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We are looking for a mathematical model that describes the dynamic
behaviour in order to better supervise, diagnose or control it.

It may belong to a class in the continuous time domain:

ẋ(t) = f (x(t),u(t), t)
y(t) = g(x(t), t)
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Different modelling approaches

Output measurements knowledge
Input measurements knowledge → white box model
Physical model structure
Known parameters

Output measurements knowledge
Input measurements knowledge → gray box model
Physical model structure
Unknown parameters

Output measurements knowledge
Input measurements knowledge → black box model
Assumed model structure
Unknown parameters
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LTI system

Assume that the process has a linear dynamic described by

(Σ)

{
ẋ(t) = A(θ)x(t) +B(θ)u(t)
y(t) = C (θ)x(t),

with:

u ∈ R in L ∞
loc(R+).

y ∈ R.

x ∈ Rn.

θ ∈Θ⊂ Rq.

A(·),B(·) and C (·) are sufficiently smooth and known.
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Estimation problem

Goal

Estimate on-line the state and parameters (x(t),θ) by knowing the
inputs and outputs.

Method
Construct and asymptotic observer for the augmented system.

ẋ(t) = A(θ)x(t) +B(θ)u(t)

θ̇ = 0 ←− added states
y(t) = C (θ)x(t).
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Synthesis steps

Introduce an extended dynamic system controlled by the known
process inputs and outputs.

ż = Λz +Ly , ẇ = g(w ,u) ,z ∈ Rr ,w ∈ Rr .

Find a mapping (x ,θ ,w) 7→ T (x ,θ ,w) in C 1 which satisfies the
following ODE

Ṫ (x ,θ ,w) = ΛT (x ,θ ,w) +Ly .

Implies the following equation

ė(t) = Λe(t),

where e(t) = z(t)−T (x(t),θ ,w(t))
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Synthesis steps

If Λ is a Hurwitz matrix then z is an estimate of T

lim
t→+∞

|z(t)−T (x(t),θ ,w(t))|= 0 .

The nonlinear Luenberger observer is given as

ż = Λz +Ly
ẇ = g(w ,u)

(x̂ , θ̂) = T ∗(z(t),w(t))

T ∗: is the left inverse of T .
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Difficulties

1- Is there an explicit expression for T ?

2- Is T injective and full rank ?

3- Is there an explicit expression for T ∗ ?
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Question 1: Existence of an explicit expression for T

Theorem 1

For any r-uplet of real negative elements (λ1, . . . ,λr ) such that

λi /∈

(⋃
θ∈Θ

σ{A(θ)}

)
i = 1, . . . , r

The mapping T (x ,θ ,w) =
[
T1(x ,θ ,w1) . . .Tr (x ,θ ,wr )

]>
is a solution.

with

Ti : Rn×Θ×R → R
(x ,θ ,wi ) → Ti (x ,θ ,wi ) = C (θ)(A(θ)−λi In)−1[x−B(θ)wi ],

and
g : Rr ×R 7→ Rr

(w ,u) 7→ g(w ,u) = Λw +Lu

Λ = Diag{λ1, . . . ,λr}; L = 1r .
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Question 2: Is T injective and full rank ?

T (x ,θ ,w) =
[
T1(x ,θ ,w1) . . .Tr (x ,θ ,wr )

]>

Ti : Rn×Θ×R → R
(x ,θ ,wi ) → Ti (x ,θ ,wi ) = C (θ)(A(θ)−λi In)−1[x−B(θ)wi ],

Is it an injective and full rank function?

Answer
If the input makes the extended system observable, then by choosing the
eigenvalues λi sufficiently large the function T is injective and full rank
after a transient.

C. Afri: afri@lagep.univ-lyon1.fr LAGEP – AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

Identification of linear systems with nonlinear Luenberger observers



13/32

Problem description Solution by Luenberger observers approach Numerical illustration Perspectives

Question 2: Is T injective and full rank ?

T (x ,θ ,w) =
[
T1(x ,θ ,w1) . . .Tr (x ,θ ,wr )

]>
Ti : Rn×Θ×R → R

(x ,θ ,wi ) → Ti (x ,θ ,wi ) = C (θ)(A(θ)−λi In)−1[x−B(θ)wi ],

Is it an injective and full rank function?

Answer
If the input makes the extended system observable, then by choosing the
eigenvalues λi sufficiently large the function T is injective and full rank
after a transient.
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Question 2: Is T injective and full rank ?

Let the mapping Hr : Θ→ Rr×n be defined as

θ 7→ Hr (θ) =


C (θ)

C (θ)A(θ)
...

C (θ)A(θ)r−1

 ,

and Gr : Θ→ Rr×r be defined as

θ 7→Gr (θ) =



0 0 · · · · · · · · · 0
C(θ)B(θ) 0 · · · · · · · · · 0

C(θ)A(θ)B(θ) C(θ)B(θ) · · · · · · · · ·
...

...
... · · · · · · · · · 0

C(θ)A(θ)r−2B(θ) C(θ)A(θ)r−3B(θ) · · · · · · C(θ)B(θ) 0

 ,

then [
y(t) ẏ(t) · · · y (r−1)(t)

]
= Hr (θ)x +Gr (θ)v
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Question 2: Is T injective and full rank ?

Assumption (Uniform differential observability)

There exist two compact subsets Cθ ∈Θ, Cx ∈ Rn, an integer r and Ur a
bounded subset of Rr−1 such that the mapping Hr is injective and foll
rank

Hr (x ,θ ,v) = Hr (θ)x +Gr (θ)v ,

for all (x ,θ) and (x∗,θ ∗) both in Cl(Cθ )×Cl(Cx ) and all v in Ur .

Or, there exist L> 0 such that

|Hr (x∗,θ ∗,v)−Hr (x ,θ ,v)| ≥ L

∣∣∣∣[x−x∗

θ −θ ∗

]∣∣∣∣ .
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Question 2: Is T injective and full rank ?

Theorem 2

Assume the assumption holds. Let u(·) be a bounded C r−2([0,+∞])
function with bounded r −2 first derivatives ū(r−2)(·).

For all (λ̃1, . . . , λ̃r ), for all positive time τ and all t1 ≥ τ, if ū(t1) is in
Ur then for all (x ,θ) and (x∗,θ ∗) in Cx ×Cθ , T is injective and full
rank.

Or, there exist two positive real numbers k∗ and LT such that for all
k > k∗

|T (x ,θ ,w(t1))−T (x∗,θ ∗,w(t1))| ≥ LT
k r

∣∣∣∣[x−x∗

θ −θ ∗

]∣∣∣∣ .
With the mapping T is defined by taking λi = k λ̃i .
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Question 3: Existence of an explicit expression for T ∗

The general form of T ∗ is the optimization of the following criteria

(x̂(t), θ̂(t)) = arg min
x ,θ

‖T (x(t),θ ,w(t))− z(t)‖2
2

T (x ,θ ,w) is nonlinear ⇒ iterative optimization methods.

We are looking for an explicit expression of T ∗.
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Question 3: Existence of an explicit expression for T ∗

Let the canonical observable structure

A(θ) = A(θa) =


−θa1 1 0 ·· 0
−θa2 0 1 ·· 0

: : :
. . . :

: : : 1
−θan 0 0 ·· 0

 ∈ Rn×n,

C (θ) = C =
[

1 0 · · · 0
]
∈ R1×n,

B(θ) = B(θb) =
[
θb1 θb2 · · · θbn

]> ∈ Rn×1,

All strictly proper linear SISO systems can be written in this form.
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Question 3: Existence of an explicit expression for T ∗

For all i = 1, ..., r , we have

zi (t) = Ti (x̂(t), θ̂ ,wi (t)) = C (A(θ̂)−λi In)−1
[
x̂(t)−B(θ̂)wi (t)

]
By using the Kronecker algebra, we can get the following expression

zi =
[
ziV

T
i V T

i −(wT
i ⊗V T

i )
]︸ ︷︷ ︸

Pi (zi ,wi )

θ̂a

x̂

θ̂b


The solution is given by

(θ̂a(t), x̂(t), θ̂b(t))T = (P(z(t),w(t))>P(z(t),w(t)))−1P(z(t),w(t))>z(t)

where: P(z ,w) = [P1(z1,w1)>, · · · ,Pr (zr ,wr )>]> ∈ Rr×(2n+1) and

Vi =
[

1
λi

. . . 1
λn
i

]>
∈ Rn , r ≥ 4n−1
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Question 3: Existence of an explicit expression for T ∗

Question ?
Under which conditions on T (x ,θ ,w) and λi is the matrix P full rank
column?

Proposition

If the matrices A(θ), B(θ) and C (θ) have the observable form, if the
λi ’s are different from A(θ) eigenvalues and if the dimension of T
r ≥ 4n−1, then for any (z ,x ,θ ,w) such that z = T (x ,θ ,w) and

rank

(
∂T

∂ (x ,θ)
(x ,θ ,w)

)
= r

the matrix P is a full rank column.
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Question 3: Existence of an explicit expression for T ∗

Result
When z(t) is in Im(T ), the Luenberger observer

ż(t) = Λz(t) +Ly(t)
ẇ(t) = Λw(t) +Lu(t)

(x̂(t), θ̂(t)) =
(
PT (w(t),z(t))P(w(t),z(t))

)−1
PT z(t),

is well defined.

In the transient phase we can not guarantee that P is of full rank
column. If it is numerically not the case, we keep the old values of
the unknown parameters.
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Question 3: Existence of an explicit expression for T ∗

Result
When z(t) is in Im(T ), the Luenberger observer

ż(t) = Λz(t) +Ly(t)
ẇ(t) = Λw(t) +Lu(t)

(x̂(t), θ̂(t)) =
(
PT (w(t),z(t))P(w(t),z(t))

)−1
PT z(t),

is well defined.

In the transient phase we can not guarantee that P is of full rank
column. If it is numerically not the case, we keep the old values of
the unknown parameters.
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Black box model

ẋ(t) =

[
−θa1 1
−θa2 0

]
x(t) +

[
θb1

θb2

]
u(t)

y(t) =
[
1 0

]
x(t)

We want to estimate θa1, θa2, θb1, θb2 and state x2 from knowledge of
signals u(t) and y(t).

(z(0) , w(0)) = (0 , 0)
(x1(0),x2(0),θa1(0),θa2(0),θb1(0),θb2(0)) = (0,0.5,2,3,1,−1)

(x̂1(0), x̂2(0), θ̂a1(0), θ̂a2(0), θ̂b1(0), θ̂b2(0)) = (0,0,0,0,0,0)

Table: Initial configuration of the system and the observer states.
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Simulation without noise effect
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Figure: Estimation of parameters θa1 and θa2.
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Simulation without noise effect
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Figure: Estimation of parameters θb1 and θb2.
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Simulation without noise effect
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Figure: Comparison between estimated output ŷ(t) and real output y(t).
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Simulation with output added noise of 5%
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Figure: Estimation of parameters θa1 and θa2.
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Simulation with output added noise of 5%
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Figure: Estimation of parameters θb1 and θb2 .
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Simulation with output added noise of 5%
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Figure: Comparison between estimated output ŷ(t) and real output y(t).
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Perspectives

Numerical comparison with other approaches in literature.

Study of the observer robustness with respect to noise.

Study of the persistency excitation of input and observer order.

Application of this approach on a real system.
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THANK YOU
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