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Context and motivations

In nowadays heavy duty engines, a major
part of the chemical energy contained in
the fuel is released to the ambient
through heat.

Waste heat recovery based on the
Rankine cycle is a promising technique to
increase fuel efficiency.

Dynamic models needed for concept
optimization, fuel economy evaluation
and control algorithm development.
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Rankine process
Studied system and controller objective

Rankine process

Liquid compression (1→ 2) from
condensing to evaporating pressure by
means of the pump power Ẇin.

Preheating (2→ 3a), vaporization
(3a→ 3b) and superheating (3b → 3c)
by means of the input heat power Q̇in.

Vapor expansion (3c → 4) from
evaporating to condensing pressure
creating power Ẇout on the expander
shaft.

Condensation (4→ 1) releasing heat
Q̇out in the heat sink.

1
2

3a 3b

3c

4

Q̇in

Q̇out

T

s

Ẇout

Ẇin

Figure: Temperature-entropy diagram of the Rankine
cycle
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Rankine process
Studied system and controller objective

Studied system and controller objective

Recover heat from both EGR and
exhaust in a serial configuration.

Working fluid: water ethanol mixture.

Focus on the control of the working fluid
superheat at the expansion machine inlet.

Even more critical when using a kinetic
expander.

Control issue: Reduce the deviation of
the superheat around its set point to
have safe and efficient operation.
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Nonlinear evaporator detailed model

Model representation

ẋi = fi (xi , u) , (1)

uT =
[
ṁf0 Pf0 hf0 ṁgL TgL

]
, xTi =

[
ṁfi hfi Twinti

Tgi Twexti

]
(2)

fi (xi , u) =



ṁfi−1

hfi−1
ρfi−1

∂ρfi−1
∂hfi−1

+ 1
ρfi−1

∂ρfi−1
∂hfi−1

αfi
Aexchintf

(
Tfi

−Twinti

)
1−

hfi
ρfi

∂ρfi
∂hfi

− ṁfi(
ṁfi−1

hfi−1
−ṁfi

hfi

)
−αfi

Aexchintf

(
Tfi

−Twinti

)
ρfi

Vf

αfi
Aexchintf

(
Tfi

−Twinti

)
+αgAexchintg

(
Tgi

−Twinti

)
ρwint Vwint

ṁg cpg (Tgi
)
(
Tgi−1

−Tgi

)
−αg

[
Aexchintg

(
T∗gi

−Twinti

)
−Aexchextg

(
Tgi

−Twexti

)]
ρgi Vg cpg (Tgi )

αambAexchextamb

(
Tamb−Twexti

)
+αgAexchextg

(
Tgi

−Twexti

)
ρwext Vwext
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Identification
Piecewise linear approach
MMPC strategy

Identification

Dynamic relation between u (working
fluid mass flow) and y (working fluid
superheat) can be described around an
operating point by a first order plus time
delay (FOPTD) model:

y(s)

u(s)
=

G

1 + τs
e−Ls , (3)

High variation in FOPTD parameters
shows high nonlinearity.

Linear time invariant controller will
hardly achieve the control objective with
good performance under transient driving
cycle.
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Identification
Piecewise linear approach
MMPC strategy

Piecewise linear approach

Multi linear model approach consists into identifying a bank of N linear models
and combine them by means of a weighting scheme.

Global model output is (at time tk ):

yk =
N∑
i=1

yi,kWi,k (4)

Key design issues are : 1/ the selection of the good model(s) in the bank. 2/
linear models mixing.

Modeling error of the i th model at the current time tk is defined by:

εi,k = yp,k − yi,k . (5)
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Identification
Piecewise linear approach
MMPC strategy

Weighting scheme

Bayesian recursive scheme

pi,k =
exp(− 1

2 εi,kKε
T
i,kpi,k−1)

N∑
m=1

(exp(− 1
2 εm,kKε

T
m,kpm,k−1)

(6)

Wi,k =


pi,k

N∑
m=1

pm,k

for pi,k > δ

0 for pi,k < δ

(7)

where K is a vector and δ a scalar.

New proposed scheme

ε̃i,k =
ε2
i,k

N∑
m=1

ε2
m,k

(8)

Xi,k = (1− ε̃i,k )

j=N∏
j 6=i,j=1

ε̃j,k (9)

X̃i,k =
Xi,k

N∑
m=1

Xm,k

(10)

Wi,k =
1

1 + Ts
X̃i,k (11)

where T is a scalar.
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Identification
Piecewise linear approach
MMPC strategy

Optimization problem

Model Predictive Control cost function for set-point tracking min
uinf≤uk≤usup

J(uk ) =
tk+tp∫
tk

(yp(t)− y sp)2 + wu∆u2
k dt,

∆uk = uk − uk−1,

(12)

where wu is a scaling factor and a penalty weight.

Modeling error

ek = yp,k − yk . (13)

Output prediction yp(t) in (12) can be written based on the N models and feedback:

yp(t) = y(t) + ek . (14)

Output response of a FOPTD model

yi (t) = yp,ke
−(t−tk )
τi +

∫ t

tk

(e
−(t−s)
τi

Gi

τi
u(s − Li ))ds. (15)
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Identification
Piecewise linear approach
MMPC strategy

MMPC framework

Integration intervals

A model response (15) can be developed as:

yi (t) = yp,ke
−(t−tk )
τi +

Gi

τi
e
−t
τi

∫ t

tk

(e
s
τi u(s − Li ))ds, (16)

Based on the time delay Li , let us define:{
λi = max(ai ∈ N|ai ≤

Li
Ts

)

∆Li = Li − λiTs ,∈ R+.
(17)

Integration in (16) is done by parts, where the λi + 2 time intervals are:

s s − Li u(s − Li )
tk → tk + ∆Li tk − Li → tk−λi u(tk−λi−1)
tk + ∆Li → tk + ∆Li + Ts tk−λi → tk−λi +1 u(tk−λi )
. . . . . . . . .
tk + ∆Li + (λi − j)Ts → tk + ∆Li + (λi − j + 1)Ts tk−j → tk−j+1 u(tk−j )
. . . . . . . . .
tk + ∆Li + (λi − 1)Ts → tk + Li tk−1 → tk u(tk−1)
tk + Li → t tk → t − Li u(tk ) = uk
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Identification
Piecewise linear approach
MMPC strategy

MMPC framework

Explicit MMPC formulation

Once integrated, (16) is a linear expression in the optimization argument uk :

yi (t) = yp,k f1i (τi , tk , t) + f2i (Ts ,Gi , τi ,∆Li , λi , tk , t, u(past))
+uk f3i (Gi , τi , Li , tk , t),

(18)

where the f. may be explicitly defined offline and updated online at each time tk .
Hence the initial cost function is:

J(uk ) =
tk+tp∫
tk

( N∑
i=1

(
wi,kyi (t)

)
+ ek − y sp

k

)2

+ wu∆u2
k

 dt (19)

where the prediction horizon tp = max(tpi ) ∀i may be tuned as: tpi = γp ∗ τi + Li ; γp ∈ R+,
e.g.: γp = 1 (63% of the dynamics is predicted)

or γp = 3 (95% of the dynamics is predicted).
(20)
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Identification
Piecewise linear approach
MMPC strategy

MMPC framework

Explicit MMPC formulation

Based on the step response series (16) of the N linear FOPTD models:

J(uk ) = β2,k (N,Gi , τi , Li , tp,wu,wi,k )u2
k

+β1,k (N,Ts ,Gi , τi , Li , tp,∆Li , λi ,wu, yp,k , y
sp
k , ek , u(past),wi,k )uk

+β0,k (N,Ts ,Gi , τi , Li , tp,∆Li , λi ,wu, yp,k , y
sp
k , ek , u(past),wi,k ),

(21)

Minimization of (21) obtained with the first order optimality at each tk :

∂J

∂uk
= 0 at uk = umin

k . (22)

Calculation of umin
k is then straightforward:

umin
k =

−β1,k
2β2,k

(23)

which leads to the explicit formulation of the solution u?k :
if uinf ≤ umin

k ≤ usup : u?k = umin
k

if umin
k ≤ uinf : u?k = uinf

if usup ≤ umin
k : u?k = usup.

(24)
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Input disturbances
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Tracking error and manipulated variable
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Conclusion and next steps

Conclusion

New modeling weighting scheme based on a piecewise linear approach has been
developed and validated.

New scheme has less tuning parameters than the Bayesian scheme.

Explicit MMPC strategy for Rankine cycle based heat recovery system is
presented.

MMPC is compliant with classical automotive integration constraints (i.e., basic
CPU and fast sampling time).

Next steps

Experimental validation.

Robustness study.
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βi expressions
Experimental results

βi expressions

β1,k =
N∑
i=1

[
β
′
1,k + β

′′
1,k + β

′′′
1,k + β

′′′′
1,k

]
− 2wuuk−1tp , (25)

β
′
1,k = −Gi τi wi,k

2 yp,k

(
e

Li
τi + 2 e

− tp
τi − e

Li−2 tp
τi − 2

)
(26)

β
′′
1,k = −Gi

2 τi u(tk−λi−1)wi,k
2 e

− 2 tp
τi

(
e

∆Li
τi − 1

)(
e

tp
τi − 1

)
. . .(

e
Li
τi − 2 e

tp
τi + e

Li +tp
τi

)
(27)
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βi expressions
Experimental results

βi expressions

β
′′′
1,k =

λi∑
j=1

Gi
2 τi u(tk−j )wi,k

2 e
∆Li−tp−j Ts+λi Ts

τi

(
e

Ts
τi − 1

) (
e

Li−tp
τi − 2

)
. . .

−Gi
2 τi u(tk−j )wi,k

2 e
∆Li−j Ts+λi Ts

τi

(
e

Li
τi − 2

) (
e

Ts
τi − 1

)
(28)

β
′′′′
1,k = 2Gi wi,k

(
ek − ySP

) (
tp + τi e

Li−tp
τi − τi e

Li
τi

)
(29)

β2,k =

Gi
2 wi,k

2

(
2 tp + 4 τi e

Li−tp
τi − τi e

2 Li−2 tp
τi − 4 τi e

Li
τi + τi e

2 Li
τi

)
2

+ wutp

(30)
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βi expressions
Experimental results

Input disturbances

Engine speed and torque
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βi expressions
Experimental results

Tracking error and manipulated variable

Developed weighting scheme
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