This document must be cited according to its final version which is published in a conference as:

C. Afri, V. Andrieu, L. Bako, P. Dufour, "Identification of linear systems with nonlinear Luenberger Observers", 2015 IEEE-IFAC American Control Conference (ACC), Chicago, IL, USA, pp. 3373-3378, july 1-3, 2015. DOI : 10.1109/ACC.2015.7171853

You downloaded this document from the CNRS open archives server, on the webpages of Pascal Dufour: <u>http://hal.archives-ouvertes.fr/DUFOUR-PASCAL-C-3926-2008</u>

Identification of linear systems with nonlinear Luenberger observers

Chouaib Afri¹ Vincent Andrieu² Laurent Bako ³ Pascal Dufour⁴

LAGEP – AMPÈRE

LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

¹Ph.D. student France MENRT funding since October 2013 ²Supervisor ³Supervisor ⁴Ph.D Director ← □ → ← (□) → (□) →

C. Afri: afri@lagep.univ-lyon1.fr

LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

Outline

Problem description

2 Solution by Luenberger observers approach

3 Numerical illustration

Perspectives

afri@lagep.univ-lyon1.fr

C. Afri:

LAGEP – AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

æ

ヘロト A倒ト A目ト A目トー

Outline

Problem description

- 2 Solution by Luenberger observers approach
- 3 Numerical illustration

4 Perspectives

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ● ■ のへで 3/32

C. Afri: afri@lagep.univ-lyon1.fr

LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

We are looking for a mathematical model that describes the dynamic behaviour in order to better supervise, diagnose or control it.

It may belong to a class in the continuous time domain:

$$\dot{x}(t) = f(x(t), u(t), t)$$

 $y(t) = g(x(t), t)$

C. Afri: afri@lagep.univ-lvon1.fr

イロト 不得下 イヨト イヨト LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

3

Perspectives

Different modelling approaches

Output measurements knowledge Input measurements knowledge Physical model structure Known parameters

 \rightarrow white box model

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

C. Afri: afri@lagep.univ-lyon1.fr

LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

Different modelling approaches

Output measurements knowledge Input measurements knowledge Physical model structure Known parameters

Output measurements knowledge Input measurements knowledge Physical model structure Unknown parameters

white box model

 \rightarrow gray box model

C. Afri: afri@lagep.univ-lvon1.fr

イロト 不得下 イヨト イヨト LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

Perspectives

Different modelling approaches

Output measurements knowledge Input measurements knowledge \rightarrow white box model Physical model structure Known parameters

Output measurements knowledge Input measurements knowledge \rightarrow gray box model Physical model structure Unknown parameters

Output measurements knowledge Input measurements knowledge Assumed model structure Unknown parameters

 \rightarrow black box model

C. Afri: afri@lagep.univ-lyon1.fr

LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

イロト 不得下 イヨト イヨト

LTI system

Assume that the process has a linear dynamic described by

$$(\Sigma) \begin{cases} \dot{x}(t) = A(\theta)x(t) + B(\theta)u(t) \\ y(t) = C(\theta)x(t), \end{cases}$$

with:

- $u \in \mathbb{R}$ in $\mathscr{L}^{\infty}_{loc}(\mathbb{R}_+)$.
- $y \in \mathbb{R}$.
- $x \in \mathbb{R}^n$.
- $\theta \in \Theta \subset \mathbb{R}^q$.
- $A(\cdot), B(\cdot)$ and $C(\cdot)$ are sufficiently smooth and known.

C. Afri: afri@lagep.univ-lyon1.fr

4 □ ト 4 ③ ト 4 三 ト 4 三 ト 三 シ へ へ 6/
LAGEP – AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

Estimation problem

Goal

 Estimate on-line the state and parameters (x(t), θ) by knowing the inputs and outputs.

C. Afri: afri@lagep.univ-lyon1.fr

LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

Estimation problem

Goal

• Estimate on-line the state and parameters $(x(t), \theta)$ by knowing the inputs and outputs.

Method

• Construct and asymptotic observer for the augmented system.

$$\begin{cases} \dot{x}(t) = A(\theta)x(t) + B(\theta)u(t) \\ \dot{\theta} = 0 \leftarrow added states \\ y(t) = C(\theta)x(t). \end{cases}$$

C. Afri: afri@lagep.univ-lvon1.fr

イロト 不得下 イヨト イヨト LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

3

Outline

Problem description

2 Solution by Luenberger observers approach

3 Numerical illustration

4 Perspectives

C. Afri: afri@lagep.univ-lyon1.fr

LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

• Introduce an extended dynamic system controlled by the known process inputs and outputs.

$$\dot{z} = \Lambda z + Ly$$
, $\dot{w} = g(w, u)$, $z \in \mathbb{R}^r$, $w \in \mathbb{R}^r$.

C. Afri: afri@lagep.univ-lyon1.fr

LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

C. Afri:

Synthesis steps

• Introduce an extended dynamic system controlled by the known process inputs and outputs.

$$\dot{z} = \Lambda z + L y$$
, $\dot{w} = g(w, u)$, $z \in \mathbb{R}^r$, $w \in \mathbb{R}^r$.

Find a mapping (x, θ, w) → T(x, θ, w) in C¹ which satisfies the following ODE

 $\dot{T}(x,\theta,w) = \Lambda T(x,\theta,w) + Ly$.

LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

afri@lagep.univ-lvon1.fr

Synthesis steps

• Introduce an extended dynamic system controlled by the known process inputs and outputs.

$$\dot{z} = \Lambda z + L y$$
, $\dot{w} = g(w, u)$, $z \in \mathbb{R}^r$, $w \in \mathbb{R}^r$.

Find a mapping (x, θ, w) → T(x, θ, w) in C¹ which satisfies the following ODE

$$\dot{T}(x,\theta,w) = \Lambda T(x,\theta,w) + Ly$$
.

Implies the following equation

$$\dot{e}(t) = \Lambda e(t),$$

where $e(t) = z(t) - T(x(t), \theta, w(t))$

C. Afri: afri@lagep.univ-lyon1.fr

▲ロト 4 日 ト 4 日 ト 4 日 ト 日 予 ○ へ へ g/ LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

Synthesis steps

• If Λ is a Hurwitz matrix then z is an estimate of T

$$\lim_{t\to+\infty}|z(t)-T(x(t),\theta,w(t))|=0.$$

C. Afri: afri@lagep.univ-lyon1.fr

LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

Synthesis steps

• If Λ is a Hurwitz matrix then z is an estimate of T

$$\lim_{t\to+\infty}|z(t)-T(x(t),\theta,w(t))|=0.$$

The nonlinear Luenberger observer is given as

$$\begin{aligned} \dot{z} &= \Lambda z + Ly \\ \dot{w} &= g(w, u) \\ (\hat{x}, \hat{\theta}) &= T^*(z(t), w(t)) \end{aligned}$$

 T^* : is the left inverse of T.

C. Afri: afri@lagep.univ-lyon1.fr

Difficulties

1- Is there an explicit expression for T ?

C. Afri: afri@lagep.univ-lyon1.fr

LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

Difficulties

- 1- Is there an explicit expression for T ?
- 2- Is T injective and full rank ?

C. Afri: afri@lagep.univ-lyon1.fr

LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

C. Afri:

Difficulties

- 1- Is there an explicit expression for T ?
- 2- Is T injective and full rank ?

3- Is there an explicit expression for T^* ?

Identification of linear systems with nonlinear Luenberger observers

afri@lagep.univ-lvon1.fr

Theorem 1

For any r-uplet of real negative elements $(\lambda_1,\ldots,\lambda_r)$ such that

$$\lambda_i \notin \left(\bigcup_{\theta \in \Theta} \sigma\{A(\theta)\}\right) \ i = 1, \dots, r$$

The mapping $T(x, \theta, w) = [T_1(x, \theta, w_1) \dots T_r(x, \theta, w_r)]^\top$ is a solution. with

$$\begin{array}{rcl} T_i: & \mathbb{R}^n \times \Theta \times \mathbb{R} & \to & \mathbb{R} \\ & (x, \theta, w_i) & \to & T_i(x, \theta, w_i) = C(\theta)(A(\theta) - \lambda_i I_n)^{-1} [x - B(\theta) w_i], \end{array}$$

and

$$g: \quad \mathbb{R}^r \times \mathbb{R} \quad \mapsto \mathbb{R}^r \\ (w, u) \quad \mapsto g(w, u) = \Lambda w + Lu$$

 $\Lambda = \text{Diag}\{\lambda_1, \dots, \lambda_r\}; \ L = \mathbf{1}_r.$

C. Afri: afri@lagep.univ-lyon1.fr

LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

Question 2: Is T injective and full rank?

$$T(x,\theta,w) = \begin{bmatrix} T_1(x,\theta,w_1) \dots T_r(x,\theta,w_r) \end{bmatrix}^\top$$

C. Afri: afri@lagep.univ-lyon1.fr

LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

Question 2: Is T injective and full rank?

$$T(x,\theta,w) = \left[T_1(x,\theta,w_1)\ldots T_r(x,\theta,w_r)\right]^\top$$

$\begin{array}{rccc} T_i: & \mathbb{R}^n \times \Theta \times \mathbb{R} & \to & \mathbb{R} \\ & (x, \theta, w_i) & \to & T_i(x, \theta, w_i) = C(\theta)(A(\theta) - \lambda_i I_n)^{-1}[x - B(\theta)w_i], \end{array}$

 $4 \square \rightarrow 4 \square \rightarrow 4 \supseteq \rightarrow 4 \supseteq \rightarrow 2 \square 2 \square 13/32$ LAGEP – AMPÈRE LAGEP, UMR 5007, UCBLI-CNRS, ACC 2015 Chicago

C. Afri: afri@lagep.univ-lyon1.fr

Question 2: Is T injective and full rank ?

$$T(x,\theta,w) = \left[T_1(x,\theta,w_1)\ldots T_r(x,\theta,w_r)\right]^\top$$

$\begin{array}{rccc} T_i: & \mathbb{R}^n \times \Theta \times \mathbb{R} & \to & \mathbb{R} \\ & (x, \theta, w_i) & \to & T_i(x, \theta, w_i) = C(\theta)(A(\theta) - \lambda_i I_n)^{-1}[x - B(\theta)w_i], \end{array}$

Is it an injective and full rank function?

C. Afri: afri@lagep.univ-lyon1.fr

Question 2: Is T injective and full rank ?

$$T(x,\theta,w) = \left[T_1(x,\theta,w_1)\ldots T_r(x,\theta,w_r)\right]^\top$$

 $\begin{array}{rcl} T_i: & \mathbb{R}^n \times \Theta \times \mathbb{R} & \to & \mathbb{R} \\ & (x, \theta, w_i) & \to & T_i(x, \theta, w_i) = C(\theta)(A(\theta) - \lambda_i I_n)^{-1} [x - B(\theta) w_i], \end{array}$

Is it an injective and full rank function?

Answer

If the input makes the extended system observable, then by choosing the eigenvalues λ_i sufficiently large the function T is injective and full rank after a transient.

C. Afri: afri@lagep.univ-lyon1.fr

LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - の々で

Question 2: Is T injective and full rank?

Let the mapping $H_r: \Theta \to \mathbb{R}^{r \times n}$ be defined as

$$heta\mapsto H_r(heta)=egin{bmatrix} C(heta)\ C(heta)A(heta)\ dots\ C(heta)A(heta)\ dots\ C(heta)A(heta)^{r-1}\end{bmatrix},$$

C. Afri: afri@lagep.univ-lyon1.fr

Question 2: Is T injective and full rank ?

Let the mapping $H_r: \Theta \to \mathbb{R}^{r \times n}$ be defined as

$$heta \mapsto H_r(\theta) = \begin{bmatrix} C(\theta) \\ C(\theta)A(\theta) \\ \vdots \\ C(\theta)A(\theta)^{r-1} \end{bmatrix},$$

and $G_r: \Theta \to \mathbb{R}^{r \times r}$ be defined as

$$\theta \mapsto G_r(\theta) = \begin{bmatrix} 0 & 0 & \cdots & \cdots & 0 \\ C(\theta)B(\theta) & 0 & \cdots & \cdots & 0 \\ C(\theta)A(\theta)B(\theta) & C(\theta)B(\theta) & \cdots & \cdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \cdots & 0 \\ C(\theta)A(\theta)^{r-2}B(\theta) & C(\theta)A(\theta)^{r-3}B(\theta) & \cdots & \cdots & C(\theta)B(\theta) & 0 \end{bmatrix},$$

then

$$\begin{bmatrix} y(t) & \dot{y}(t) & \cdots & y^{(r-1)}(t) \end{bmatrix} = H_r(\theta)x + G_r(\theta)v$$

C. Afri: afri@lagep.univ-lyon1.fr

LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

Question 2: Is T injective and full rank ?

Assumption (Uniform differential observability)

There exist two compact subsets $\mathscr{C}_{\theta} \in \Theta$, $\mathscr{C}_{x} \in \mathbb{R}^{n}$, an integer r and U_{r} a bounded subset of \mathbb{R}^{r-1} such that the mapping \mathfrak{H}_{r} is injective and foll rank

$$\mathfrak{H}_r(x,\theta,v) = H_r(\theta)x + G_r(\theta)v$$
,

for all (x, θ) and (x^*, θ^*) both in $Cl(\mathscr{C}_{\theta}) \times Cl(\mathscr{C}_x)$ and all v in U_r .

Or, there exist L > 0 such that

$$|\mathfrak{H}_r(x^*, \theta^*, v) - \mathfrak{H}_r(x, \theta, v)| \ge L igg| igg| x - x^* \\ heta - heta^* \end{bmatrix} igg| .$$

C. Afri: afri@lagep.univ-lyon1.fr

LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

C. Afri

Question 2: Is T injective and full rank ?

Theorem 2

- Assume the assumption holds. Let $u(\cdot)$ be a bounded $C^{r-2}([0,+\infty])$ function with bounded r-2 first derivatives $\bar{u}^{(r-2)}(\cdot)$.
- For all $(\tilde{\lambda}_1, \ldots, \tilde{\lambda}_r)$, for all positive time τ and all $t_1 \geq \tau$, if $\bar{u}(t_1)$ is in U_r then for all (x, θ) and (x^*, θ^*) in $\mathscr{C}_x \times \mathscr{C}_{\theta}$, T is injective and full rank.
- Or, there exist two positive real numbers k^* and L_T such that for all $k > k^*$

$$|\mathcal{T}(x, heta,w(t_1))-\mathcal{T}(x^*, heta^*,w(t_1))|\geq rac{L_{\mathcal{T}}}{k^r}\left|egin{bmatrix} x-x^*\ heta- heta^*\end{bmatrix}
ight|.$$

With the mapping T is defined by taking $\lambda_i = k \tilde{\lambda}_i$.

afri@lagep.univ-lvon1.fr

The general form of T^* is the optimization of the following criteria

$$(\hat{x}(t),\hat{\theta}(t)) = \underset{x,\theta}{\arg\min} \|T(x(t),\theta,w(t)) - z(t)\|_{2}^{2}$$

 $T(x, \theta, w)$ is nonlinear \Rightarrow iterative optimization methods.

C. Afri: afri@lagep.univ-lyon1.fr

C. Afri:

Question 3: Existence of an explicit expression for T^*

The general form of T^* is the optimization of the following criteria

$$(\hat{x}(t), \hat{\theta}(t)) = \underset{x,\theta}{\arg\min} \|T(x(t), \theta, w(t)) - z(t)\|_2^2$$

 $T(x, \theta, w)$ is nonlinear \Rightarrow iterative optimization methods.

We are looking for an explicit expression of T^* .

afri@lagep.univ-lvon1.fr

Let the canonical observable structure

$$A(\theta) = A(\theta_{a}) = \begin{bmatrix} -\theta_{a1} & 1 & 0 & \cdots & 0 \\ -\theta_{a2} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & 1 \\ -\theta_{an} & 0 & 0 & \cdots & 0 \end{bmatrix} \in \mathbb{R}^{n \times n},$$
$$B(\theta) = B(\theta_{b}) = \begin{bmatrix} \theta_{b1} & \theta_{b2} & \cdots & \theta_{bn} \end{bmatrix}^{\top} \in \mathbb{R}^{n \times 1},$$

All strictly proper linear SISO systems can be written in this form.

C. Afri: afri@lagep.univ-lyon1.fr

4 □ ▶ 4 2 ▶ 4 2 ▶ 4 2 ▶ 2 少久で 18/ LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

For all i = 1, ..., r, we have

$$z_i(t) = T_i(\hat{x}(t), \hat{\theta}, w_i(t)) = C(A(\hat{\theta}) - \lambda_i I_n)^{-1} [\hat{x}(t) - B(\hat{\theta}) w_i(t)]$$

By using the Kronecker algebra, we can get the following expression

$$z_{i} = \underbrace{\begin{bmatrix} z_{i}V_{i}^{T} & V_{i}^{T} & -(w_{i}^{T} \otimes V_{i}^{T}) \end{bmatrix}}_{P_{i}(z_{i},w_{i})} \begin{bmatrix} \hat{\theta}_{a} \\ \hat{x} \\ \hat{\theta}_{b} \end{bmatrix}$$

The solution is given by

 $(\hat{\theta}_a(t), \hat{x}(t), \hat{\theta}_b(t))^T = (P(z(t), w(t))^\top P(z(t), w(t)))^{-1} P(z(t), w(t))^\top z(t)$

where:
$$P(z, w) = [P_1(z_1, w_1)^\top, \cdots, P_r(z_r, w_r)^\top]^\top \in \mathbb{R}^{r \times (2n+1)}$$
 and
 $V_i = \begin{bmatrix} \frac{1}{\lambda_i} & \cdots & \frac{1}{\lambda_i^n} \end{bmatrix}^\top \in \mathbb{R}^n, r \ge 4n-1$

C. Afri: afri@lagep.univ-lyon1.fr

4 □ ▶ 4 2 ▶ 4 2 ▶ 4 2 ▶ 2 少久で 19/ LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

Question ?

Under which conditions on $T(x, \theta, w)$ and λ_i is the matrix P full rank column?

C. Afri: afri@lagep.univ-lyon1.fr

LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

Question ?

Under which conditions on $T(x, \theta, w)$ and λ_i is the matrix P full rank column?

Proposition

If the matrices $A(\theta)$, $B(\theta)$ and $C(\theta)$ have the observable form, if the λ_i 's are different from $A(\theta)$ eigenvalues and if the dimension of T $r \ge 4n-1$, then for any (z, x, θ, w) such that $z = T(x, \theta, w)$ and

$$\operatorname{rank}\left(\frac{\partial T}{\partial(x,\theta)}(x,\theta,w)\right) = r$$

the matrix P is a full rank column.

C. Afri: afri@lagep.univ-lyon1.fr

4 □ ▶ 4 2 ▶ 4 2 ▶ 4 2 ▶ 2 少久で 20/ LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

C. Afri:

Question 3: Existence of an explicit expression for T^*

Result

• When z(t) is in Im(T), the Luenberger observer

$$\begin{cases} \dot{z}(t) = \Lambda z(t) + Ly(t) \\ \dot{w}(t) = \Lambda w(t) + Lu(t) \\ (\hat{x}(t), \hat{\theta}(t)) = (P^{T}(w(t), z(t))P(w(t), z(t)))^{-1}P^{T}z(t), \end{cases}$$

is well defined.

LAGEP – AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

<ロト <回ト < 回ト < 回ト < 回ト - 三回

Identification of linear systems with nonlinear Luenberger observers

afri@lagep.univ-lvon1.fr

Result

• When z(t) is in Im(T), the Luenberger observer

$$\begin{cases} \dot{z}(t) = \Lambda z(t) + Ly(t) \\ \dot{w}(t) = \Lambda w(t) + Lu(t) \\ (\hat{x}(t), \hat{\theta}(t)) = (P^{T}(w(t), z(t))P(w(t), z(t)))^{-1}P^{T}z(t), \end{cases}$$

is well defined.

• In the transient phase we can not guarantee that *P* is of full rank column. If it is numerically not the case, we keep the old values of the unknown parameters.

4 □ ▶ 4 2 ▶ 4 2 ▶ 4 2 ▶ 2 少久で 21/ LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

Outline

Problem description

2 Solution by Luenberger observers approach

3 Numerical illustration

4 Perspectives

C. Afri: afri@lagep.univ-lyon1.fr

LAGEP – AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

Black box model

$$\dot{x}(t) = \begin{bmatrix} -\theta_{a1} & 1 \\ -\theta_{a2} & 0 \end{bmatrix} x(t) + \begin{bmatrix} \theta_{b1} \\ \theta_{b2} \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t)$$

We want to estimate θ_{a1} , θ_{a2} , θ_{b1} , θ_{b2} and state x_2 from knowledge of signals u(t) and y(t).

 $\begin{array}{l} (z(0) , w(0)) = (0 , 0) \\ \hline (x_1(0), x_2(0), \theta_{a1}(0), \theta_{a2}(0), \theta_{b1}(0), \theta_{b2}(0)) = (0, 0.5, 2, 3, 1, -1) \\ \hline (\hat{x}_1(0), \hat{x}_2(0), \hat{\theta}_{a1}(0), \hat{\theta}_{a2}(0), \hat{\theta}_{b1}(0), \hat{\theta}_{b2}(0)) = (0, 0, 0, 0, 0, 0) \end{array}$

Table: Initial configuration of the system and the observer states.

C. Afri: afri@lagep.univ-lyon1.fr

4 □ ▶ 4 2 ▶ 4 注 ▶ 4 注 ▶ 注 シ へ 23/ LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

Simulation without noise effect

Figure: Estimation of parameters θ_{a1} and θ_{a2} .

C. Afri: afri@lagep.univ-lyon1.fr

LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

ъ

イロト イロト イヨト イヨト

Simulation without noise effect

Figure: Estimation of parameters θ_{b1} and θ_{b2} .

C. Afri: afri@lagep.univ-lyon1.fr

LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

ъ

イロト イボト イヨト イヨト

26/32

Simulation without noise effect

Figure: Comparison between estimated output $\hat{y}(t)$ and real output y(t).

LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

イロト イボト イヨト イヨト

Simulation with output added noise of 5%

Figure: Estimation of parameters θ_{a1} and θ_{a2} .

C. Afri: afri@lagep.univ-lyon1.fr

LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

イロト イ押ト イヨト イヨト

28/32

Simulation with output added noise of 5%

Figure: Estimation of parameters θ_{b1} and θ_{b2} .

C. Afri: afri@lagep.univ-lyon1.fr

LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

イロト イボト イヨト イヨト

Simulation with output added noise of 5%

Figure: Comparison between estimated output $\hat{y}(t)$ and real output y(t).

LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

《曰》 《問》 《臣》 《臣》

Outline

Problem description

Solution by Luenberger observers approach

3 Numerical illustration

Perspectives

C. Afri: afri@lagep.univ-lyon1.fr

LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

Perspectives

- Numerical comparison with other approaches in literature.
- Study of the observer robustness with respect to noise.
- Study of the persistency excitation of input and observer order.
- Application of this approach on a real system.

on1.fr LAGEP – AN

C. Afri: afri@lagep.univ-lyon1.fr

Identification of linear systems with nonlinear Luenberger observers

LAGEP – AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago

Э

イロト 不得下 イヨト イヨト

THANK YOU

- ・ロト・日本・モト・モー シスペ _{32/}

C. Afri: afri@lagep.univ-lyon1.fr

LAGEP - AMPÈRE LAGEP, UMR 5007, UCBL1-CNRS, ACC 2015 Chicago