This document must be cited according to its final version which is published in a conference as:

J. Peralez, M. Nadri, P. Dufour, P. Tona, A. Sciarretta, "Control design for an automotive turbine rankine cycle system based on nonlinear state estimation", 53rd IEEE Conference on Decision and Control (CDC), Los Angeles, CA, USA, pp. 3316-3321, december 15-17, 2014. DOI : 10.1109/CDC.2014.7039902

You downloaded this document from the CNRS open archives server, on the webpages of Pascal Dufour: <u>http://hal.archives-ouvertes.fr/DUFOUR-PASCAL-C-3926-2008</u> Control Design for an Automotive Turbine Rankine Cycle System based on Nonlinear State Estimation

Johan Peralez^{1,2}, **Madiha Nadri**², Pascal Dufour², Paolino Tona¹, Antonio Sciarretta¹

¹ IFP Energies Nouvelles (France)
 ² LAGEP, University of Lyon (France)

53rd IEEE Conference on Decision and Control (CDC 2014)

ORC for transport application

The main differences with stationary applications lie in the highly transient behaviour of the hot source, depending on driving conditions.

1 Rankine cycle

- System description
- Control-oriented model

2 Closed-loop design • Observer design

• Control design

1 Rankine cycle

- System description
- Control-oriented model

• Observer design • Control design

Context	Rankine cycle	Closed-loop design	Closed loop evaluation	Conclusion
	00000			
Therm	odvnamic cvc	e		

- O Vaporization
- 2 Expansion
- Condensation
- Compression

Superheating SH

- Definition: SH is the "distance" in kelvin of the fluid from the evaporation temperature.
- Effective SH control is a key issue for: cycle efficiency, component safety.

Main actuators

- evaporator by-pass: lets a fraction of exhaust gas feeding ORC.
- pump: circulates the working fluid.

Control objective

Respond to a power production demand while ensuring an effective SH control.

Context	Rankine cycle	Closed-loop design	Closed loop evaluation	Conclusion
	00000			
ORC:	high pressure	part		

First model reduction

- Fluid conditions in low pressure part can be seen as a (slow) disturbance.
- A power production demand is then equivalent to a high pressure demand.

Known disturbances:

- Fluid temperature at pump (measured).
- Fluid pressure at turbine outlet (measured).
- Exhaust mass flow m_{exh} (estimated).
- Exhaust temperature: T_{exh} (measured).

A low-order, but realistic, model of evaporator can be obtained via MB (see e.g [Jensen, 2003]). method.

Thermodynamic variables

- fluid pressure p (homogenous along the evaporator)
- fluid enthalpies *h_i* (for each zone)
- wall temperatures: T_{w,i}

Dynamics of the reduced model: wall energy balance

$$m_{w} c_{w} \frac{d}{dt} T_{w,i} = \dot{Q}_{exh,i} - \dot{Q}_{f,i},$$

where $\dot{Q}_{exh,i} = \dot{m}_{exh} c_{exh} \left(1 - exp(-\frac{\alpha_{exh} S_{exh}}{\dot{m}_{exh} c_{exh}})\right) (T_{exh} - T_{w,i})$

Context	Rankine cycle	Closed-loop design	Closed loop evaluation	Conclusion
	00000	000	00	
Explici	t model			

Assuming that SH is perfectly regulated¹ at a constant value by the pump mass- ow (u_1) , the reduced model can be written in the following semi-explicit form:

$$\begin{cases} \dot{x} = f(x,p) + u_2 g(x,t), \\ \varphi(x,p) = 0. \end{cases}$$
(1)

Proposition

There exists
$$\epsilon > 0$$
 such that $\frac{\partial \varphi}{\partial p}$ has a full rank on the tubular neighbourhood

$$\Omega_{\epsilon} = \{ (x, p) \in \mathbb{R}^{3+1}; \| \varphi(x, p) \| < \epsilon \}.$$

Then, system (1) can be written in the following explicit form: $\begin{cases}
\dot{x} = f(x,p) + u_2 g(x,t) \\
\dot{p} = -\left(\frac{\partial \varphi}{\partial p}|_{x,p}\right)^{-1} \left(\frac{\partial \varphi}{\partial x}|_{x,p}\right) \times (f(x,p) + u_2 g(x,t)).
\end{cases}$ (2)

 1 [Peralez et al., 2013] showed experimentally that such assumption is realistic, even in transient driving conditions)

Rankine cycl

- System description
- Control-oriented model

2 Closed-loop design
 Observer design
 Control design

Control design

An implicit extended Kalman filter² (EKF) for system (1) is given by:

$$\begin{cases} \dot{\hat{T}}_{w} = f(\hat{T}_{w}, \hat{p}) + u_{2} g(\hat{T}_{w}, \hat{p}) - SC^{T} R^{-1} (\hat{p} - p) \\ \Phi(\hat{T}_{w}, \hat{p}) = 0 \\ \dot{S} = AS + SA^{T} - SC^{T} R^{-1} C^{T} S + Q \\ S(0) = S(0)^{T} > 0, \end{cases}$$
(3)

where Q is a constant symmetric positive definite (SPD) matrix, R is a real positive constant and

$$A = \frac{\partial (f + u_2 g)}{\partial x}|_{(\hat{T}_w, \hat{p})}, \quad C = \varphi_p^{-1} \varphi_{T_w}^T.$$

²see [Åslund and Frisk, 2006]

11 / 15

Context	Rankine cycle	Closed-loop design	Closed loop evaluation	Conclusion
	000000	000	00	
Pressure	control desi	gn		

Proposition

Let k > 0 then, the control

$$u_2(T_w, p, p^{SP}) = \frac{-\varphi_{T_w}^T f(T_w, p) + k(p^{SP} - p)}{\varphi_{T_w}^T g(T_w, t)},$$
(4)

asymptotically stabilizes p to the setpoint p^{SP} . Moreover, the input u_2 and the states of system (2) remain bounded.

Rankine cycl

- System description
- Control-oriented model

2 Closed-loop design
• Observer design
• Control design

Closed loop evaluation

④ Conclusion

Context	Rankine cycle	Closed-loop design	Closed loop evaluation	Conclusion
	000000	000	0	
Realistic	driving con	ditions		

Experimental data for exhaust gas conditions that are representative of a long-haul truck mission were used:

A tight pressure set-point tracking is demonstrated as long as exhaust gas heat flow is sufficient.

Rankine cycl

- System description
- Control-oriented model

2 Closed-loop design
• Observer design
• Control design

Context	Rankine cycle	Closed-loop design	Closed loop evaluation	Conclusion
Conclu	sion			

Summary

The proposed scheme combines

- a superheat controller,
- an additional nonlinear controller, allowing pressure set-point tracking or equivalently a tracking of power production demand.
- an implicit extended Kalman Filter for wall temperature estimations.

The proposed approach has been illustrated with success in presence of measurement noise, model uncertainties and state initial errors.

On-going work

- Experimental implementation.
- Theoretical proof of the asymptotic stability of the closed-loop using the observer.

