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Context and motivations

In nowadays heavy duty engines, a
major part of the chemical energy
contained in the fuel is released to
the ambient through heat.

Waste heat recovery based on the
Rankine cycle is a promising
technique to increase fuel efficiency.

Long and frequent transient behavior
of the heat sources makes good
control strategies mandatory.
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Waste heat recovery Rankine cycle based

Rankine cycle is widely known and
used for power generation.

It is based on four basic
transformations:

The liquid is compressed from
condensing to evaporating pressure
(1 → 2).
It is then pre-heat, vaporize and
superheat (2 → 3).
It expands from evaporating to
condensing pressure (3 → 4).
It condenses and goes back to
liquid state (4 → 1).
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Studied system
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Model assumptions and governing equations

Model assumptions

Geometry is reduced to a single pipe
in pipe HEX.

Secondary (or transfer) fluid always
in single phase.

Conduction is neglected.

Pressure drops are neglected.

Pressure dynamic is neglected.

Fluid properties are evaluated at the
outlet of each node.

Mass flow rates are supposed
constant along the HEX.

Governing equation

Internal fluid

Across,f
∂ρf hf

∂t
+
∂ṁf hf

∂z
+ q̇f ,int = 0. (1)

Internal pipe wall

q̇f ,int + q̇g,int =
∂mw,intcpw,intTw,int

∂t
. (2)

External fluid

∂ṁg cpg Tg

∂z
+
∂ṁg cpg Tg

∂t
+ q̇g,int + q̇g,ext = 0.

(3)

External pipe wall

q̇g,ext + q̇amb,ext =
∂mw,extcpw,extTw,ext

∂t
. (4)
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Heat transfer

Heat transfer coefficients

αg = αref ,g ṁ
ng
g (5)

αf ,liq = αref ,f ,liqṁ
nf ,liq
f (6)

αf ,2ϕ = αf ,liq . . .

. . .

{
(1 − q)0.01

[
(1 − q) + 1.2q0.4 ρf ,sat,liq

ρf ,sat,vap

0.37
]−2.2

+ . . .

. . . q0.01

[
αf ,vap

αf ,liq

(
1 + 8 (1 − q)0.7 ρf ,sat,liq

ρf ,sat,vap

0.67
)]−2

}−0.5

(7)

αf ,vap = αref ,f ,vapṁ
nf ,vap
f (8)
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Heat transfer

Heat transfer EGR boiler Heat transfer exhaust boiler
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Working fluid properties

Working fluid properties models

Temperature:

Tf =


aT ,liqh

2
f + bT ,liqhf + cT ,liq if hf ≤ hsat,liq

Tsat,liq + q (Tsat,vap − Tsat,liq) if hsat,liq ≥ hf ≤ hsat,vap
aT ,vaph

2
f + bT ,vaphf + cT ,vap if hf ≥ hsat,vap

(9)

Density

ρf =


aρ,liqh

2
f + bρ,liqhf + cρ,liq if hf ≤ hsat,liq

1
aρ,2ϕhf +bρ,2ϕ

if hsat,liq ≥ hf ≤ hsat,vap

aρ,vaph
2
f + bρ,vaphf + cρ,vap if hf ≥ hsat,vap

(10)
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Working fluid properties

Temperature model validation Density model validation
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Discretization

The continuous set of equation
(1,2,3,4) is discretized with respect
to space based finite differences.

A finite volume approach is chosen
where the HEX is split into n
longitudinal cell.

The vector u contains the
manipulated variable ṁf ,0 and the
input disturbances: ṁg,L, Tg,L, hf ,0,
Pf ,0.
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Discretization

The system of equations defining the response of the ith cell of the
discretized model is:

ẋi = fi (xi , u), (11)

where: u =
[
ṁf ,0 Pf ,0 hf ,0 ṁg,L Tg,L

]
, (12)

xi =
[
hf ,i Tw,int,i Tg,i Tw,ext,i

]
, (13)

fi (xi , u) =



ṁf

(
hf ,i−1−hf ,i

)
−αf ,i Aexch,f ,int

(
Tf ,i−Tw,int,i

)
ρf ,i Vf

αf ,i Aexch,f ,int

(
Tf ,i−Tw,int,i

)
+αg Aexch,g,int

(
Tg,i−Tw,int,i

)
ρw,int Vw,int

ṁg cpg

(
Tg,i−1−Tg,i

)
−αg

[
Aexch,g,int

(
Tg,i−Tw,int,i

)
−Aexch,g,ext

(
Tg,i−Tw,ext,i

)]
ρg,i Vg cpg

αambAexch,amb,ext

(
Tamb−Tw,ext,i

)
+αg Aexch,g,ext

(
Tg,i−Tw,ext,i

)
ρw,extVw,ext


.(14)
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Implementation constraint

Classical automotive electronic control unit (ECU) constrains the
implementation of controllers:

Simulink based environment.

Controller must be discretized in time.

Backward Euler integration scheme has to be used with a sample time of
20ms.

Calculation must stay as simple as possible (problems have to be rescaled
to avoid the use of high computational capacity demand functions).
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Model identification

First order plus time delay models are
identified in open loop around several
operating points with output error
minimization algorithm.

The dynamic relation between the
working fluid temperature and mass
flow variations is:

∆Tf ,L

∆ṁf
=

G

1 + τs
e−Ds . (15)

According to the non linearity of
model 11 FOPTD parameters vary a
lot.
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State of the art PID controller

State of the art controller in the automotive industry is the PID controller.

A well known improvement is the gain scheduling approach.
Gains are calculated offline and linearly interpolated according to the mass
flow sensor signal.

Several PID tuning methods have been compared on a load step change.
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Nonlinear model inversion

Fastest dynamics (i.e. fluid and gas) are canceled.

Single phases working fluid heat transfer coefficients are assumed constant.

The system of equations defining the response of the ith cell can be
written: 

0 = ṁf

(
hfi−1 − hfi

)
+ Q̇finti

∂Twinti
∂t

= Q̇finti
+ Q̇ginti

0 = ṁgcpg
(
Tgi−1 − Tgi

)
+ Q̇ginti

+ Q̇gexti
∂Twexti
∂t

= Q̇gexti
+ Q̇ambexti

.

(16)

The expression of the feedforward term Ufeedforward is then straightforward:

Ufeedforward =

N∑
i=1

Q̇finti

hf0 − hfL
. (17)
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Controllers structure

Feedback controller
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Controllers structure

Nonlinear controller
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Simulation environment

Pump and expansion machine models are
added to represent the high pressure part
of the Rankine system.

Pump model:

ṁf = ρf ,in
Npump

60
Ccpumpηvol,pump. (18)

Expansion machine:

ṁf = keq

√
ρf ,inPf ,in

(
1 − Pf ,in

Pf ,out

−2
)
.

(19)
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Controller comparison

Initial set point and disturbances
change are not handle by PID
controller.

The non linear controller reduce the
deviation from +/-10℃with the PID
to +/-3℃.
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Conclusion and next steps

Conclusion

A control strategy for temperature management of WHRS Rankine cycle
based is presented.

Main objective to stabilize the temperature around a given set point is
better achieved by using a non linear controller.

Non linear controller is compliant with implementation constraint relative
to automotive industry.

Next steps

Controller sensitivity to parameters mismatch.

Controller robustness.

Optimal high level control strategy (set points generation).
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