globally, using that PAT = A*P = 0. The proof is complete. O
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7.3. The pure Hadamard state associated to a microlocal decomposition.
In this subsection we consider the model Klein-Gordon operator P obtained from
Prop. 7.6. To simplify notation, we denote P by P, M=IxX by M. We will
associate to a microlocal decomposition for P a unique pure Hadamard state. First
we need to introduce some more notation.

The level sets ¥; = {t} x ¥ are all Cauchy hypersurfaces. The various objects
associated to the Cauchy surface ¥, like py,,, Gy, )\i, Uy, will be simply denoted
by p(t), G(t), AXE(t), U(t), etc.

Lemma 7.7. One has:

i) AS() =Uals, 1) A5 (s)Ua(s, 1),
i) e (t) =Ualt, s)ci; (s)Ua(s, 1),
) g =Ua(s,t)"qUa(s,1),
w) Ua(t,s) = p(t)G"p(s)"G(s).
Proof. It suffices to use the various identities in 7.1.2, 7.1.3 and the fact that
Uty s) = p(U(s). O
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Theorem 7.8. Let {L{f(-, )} (t,s)er2 be a microlocal decomposition of the evolution
Uya as in Subsect. 6.5 and let \*(t) := £q o c*(t), where ¢ (t) are defined in Prop.
6.6. Then AE(t) are the Cauchy surface two-point functions of a pure Hadamard
state. One has:

ME() = UA0,6)* T~ H0) 7T~ H(0)UA(0, 1)
(7.16) =T t)"Uc(0,t)* 7 U (0, ) T 1(t)

=T () 7 T (t) + G (I; U~ (X)).
where m% are defined in (6.25) and T(t) in (6.15).

Proof. Let us first prove (7.16). From the definition of c*(t) (see (6.26), (6.29)),
we have:

ME(t) = +qUa(t, 0)T(0)7=T~1(0)UUA (0, 1)
= +UA(0,8)*qT(0)7 =T~ 1(0)UA(0, 1)
= +U4(0,1)*T~H0)*GnET 1 (0)UA(0, 1)

=UA0,t)* T~ (0)* 7T~ (0)Ua (0, 1),
where we used successively (6.8), (6.16) and the fact that £¢7* = 7*. The second
line in (7.16) follows then from (6.14). From (6.17), (6.22) we obtain then

4 = U (0.1 @Uc (0,) = Ua (0.8) @e (0,1) + G (1, U= (X)),
Since ¢ and Us(0,t) are diagonal this implies that
T = Us(0, ) 75 U(0,1) + CL° (1, T~ (%)),
which using once more (6.22) gives:
£ = Uc(0,t)* 1 U0, 1) + C2 (1, U ~°(%)),

which completes the proof of (7.16).

To check that A*(t) are the Cauchy surface two-point functions of a pure Ha-
damard state we work with the Cauchy surface ¥y. By Prop. 6.6 we know that
¢™(0) + ¢ (0) = 1 hence condition (7.15) #4) is satisfied. Condition i) follows from
the fact that ¢¥(0) € U>(X). The positivity condition iii) follows from (7.16).
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To check the Hadamard condition one can use the arguments in [GW2], which we
recall for the sake of self-containedness. We have by (6.28):

U(0)c*(0) = U (-,0)c*(0) on &'(X;C?),
hence
AT = £i71U(0)cE(0)p(0)G = i~ UL (-,0)p(0)G, on E'(M).
From Thm. 6.5 this implies that WF'(A*) C N'* x A, Since A* = (A*)* we have

also WF'(A*) ¢ N'* x N, This shows that the state w is Hadamard. The fact
that w is pure follows from the fact that ¢*(0) are projections. O

We recall from Subsects. 6.4.3, (6.5) that a microlocal decomposition U3 (-, -) is
uniquely obtained from a generator b(t) constructed in Thm. 6.1 as an approximate
solution of a Riccati equation. Consequently to any such b(t) corresponds a unique
pure Hadamard state.

Definition 7.9. The pure Hadamard state associated to a generator b(t) in Thm.
7.8 will be denoted by wy.

It is now easy to find the relationship between the spacetime two-point functions
AT of w and the operators U4(t,s). As in Subsect. 6.6 we denote by A(t,s) the
time kernel of an operator A.

Theorem 7.10. Let AT be the spacetime two-point functions of the state w con-
structed in Thm. 7.8. Then:

+ - i0,A%(t, ) AT (t, 5)
(7'17) Z’{A (tv 5) =+ (8,588Ai(t, S) i—latAi(t7 S) .
Consequently we have:
(7.18) AE(t,5) = FroldE (t, 8)7],

where ; are defined in Subsect. 6.6.
Proof. Using (6.28) and the identities in Lemma 7.7, Prop. 7.5 we obtain:
Uz (t,5) = Ua(t, 0)c* (0)Ua(0, 5)
= p(t)G*p(0)*G(0)c™ (0)p(0)G*p(s) "G (s)
= Fip(t)G"p(0)* A*(0)p(0)G* p(s)* G(s)
= ip()A"p(s)* G(s) = Fp(t)A"p(s)q.
Using p(s)*f = f° @ §(s) —if! @ 6'(s), this yields:

+ _ iasAi(ta S) Ai (tv 5)
Uylt,s) =7 (atasAi(t, s) iT'OAE(t,s)

which completes the proof. O

In Subsect. 6.6 we associated to a microlocal decomposition a canonical Feynman
inverse G, see Thm. 6.8. On the other hand, it is well-known (see e.g. [Ra] or [Wr,
Thm. 3.4.4] for the complex case) that if A* are the spacetime two-point functions
of a Hadamard state w, then the operator

AT + Gagy =17'A™ + Ghet

is a Feynman inverse of P. It is easy to show that if w is the state in Thm. 7.8
then both Feynman inverses are the same.
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Proposition 7.11. Let G and A* the Feynman inverse and spacetime two-point
functions associated to the microlocal decomposition {U}(-, V}e.s)erz- Then

Gr =i "AT + Gaay =17 'A™ + Ghret
Proof. Arguing as in the proof of Thm. 6.8 we see that
Gret(t,s) =1 tmola(t, s)mi0(t — s), E_(t,5) = —i ‘molha(t,s)m (s —t).
Then the proposition follows from the identities (6.31), (7.18). O

7.4. Regular Hadamard states.
Definition 7.12. A state w is regular if \X(t) € O (R, U= (Z; My(C))).

In other words regular states have Cauchy surface two-point functions equal to
matrices of pseudodifferential operators. The following lemma shows that it suffices
to check the pseudodifferential property for one time t.

Lemma 7.13. w is reqular iff there exists s € I such that \X(s) € U*°(%; My (C)).

Proof. Assume that \%(s) € U°(3; My(C)) for some s € I. Then \E(¢) is given
by Lemma 7.7 4). By Thm. 6.3 we can replace Ua(s,t) by Uj;(s,t) and then
by Ugs(s,t), which has a diagonal generator, see (6.19). Then we apply Egorov’s
Theorem, Thm. 5.15. O

Let now w be the Hadamard state associated to a microlocal decomposition as
in Thm. 7.8, and w; another regular state. We denote by A%, AT, AE(t), AT (t)
their respective spacetime and Cauchy surface two-point functions.

Proposition 7.14. A regular state wy is Hadamard iff:
(7.19) ME(t) — ME(t) € C°(R; W~°(2; M (C))).

Proof. It is well known (see e.g. [Ra] or [Wr, Thm. 3.4.4] for the complex case)
that A* — AT are smoothing operators on M, hence A*(t) — A\ (t) are smoothing
operators on Y. By Lemma 5.13 this yields the = implication. The < implication
is immediate. O

7.4.1. Bogoliubov transformations. We work in the setup of 7.1.1. It is well known,
see e.g. [DG, Thm. 11.20], that if w,w; are two pure quasi-free states on CCR(V, q),
then there exists u € U(V, ¢q) such that
M= u AT

We now examine the form of the operator u if w is a pure Hadamard state associated
to a microlocal decomposition as in Thm. 7.8 and w; is another pure, regular
Hadamard state. In the proposition below, we fix the reference time ¢t = 0. The
operator b(0) € W!(X) entering in the definition of A*(0) (see formulas (7.16) and
(6.26)) will be simply denoted by b.

Proposition 7.15. Let )\li(O) be the t = 0 two-point functions of a pure reqular
Hadamard state wi. Then there exists a € W~°(X) such that:

(7.20) A =T Y0)*U*x*UT~(0), for U = ( (1 +aia*)% (]1+Z*a)% )
Proof. Let us set

m=A+A7, =T"10)"mT(0).
Since w; is pure, we deduce from Prop. 7.1 and identity (6.16) that 7; satisfies:

(7.21) i) m >0, i) mgn = q,
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where we recall that ¢ = < (1) _01 ) We write 7; as ( l;l* IC) >, where using

(7.19) and the fact that /) = 1 we know that b,1 —a, 1 —c € U7°°(%). Now (7.21)
is equivalent to:

i) a>0, ¢>0, |(ulbv)] < (ulaw)? (v|ew)?, u,v e C§O (D),
ii’) a® =1+ bb*, ¢> =1+ b*b, ab— bc = 0.
Since a, ¢ > 0 by 7’), the first two equations of 4i’) yield
a=(1+bb")2, c=(1+b*b)2.
The third equation of ii’) then holds using the identity
(7.22) bf(b*b) = f(bb*)b, f any Borel function.

The second condition in i’) is equivalent to ||(1 4 bb*)2b(1 + b*b)z|| < 1, which
holds using again (7.22). This implies that A\, :== T71(0)*A\TT~1(0) equals

5\1:1((11+bb*)§+]1 b )
2 b* (I1+b*b)2 — 1
Let now

0= (M40} + 1) e (5,

V2

Using (7.22) we obtain by an easy computation that
1 1 1 1
I1+a*a= 5((]1 +b"0)2 + 1), 1+ aa* = 5((11 +06%)2 + 1), b=2a(1+ a*a)%.

Hence )
Ay = IH—aal a(l+a*a)z Ut
(14 a*a)za* a*a
for U as in the proposition. O

The following theorem shows that any pure regular Hadamard state is actually
associated to a microlocal decomposition.

Theorem 7.16. Let wy be a pure regular Hadamard state. Then there exists a
generator by (t) as in Thm. 6.1 such that wy = wy, .

Before proving Thm. 7.16 we need one more lemma.

Lemma 7.17. Let a € U=°(X) and set r(a) := (14 aa*)z —a. Then r(a) is
boundedly invertible with r(a)~* € 1+ U~°(%).

Proof. By the polar decomposition theorem, we have a = u|a| = |a*|u, where u
is a partial isometry. Moreover, r(a) = (14 aa*)2 (1 — (1 + aa*)~2a). To prove
invertibility it suffices to notice that (1 + aa*)"2a = (1 + |a*?)~%|a*|u has norm
< 1, which is easily checked by using the self-adjoint functional calculus and the fact
that a* is bounded. The fact that r(a)~! — 1 € ¥=°°(X) follows by the argument
used already to prove Lemma 5.5. O

Proof of Thm. 7.16. From Prop. 7.15, we know that there exists a € ¥~>°(X)
such that (7.20) holds. Let us first try to find some b; € U1(X) such that

(7.23) A= (1Y et
where T is defined as in (6.15) with b = b(0) replaced by by. The proof is divided

in several steps.
Step 1: we first solve (7.23). Let r(a) be as in Lemma 7.17 and set

(7.24) zi=r(a)(b+b*)"2 € UT3().
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Note that 21 € U2 (%). We claim that
(7.25) byi=b+ (b+b")2a* 2" = b+ U~ ®(%)

Mo 01
VitV =Vinti,

solves (7.23). Indeed, if V} = ( o fh ) the equation

is equivalent to the system
i) aja; = o
(7.26) i) a1 = a*p,
iii) BB = B*B.
If V=UT() and V; = T(by) we have:
ar = (b +b})72bY, By = (b +b7)7F,

a=(1+aa")%(b+b")"2b" +a(b+b*)"%b,

B=(14aa*)2(b+b*)"2 —a(b+b*)"2.
Using the operator z introduced in (7.24) we see that
(7.27) a=z2b"+alb+b*)3, B=z
Note also that:

r(a)r(a)* +r(a)a* + ar(a)*
(7.28)
= (r(a) +a)(r(a)* +a") —aa” = 1.

Hence for by given by (7.25) we have:
b+ bt =(b+b )+ (b+b)2a* 2 + 2 ta(b+b*) !

1

= (b+b)% (1+a"r(a) " +7r(a) " a) (b+b*)?

=271 (r(a)r(a)* +z(b+ b*)%a* +a(b+ b*)%z*) z*t

=27 (r(@)r(a)” + r(a)a” +ar(a)") 2"~ = 271",
by (7.28), hence:
BiBr= (b1 + b)) 7 = 2"z = BB,
hence (7.26) 4ii) is satisfied. We also obtain

;B =bi(by +07) "t =b22

=bz*z+ (b+b*)%a*z = B,
hence (7.26) ii) is satisfied. Finally we have

afay = by(by +0})7lb; = by 2bt

= (bz* + (b+b*)2a*)(2b" + a(b+b*)?) = a*a,
by (7.27). Therefore (7.26) 4) is satisfied and by solves (7.23).

Step 2: we check that by = b1(0) satisfies the properties i), i7) and ) in Thm.
6.1 at t = 0. First of all by = b+ ¥~>°(X) hence %) is satisfied. We claim that

(7.29) by + b] ~ b+ b,
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(see Subsect. 1.4 for notation), which implies properties %), #¢) at ¢ = 0. In fact
we have:

b1+ b = (b+ %) (1+a*r(a)~ " +r(a)"La) (b+ %)%

N

= (b+b)2r(a) " (r(a)r(a)* + r(a)a” +ar(a)") r(a) (b +b")2

N

= (b+b")2r(a)" ((r(a) + a)(r(a)* +a*) — aa*) r(a) (b + b*)%

= (b+b")2r(a) " r(a) " (b + b%) 3,

which implies (7.29) since r(a) is boundedly invertible by Lemma 7.17.
Step 3 we now extend by into by (t). We set

b1(t) = b(t) + r—oo(t),

where r_o, € C®°(R,¥°°(X)) is chosen such that r_(0) = b;(0) — b(0) and
properties ), i), 4ii) are satisfied for all ¢ € I. Then 4v) is automatically satisfied
also. This completes the proof of the theorem. O

APPENDIX A

A.1. Computations for Kerr-de Sitter. We recall now an identity of the kind
which is often used in the literature (see e.g. [O’N2, Lemma 2.2.1] for the Kerr
metric).

Remark A.1. The identity in Lemma A.2 allows to check that the Kerr-de Sitter
metrics are smooth Lorentzian metrics on M despite the fact the forms dp, df are
singular at the poles of S*. In fact the forms sin20d6 and sin® @dy are smooth on
S2, since they equal xdx + ydy and xdy — ydx in Cartesian coordinates near the
poles, and the standard metric on S* equals df? + sin® 0dp?.

Lemma A.2. Let
1+ acos?d

dw?® = do* +
1+«

sin? Odp?
Then:

(1) dw? is a smooth Riemannian metric on S*.

(2) One has:

2
Go0d0? + gppdp? = Z—duﬂ +
0

< 2M a2r a2
(

2 2
Ody)*.
T+ a)2 +1 n a> (sin” Odyp)

Proof. dw? is clearly positive definite. We have

dw? = (d6?* + sin® 0dp?) — . ia (sin® Bdip)”.

The first term is the standard metric on S?, the second term is smooth since sin® fdyp
is a smooth 1—form on S2. Therefore dw? is smooth, which proves (1).
A routine computation shows that:

o2 = (r2 + a2)(1 + a)p2 + 2Ma’rsin® 6.

Using this identity in the definition of g,, (see (4.2)) we easily obtain (2). O
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A.1.1. Some classes of functions. The map I 3 r — s(r) € R is bijective. Setting:

R OrAr(rhyc)
(KdS) Kh/c = $4(1+Oz)(ri/hc/+a2)7
— Or Ar(1h)
(K) rn = F et

which are related to the surface gravities at the Kerr-de Sitter resp. Kerr case, one
has:

(KdS) (1 —1pye) ~ e mnrelsl 9% (r —1p,/.) € O(enselsl), for s — Foo,
(K) (r—rp) ~ e rnlsl 9% (r — 1) € O(e 151, for s — —o0,
r~s, 0% € O((s)179), for s — +o0.
Definition A.3. We set:
TRas = {f € CF(ra, r[xS?) = 0785 f € O(1)},
T" = {f € C(Jrn, +oo]) = 980 f € O((r)~*)}
TR = (r—rp)P(r —re)PTRas, P € Z,

TP = (1) P(r —rpPTR°, m € R, p € Z.

The following are the images of the above spaces under the change of variable
r = s(r).

Definition A.4. We set:

SP s =1f € C®(R x S?): 9208 f € O(ePrnicldl), +5 <0}, p e 77,

Shas = {f € O°(R x S?) : f bounded , 9,f € Sgis},

Sk ={f € C*(R xS : 9390f € O(e"™*)), s <0, 9705 f € O((s)™ ™), s > 0}, p € Z7,
SEC={f e C®R xS : df € O((s)™), 0sf € SE™" 7'}

Definition A.5. A function f € Si g, resp. f € S is elliptic if f(s,w) # 0 on
R x S? and f~! € Sghs, resp. f71 e S™ P,

The following result is easy to prove (see [H&, Sect. 9.3]).

Lemma A.6. (1) Siig x SPig C SRUE™ and S x Sgabe C S tmarire,
(2) Set f(s,w) = f(r(s),w) for f € C>=(IxS?). Thenif f € Thyg, resp. f € TP
one has f € Sy, resp. fe SEP.

From Lemma A.6 we obtain easily the following lemma.
Lemma A.7. One has:
: 2 .2 2 S 0 ; 2,0
i) p?, r°+a° are elliptic in Sp,g, resp. in Sy,
o? is elliptic in Skyg, Tesp. in Sf(’o,

. e 0 . 0,0
Ay s elliptic in Sgag, resp. in Sg,

F(s):=(1+ a)zwziis elliptic in Skqg, Tesp. in 51251,

G(s,0) := %, is elliptic in Sqg, Tesp. in S%O,

0 A Agp?

)
)
w) A, is elliptic in Sgés, resp. in Sf{l
)
)
) &= (Ttra)%e? € Sﬁés resp. € 5}0{_1.




Proo
The r

Hadamard states on Lorentzian manifolds of bounded geometry 53

f. Statements i), ..., i) are routine computations, using Lemma A.6 (2).
emaining statements follow then from Lemma A.6 (1). O

In the next lemma we estimate the function R defined in 4.2.2.

Lemma A.8. Let R = gwg;gl, and set

(A1)

R.(5,0) = 0,R(r(5),0), Rg(s,0) = (sin20)"'9pR(r(s,0)).

Then:

R, € S%ds, resp. € SIO(’_?’,

1 —1,-2
Ry € Si4g, Tesp. € Sk .

Proof. We have

hence

a

R(ﬁ 9) = _ﬁ (Ar - (7"2 + 32)A9)
A Y[ e )
S ta? (r? +a?)Ag (r2 + a2)2A ’
_ a 1 R 0 R Tl R Tl’,l
- m( + Ri(r,0)), R1 € Tgqgs, resp. Ry € T .

It follows that (using that R depends on # only through sin® 6):

R, == 8,R € Ty, resp. € Ty °,

Ry := (sin 29)_189R € TIl(dS7 resp. € TI1<7_2'

Passing to the variable s using Lemma A.6 we obtain (A.1). O
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