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Context and motivations

Context and motivations

@ In nowadays heavy duty engines, a major
part of the chemical energy contained in
the fuel is released to the ambient
through heat.

Fuel energy distribution on a commercial vehicle
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Context and motivations

Context and motivations

@ In nowadays heavy duty engines, a major
part of the chemical energy contained in
the fuel is released to the ambient
through heat.

O Waste heat recovery based on the
Rankine cycle is a promising technique to
increase fuel efficiency.

@ Dynamic models needed for concept
optimization, fuel economy evaluation
and control algorithm development.

Fuel energy distribution on a commercial vehicle
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Rankine cycle based heat recovery system

Rankine process
Studied m and controller ob

Rankine process

> —|

o Liquid compression (1 — 2) from
condensing to evaporating pressure by
means of the pump power W,.

o Preheating (2 — 3a), vaporization
(3a — 3b) and superheating (3b — 3c¢)
by means of the input heat power Q;,.

o Vapor expansion (3¢ — 4) from o »4
evaporating to condensing pressure W,'h:L ' . ‘
creating power Wyt on the expander Qout \
shaft. [ 3.5

o Condensation (4 — 1) releasing heat

Q- in the heat sink Figure: Temperature-entropy diagram of the Rankine
out .

cycle
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Rankine cycle based heat recovery system
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Studied system and controller objective

Studied system and controller objective

@ Recover heat from both EGR and
exhaust in a serial configuration.

o Working fluid: water ethanol mixture.

o Focus on the control of the working fluid
superheat at the expansion machine inlet.

@ Even more critical when using a kinetic
expander.

o Control issue: Reduce the deviation of
the superheat around its set point to
have safe and efficient operation.
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Nonlinear evaporator detailed model

Nonlinear evaporator detailed model

Model representation

Xi = f,-(x,-,u), (1)
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Controller development

Identification

o Dynamic relation between u (working
fluid mass flow) and y (working fluid
superheat) can be described around an
operating point by a first order plus time
delay (FOPTD) model:

Y(S) _ G efLs (3)

u(s) 147s ’

o High variation in FOPTD parameters
shows high nonlinearity.

o Linear time invariant controller will
hardly achieve the control objective with
good performance under transient driving
cycle.

FOPTD Identication on low load operating point
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Identificati
iecewise linear approach
MPC strategy

Controller development

Piecewise linear approach

Multi linear model approach consists into identifying a bank of N linear models
and combine them by means of a weighting scheme.

o Global model output is (at time ty):

N

Y=Y YikWik (4)

i=1

Key design issues are : 1/ the selection of the good model(s) in the bank. 2/
linear models mixing.

Modeling error of the it model at the current time ty is defined by:

€ik = Yp,k — Yik- (5)
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Controller development

Weighting scheme

Bayesian recursive scheme

eXP(*%ei,kKeszi,k—1)

Pijk = (6)
> (exp(—g€mkKel  pmk—1)
m=1
NPi’k for Pik > é
Wik = m§1 Pm, k (7)
0 for pjx <6

where K is a vector and § a scalar.

ewise linear approach

PC strate

Jj=N
Xiw = (@1=&x) [ &«
J#i,j=1
- X,"k

N
> Xk
=1

Wik =

where T is a scalar.

(8)

©)

(10)

(11)
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Controller development

Optimization problem

Model Predictive Control cost function for set-point trackin

tettp
min J(uy = t) — yP)? + w,Au? dt,
e L it (ux) :{ (vp(t) — ¥*) uB Uy (12)
Aug = ug — U1,

where w,, is a scaling factor and a penalty weight.

Modeling error

& = Yo,k — Yk- (13)
Output prediction y,(t) in (12) can be written based on the N models and feedback:
yp(t) = y(t) + ex. (14)

Output response of a FOPTD model

—(=t) e —(=9) G,
yi(t) =ype T+ / (e 7 —u(s— Li))ds. (15)
ty i
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Controller development
approach

MMPC framework

Integration intervals

A model response (15) can be developed as:
—(=%) G =t pt s
W) =yore 7+ eTr [ (T u(s — L))o, (16)
Ti ty

Based on the time delay L;, let us define:

Aj
AL

Integration in (16) is done by parts, where the \; + 2 time intervals are:

max(a; € N|a; < i)

Ts 17
L,'—)\,'T57€R+. ( )

5 s —Li u(s — L)

te — t + AL; te— L — tx; ute—x;—1)

te + AL — t + ALi + Ts toox; = a1 | u(te—x;)

e+ AL+ N —)Ts > e + AL+ (N —j+ )T | tij — te—j1 u(te—j)

o+ AL+ (N —1)Ts =t + L; t1 —> t u(tk—1)

te+ L —>t ty > t— L; u(ty) = uk
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Controller development

MMPC framework

Explicit MMPC formulation
Once integrated, (16) is a linear expression in the optimization argument wuy:

Yi(t) = ¥pkfi(Tis te, t) + hi(Ts, Gi, i, ALj, Aj, ty, t, u(past)) (18)
+ukf3i(Gj, 7, Li, ti, t),

where the f. may be explicitly defined offline and updated online at each time t.
Hence the initial cost function is:

£ i=1

ty+tp N 2
Hu) = [ <Z (Wi kyi(t)) + ex — )/,fp> + wuAu? | dt (19)

where the prediction horizon t, = max(t,;) Vi may be tuned as:

= p*7i+ L vp €RT,

tpi
eg: vp = 1(63% of the dynamics is predicted) (20)
or 7p = 3 (95% of the dynamics is predicted).
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Controller development lcehhestion
approach

MMPC framework

Explicit MMPC formulation

Based on the step response series (16) of the N linear FOPTD models:

J(uk) = Ba,k(N, G, 7i, Li to, Wu, Wi k) Uj
+B1,k(N, Ts, Gi, 7i, Li, tp, ALi, Xiy Wu, Yp ks ygp, ek, u(past), w; k)uk (21)
+B0,k(N, Ts, Gi, 7i, Li, tp, ALi, Xi, Wa, Yp &, ¥, » €k u(past), wi ),

Minimization of (21) obtained with the first order optimality at each ty:
97 _ ¢ at [ (22)
—_— = at ux = u, .
Buk k s
Calculation of u,’("m is then straightforward:

i —P1k
= amy (23)

which leads to the explicit formulation of the solution uj:

it U <" < uep o oup = ul"

it um < Uinf Uf = Upnr (24)
. min . *

if sy S U oup = Usyp.
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Input disturbances

Simulation

results

Gas mass flow vs Time
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Simulation results

Tracking error and manipulated variable
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Conclusion and next steps

Conclusion and next steps

Conclusion

o New modeling weighting scheme based on a piecewise linear approach has been
developed and validated.

@ New scheme has less tuning parameters than the Bayesian scheme.

o Explicit MMPC strategy for Rankine cycle based heat recovery system is
presented.

o MMPC is compliant with classical automotive integration constraints (i.e., basic
CPU and fast sampling time).

Next steps

o Experimental validation.

o Robustness study.
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Appendix

B; expressions

N / " 1 1"
Bk = Z [51,;( + 816+ Bt 51,/(] — 2wy uk—_1tp, (25)
i=1
’ Li _p Liz2tp
181,k = —G;Tj Wi,k2}/p,k (e"i +2e Ti —e i 72) (26)
" EETRA ®
Bix = —G? i u(te—x;—1) W,-7,<2e i (e i —1) (eﬂ' —1)
L tp Lit+tp
(eﬂ' —2e7i e Ti ) (27)
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B; expressions

" i s R ALj—tp—j Ts+X; Ts Te
ﬁl,k = Gi” T u(te—j) wik“ e i e’ —1
Jj=1
) ) ALi—jTs+X; Ts L71
—Gi“T; U(tk,j) wi k“ e Ti (e i — 2) (
111’ SP Litp i
51,/( = 2G,'W,'7k ex—Yy tp+7ie i —TieTi
Lr-ftp 2LI-72 tp i ﬁ
G,‘2W,'7k2 (2t,,+4r,-e T —Tie Ti —4TieTi +TiEeTi
Bok = 5 + wytp
(30)
Grelet et al. 2015 paper TuA06.1




pr s
Experimental results

Appendix

Input disturbances

Engine speed and t
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Tracking error

Superheat (°C)

3; expressions
Experimental results

Appendix

and manipulated variable
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