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Identification of linear systems with nonlinear Luenberger Observers

Chouaib Afri1∗, Vincent Andrieu1,3, Laurent Bako2 and Pascal Dufour1

Abstract— The design of a nonlinear Luenberger observer for
a parametrized linear system is studied. From an observability
assumption of the system, the existence of such an observer is
concluded. In a second step, a constructive novel algorithm for
the identification of multi-input multi-output linear systems is
suggested and is implemented on a second order system.

I. INTRODUCTION

In this note, a parametrized linear system described by the
following equation is considered:

ẋ = A(θ)x+B(θ)u , y =C(θ)x, (1)

where θ in Θ⊂Rq is a vector of unknown parameters and Θ

is a known set, u in Rm is a controlled input (in L ∞
loc(R+)).

The state x is in Rn and y is the measured outputs in Rp.
Mappings A : Θ→ Rn×n, B : Θ→ Rn×m and C : Θ→ Rp×n

are known C1 matrix valued functions.
In the following, an estimation problem is considered:

The design of an observer to estimate the state and the
unknown parameters of the system from the knowledge of
y is seek. In other word, an asymptotic observer for the
extended (nonlinear) n+q dimensional system

ẋ = A(θ)x+B(θ)u , θ̇ = 0 , y =C(θ)x (2)

has to be designed. The nonlinear Luenberger methodology
introduced in [8] (see also [13], [5], [7], [2], [1]) is a
method which permits to design an observer based on weak
observability assumptions. Following this approach, the first
step is to design a C1 function (x,θ ,w) 7→ T (x,θ ,w) such that
the following partial differential equation (PDE) is satisfied:

∂T
∂x

(x,θ ,w)[A(θ)x+B(θ)u]+
∂T
∂w

(x,θ ,w)g(w,u)

= ΛT (x,θ ,w)+LC(x,θ)x , (3)

where Λ is a Hurwitz squared matrix, L a matrix and g is
a controlled vector field. Dimensions of the matrices and
of the vector field g must be taken consistently. This will
be precisely defined in the following. The interest on this
mapping is highlighted if (z(·),w(·)), the solution initiated
from (z0,w0) of the dynamical system, is considered:

ż = Λz+Ly , ẇ = g(w,u) .
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Indeed, assuming completeness (of the w part of the solu-
tion), for all positive time t:

˙︷ ︷
z(t)−T (x(t),θ ,w(t)) = Λ(z(t)−T (x(t),θ ,w(t))) .

Hence, due to the fact that Λ is Hurwitz, *asymptotically get

lim
t→+∞

|z(t)−T (x(t),θ ,w(t))|= 0 . (4)

In other words, z provides an estimate of the function T .
The second step of the Luenberger design is to left invert the
function T in order to reconstruct the extended state (x,θ)
from the estimate of T . Hence, a mapping T ∗ has to be
constructed such that

T ∗(T (x,θ ,w),w) = (x,θ) . (5)

Of course, this property requires the mapping T to be
injective. The final observer is simply

ż = Λz+Ly , ẇ = g(w,u) , (x̂, θ̂) = T ∗(z,w) .

A particularly interesting feature of this observer is that its
convergence rate can be made as large as requested (see [1]).
In this paper, this strategy is adopted to suggest a solution
to the state and parameters estimation for system (2). This
paper can be seen as an extension of the result of [12] in
which a nonlinear Luenberger observer is constructed for a
harmonic oscillator which fits in the class of system studied.

As will be seen in Section IV, our approach can be
employed to identify the state and all parameters describing
an unknown linear model. This topic has been widely studied
in the literature (see the books [4], [10], [11]). Adaptive
identifiers can be traced back to G. Kreisselmeier in [6].
In this paper three algorithms were given for identification
of a SISO system in a specific controllable and observable
representation. This work has then been extended in many
directions to allow time varying matrices and MIMO systems
(see for instance [3], [9], [14]).

The algorithm given in Section IV gives a new approach to
address the same problem. It has the advantage to allow for
a prescribed convergence rate for MIMO systems. Moreover,
its structure is relatively simple (see (27)) and its dimension
significantly smaller than that of available algorithms. One of
the main difference is that, in contrast to all other available
approaches, no optimization step is required.

The paper is organized as follows: In Section II, the
existence of a mapping T which solves the partial differential
equation (3) is discussed. Section III is devoted to the
study of the injectivity of the mapping T assuming some
observability properties. In Section IV, a left inverse of
the mapping T is constructed to get the observer when



considering a specific structure for the matrices A, B and
C. This leads to a novel solution for the identification of
MIMO linear time invariant systems.

Notations:
• Given a matrix A in Rn×n, σ(A) denotes its spectrum.
• 1n denotes the n dimensional real vector composed of 1.
• In denotes the n dimensional identity matrix.
• ⊗ stands for the Kronecker product between two matrices.
• Given a C j function u: ū( j)(t) =

[
u . . . u( j)

]>.
• For a vector or a matrix | · | denotes the usual 2-norm.
• Given a function ρ : R+×T →R+ the notation ρ(s, t) = o(s)

is used if for all ε > 0, there exists s0 > 0 such that for all
(s, t) in (0,s0)×T such that:

ρ(s, t)≤ εs .

• Given a set C, Cl(C) is its closure.

II. EXISTENCE OF THE MAPPING T

In [2], it is shown that, in the autonomous case the
existence of the mapping T , solution of the PDE (3), is
obtained for almost all Hurwitz matrices Λ. In the context of
the controlled system (2), the same type of result still holds.
Moreover, an explicit solution of the PDE (3) may be given.

Theorem 1 (Existence of T ): Let r be a positive integer.
For all r-uplet of negative real numbers (λ1, . . . ,λr) such that

λi /∈

(⋃
θ∈Θ

σ{A(θ)}

)
, i = 1, . . . ,r, (6)

there exists a linear in x function T : Rn×Θ×Rmr → Rpr

solution to the PDE (3) with Λ=Diag{λ1, . . . ,λr}⊗Ip , L=
1r⊗ Ip , and g : Rrm×Rm 7→Rrm defined as g(w,u) = Λmw+
Lmu with Λm = Diag{λ1, . . . ,λr}⊗ Im , Lm = 1r⊗ Im .

Proof: Keeping in mind that the spectrum of Λ and
A(θ) are disjoint (see (6)), the matrix Mi(θ) in Rp×n can be
defined for all i in {1, . . . ,r}:

Mi(θ) =C(θ)(A(θ)−λiIn)
−1 .

For all i = 1, . . . ,r, let Ti : Rn×Θ×Rm→Rp and the vector
field gi : Rm×Rm→ Rm be defined as:

Ti(x,θ ,wi) = Mi(θ)[x−B(θ)wi] , gi(wi,u) = λiwi +u , (7)

It can be noticed that Ti is solution to the PDE

∂Ti

∂x
(x,θ ,wi)[A(θ)x+B(θ)u]+

∂Ti

∂wi
(x,θ ,wi)gi(wi,u)

= λiTi(x,θ ,wi)+C(θ)x .

Hence, the solution of the PDE (3) is simply taken as

T (x,θ ,w) =
[
T1(x,θ ,w1) . . . Tr(x,θ ,wr)

]>
. (8)

This ends the proof.
Remark 1: Note that in the particular case in which the

system is autonomous and there is only one output, the
mapping T is given as

To(x,θ) = M(θ)x , M(θ) =

M1(θ)
...

Mr(θ)

 . (9)

This matrix is solution to the following parametrized
Sylvester equation

M(θ)A(θ) = ΛM(θ)+LC(θ) . (10)

Hence, taking r = n, the well known Luenberger observer
introduced in [8] in the case of autonomous systems is
recovered. Note however that, here, the injectivity is more
involved than in the context of [8] since θ is unknown.

Remark 2: Note that if the set Θ is bounded, then it is
ensured that there exists (λi)’s which satisfy equation (6).
Indeed, if Θ is bounded, then the set (

⋃
θ∈Θ σ{A(θ)}) is a

bounded set. This can be obtained from the fact that each
eigenvalues λ in σ{A(θ)} is a zero of the characteristic
polynomial:

λ
n +µ1(θ)λ

n−1 + · · ·+µn−1(θ)λ +µn(θ) = 0, (11)

where µi(θ) are continuous function of θ . Boundedness of
Θ together with the continuity of the µi’s imply that there
is c > 0 such that |µi(θ)| ≤ c ∀i ∈ {1, . . . ,n}, ∀θ ∈ Θ. As a
consequence if |λ |> 1, we must have

|λ | ≤
n

∑
j=1
|µ j(θ)||λ |1− j ≤ c

1−1/|λ |

which hence implies that |λ | ≤ c+1.

III. INJECTIVITY

As seen in the previous section, it is known that if the
following dynamical extension is considered:

ż = Λz+Ly , ẇ = Λmw+Lmu (12)

with z in Rrp and w in Rrm, then it yields that along
the solution of the system (2)-(12), equation (4) is true.
Consequently, T (x,θ ,w) defined in (7)-(8) is asymptotically
estimated. The question that arises is whether this informa-
tion is sufficient to get the knowledge of x and θ . This is
related to the injectivity property of this mapping. As shown
in [2], in the autonomous case this property is related to the
observability of the extended system (2). With observability,
it is sufficient to take r large enough to get injectivity. Here,
the same type of result holds if it is assumed an observability
uniform with respect to input in a specific set.

In order to simplify the presentation, the SISO case is
considered. The following strong observability assumption
is made:

Assumption 1 (Uniform differential injectivity):
There exist two bounded open subsets Cθ ⊂ Θ, Cx ⊂ Rn,
an integer r and Ur a bounded subset of Rr such that the
mapping

Hr(x,θ ,v) = Hr(θ)x+
r

∑
j=1

S jHr(θ)B(θ)v j−1 ,

with

Hr(θ) =


C(θ)

C(θ)A(θ)
...

C(θ)A(θ)r−1





v = (v0, . . . ,vr−1) and S is the shift matrix operator such that
for all s = (s1, . . . ,sr), S× s = (0,s1, . . .sr−1) is injective in
(x,θ), uniformly in (x,θ ,v)∈Cl(Cθ )×Cl(Cx)×Ur and full
rank. More precisely, there exists a positive real number L
such that for all (x,θ) and (x∗,θ ∗) in Cl(Cθ )×Cl(Cx) and
all v in Ur

|Hr(x∗,θ ∗,v)−Hr(x,θ ,v)| ≥ L(|x− x∗|+ |θ −θ
∗|) .

The following result establishes an injectivity property for
large eigenvalues of the observer.

Theorem 2: Assume Assumption 1 holds. Let u(·) be a
bounded Cr−1([0,+∞]) function with bounded r − 1 first
derivatives, i.e. there exists a positive real number u such
that

|ū(r−1)(t)| ≤ u , ∀t ≥ 0 . (13)

For all r-uplet of distinct negative real numbers (λ̃1, . . . , λ̃r),
for all positive time τ and for all w0 in Rr, there exist two
positive real numbers k∗ and LT such that for all k > k∗ the
mapping defined in (7)-(8) with λi = kλ̃i, i = 1, . . . ,r satisfies
the following injectivity property in C = Cx×Cθ . For all
t1 ≥ τ , if ū(t1) is in Ur then for all (x,θ) and (x∗,θ ∗) in
Cx×Cθ the following inequality holds:

|T (x,θ ,w(t1))−T (x∗,θ ∗,w(t1))| ≥
LT

kr (|x− x∗|+ |θ −θ
∗|)

(14)
where w(·) is the solution of the w dynamics in (12) initiated
from w0.

Proof: First of all, picking k sufficiently large implies
that the matrix Mi which satisfies

Mi(θ) =
1

kλ̃i
C(θ)

(
1

kλ̃i
A(θ)− In

)−1

is well defined. On another hand, assume that k is sufficiently
large such that for all i in [1,r],

k|λ̃i| ≥ |A(θ)| , ∀θ ∈ Cθ . (15)

This implies that, for θ in Cθ :

Mi(θ) =−
r

∑
j=1

1
(kλ̃i) j

C(θ)A(θ) j−1 +Ri(θ) ,

with

Ri(θ) =−
+∞

∑
j=r+1

C(θ)A(θ) j−1

(kλ̃i) j
.

Note moreover that Ri is a C1 function which satisfies for θ

in Cθ :

|Ri(θ)|= o
(

1
kr

)
,

∣∣∣∣∂Ri

∂θ
(θ)

∣∣∣∣= o
(

1
kr

)
. (16)

Moreover, Mi can be stated in the form which will be useful
in the following: Let K be the matrix in Rr×r defined as
K = Diag

{ 1
k , . . . ,

1
kr

}
and Ṽi =

[
1
λ̃i

1
λ̃ 2

i
. . . 1

λ̃ r
i

]
Note that:

Mi(θ) =−ṼiK Hr(θ)+o
(

1
kr

)
.

On another hand, for all t, since u is Cr and w(·) being
solution of (12) (in the SISO case), one get:

w( j)
i (t) = (kλ̃i)w

( j−1)
i (t)+u( j−1)(t) , j = 1, . . . ,r .

which implies that wi satisfies:

wi(t) =−
r−2

∑
j=0

u( j)(t)
(kλ̃i) j+1

+Rwi(t)

where: Rwi(t) =
w(r−1)

i (t)

(kλ̃i)r−1
=

exp(kλ̃it)w
(r−1)
i (0)

(kλ̃i)r−1
+∫ t

0
exp((kλ̃i)(t− s))

u(r−1)

(kλ̃i)r−1
ds

and with:

w(r−1)
i (0) = (kλ̃i)

r−1wi(0)+
r−1

∑
j=1

(kλ̃i)
r−1− ju( j)(0) .

Hence, with (13), it yields that for all t :

|Rwi(t)| ≤C exp(kλ̃it)+
u

(kλ̃i)r

where C is a positive real number which depends on wi(0)
and (u(0), . . . ,u(r−2)(0)). Keeping in mind that λ̃i is negative,
when t is larger than τ > 0, the previous inequality satisfies

|Rwi(t)| ≤ Rwi0(k) = o
(

1
kr

)
,∀t ≥ τ ,

where Rwi0 depends on k but not on t.
This implies that by collecting terms of higher order in 1

k
in a function denoted RMBi:

Mi(θ)B(θ)wi(t)= ṼiK
r

∑
j=1

S jHr(θ)B(θ)u( j−1)(t)+RMBi(θ , t)

and with (16) and using the fact that Cθ and u( j)(t) are
bounded, for all t ≥ τ:1

|RMBi(θ , t)|= o
(

1
kr

)
,

∣∣∣∣∂RMBi

∂θ
(θ , t)

∣∣∣∣= o
(

1
kr

)
.

Finally:

Ti(x,θ ,wi(t)) = ṼiK Hr(x,θ , ū(r−1)(t)) + RTi(x,θ , t)

and for all (x,θ) in Cx×Cθ which is bounded and all t ≥ τ ,
it yields:∣∣∣∣∂RTi(x,θ , t)

∂x

∣∣∣∣= o
(

1
kr

)
,

∣∣∣∣∂RTi(x,θ , t)
∂θ

∣∣∣∣= o
(

1
kr

)
.

This implies:

T (x,θ ,wi(t))= Ṽ K Hr(x,θ , ū(r−1)(t))+RT (x,θ , t) , (17)

where Ṽ in Rr×r is the Vandermonde matrix defined as:

Ṽ =


1

λ̃1
·· 1

λ̃ r
1

: :
1
λ̃r
·· 1

λ̃ r
r

 ,

1In this equation and in the following the notation o
( 1

kr

)
is uniform in

t ≥ τ .



and RT is a C1 function which satisfies for all (x,θ) in Cx×
Cθ and t ≥ τ:∣∣∣∣∂RT (x,θ , t)

∂x

∣∣∣∣= o
(

1
kr

)
,

∣∣∣∣∂RT (x,θ , t)
∂θ

∣∣∣∣= o
(

1
kr

)
.

Hence the mapping RT is globally Lipschitz with a Lipschitz
constant in o

( 1
kr

)
. Hence, it is possible to find k0 such that

for all k ≥ k0 and all quadruples (x,x∗,θ ,θ ∗) in C 2
x ×C 2

θ
,

for all t ≥ τ:

|RT (x,θ , t)−RT (x∗,θ ∗, t)|

≤ L
2
∣∣Ṽ −1

∣∣kr
(|x− x∗|+ |θ −θ

∗|) . (18)

It can be shown that the result holds with this value of k0.
Employing (17), it yields that, for all t:

|T (x,θ ,w(t))−T (x∗,θ ∗,w(t))|

≥
∣∣∣Ṽ K

[
Hr(x,θ , ū(r−1)(t))−Hr(x∗,θ ∗, ū(r−1)(t))

]∣∣∣
−|RT (x,θ , t)−RT (x∗,θ ∗, t)| .

≥

∣∣∣Hr(x,θ , ū(r−1)(t))−Hr(x∗,θ ∗, ū(r−1)(t))
∣∣∣

|Ṽ −1||K −1|
−|RT (x,θ , t)−RT (x∗,θ ∗, t)| .

Consider now t1 ≥ τ , the last term of the previous in-
equality can be lower-bounded by (18). Moreover, if
u(t1) . . . ,u(r−1)(t1) is in Ur, the other term can be lower-
bounded based on Assumption 1 and the result follows.

IV. CASE OF IDENTIFICATION PROBLEMS

A. State and parameter estimation algorithm

A concrete algorithm for computing simultaneously the
state and the parameter vector θ of the linear system (1) is
now derived. Such estimates can be obtained as:

(x̂(t), θ̂(t)) = argmin
x,θ

|T (x,θ ,w(t))− z(t)|2 (19)

where z(t) is the value obtained by integrating the dynamical
system (12) starting from an arbitrary user-defined initial
value (z(0),w(0)). The formulation (19) can be seen as one
way of inverting the mapping T (see (5)). A distinctive
feature of the optimization problem (19) which is worth
pointing out is that all data involved in it are signals at time t.
Hence there is no explicit use of the data relevant to the past.
Solving the problem (19) can be very challenging, because
the mapping T is in general nonlinear and can be highly
complex. As a consequence, the optimization problem (19)
is non-convex so that solving it directly might require an
iterative searching scheme. One simple way to tackle it is as
follows. Let imT ⊂Rnz , nz = pr, denote the range of the map
T . Assume that z(t) ∈ imT for some t. Such an assumption
seems quite reasonable since z(t) converges exponentially to
imT as stated by (4). Under this assumption, the estimates
x̂(t) and θ̂(t) can be searched such that:

T (x̂(t), θ̂(t),w(t)) = z(t)

But explicit determination of the expression of those esti-
mates is still missing. For this purpose, let us consider par-
ticular canonical structures for the matrix-valued functions
A, B, C in (1) :

A(θ) = A(θa) =


−θa1Ip Ip 0 ·· 0
−θa2Ip 0 Ip ·· 0

: : :
. . . :

: : : Ip
−θadIp 0 0 ·· 0

 ∈ Rn×n,

C(θ) = C =
[

Ip 0 · · · 0
]
∈ Rp×n,

B(θ) = B(θb) =
[
θb1 · · · θbm

]> ∈ Rn×m,
(20)

where n = d p, θbi ∈ Rn, i = 1, . . . ,m, and θ = [θa,θb] is in
Rd+mn with
θa =

[
θa1 ·· θad

]
∈ Rd , θb =

[
θ>b1 ·· θ>bm

]> ∈ Rmn .
Note that assuming such structures (20) for A,B,C is
without loss of generality: any input-output behavior of a
linear MIMO system can be described with a model of
this structure. Such a realization is however not necessarily
minimal but it is observable for any vector θ . The problem
of identifying canonical representations of linear systems
has been deeply investigated in the last three decades
employing mainly standard identification techniques (see for
instance [4] and references therein). Our approach offers a
new algorithm to address it. The interest of this one comes
from the fact that the dimension of the proposed observer
may not be too high and that the convergence rate is tunable
(see [1]). Let the mapping T be as in (7)-(8).

zi(t) = Mi(θ̂)
[
x̂(t)−B(θ̂)wi(t)

]
(21)

To carry out the calculations, it is convenient to observe that
the matrices A(θa) and C in (20) can be written as:

A(θa) = Ac⊗ Ip, C = eT
1 ⊗ Ip,

where ⊗ refers to the Kronecker product, e1 = [1 0 · · · 0]T ∈
Rd and

Ac =


−θa1 1 · · · 0

...
...

. . .
...

−θa(d−1) 0 · · · 1
−θad 0 · · · 0

 ∈ Rd×d .

Exploiting these expressions and doing a little manipulation
through Kronecker algebra lead to

Mi(θ) = (eT
1 ⊗ Ip)

[
(Ac−λiId)

−1⊗ Ip
]
. (22)

Let

Ji =


−λi 1 · · · 0

...
. . . . . .

...
0 · · · −λi 1
0 · · · 0 −λi

 ∈ Rd×d ,

then:
Ac−λiId = Ji−θaeT

1 .



Applying the Sherman-Morrison-Woodbury formula, one
gets:

(Ac−λiId)
−1 = J−1

i +
J−1

i θaeT
1 J−1

i

1− eT
1 J−1

i θa
(23)

where it is assumed that 1− eT
1 J−1

i θa 6= 0. Indeed it can be
easily checked that this is true provided the assumption (6)
holds. Combining (22) and (23) gives us:

(1− eT
1 J−1

i θa)Mi(θ) = (eT
1 J−1

i )⊗ Ip ,

which, together with (21), reveals that:

(1− eT
1 J−1

i θ̂a(t))zi(t)

= (eT
1 J−1

i ⊗ Ip)x̂(t)− (eT
1 J−1

i ⊗ Ip)B(θ̂b)wi .

Setting Vi =
[

1
λi

. . . 1
λ d

i

]>
∈ Rd , it can be verified that

V T
i = eT

1 J−1
i . Rearranging the previous expression, one gets:

zi =
[

ziV T
i V T

i ⊗ Ip −(wT
i ⊗V T

i )⊗ Ip
]︸ ︷︷ ︸

Pi(zi,wi)

θ̂a
x̂
θ̂b

 (24)

Finally, the following linear equation for (θ̂a, θ̂b, x̂) must be
solved:

z(t) = P(z(t),w(t))

θ̂a(t)
x̂(t)
θ̂b(t)

 (25)

where P(z,w) =
[
P1(z,w)> · · · Pr(z,w)>

]> ∈ Rpr×(n+q)

with q = nm+ d. A closed-form expression of the estimate
is then: θ̂a(t)

x̂(t)
θ̂b(t)

= (P(z,w)>P(z,w))−1P(z,w)>z(t) (26)

whenever the matrix P is full rank. However, the solu-
tion (26) can be efficiently computed only if the matrix
P(z(t),w(t)) has full column rank at any time t . This is
indeed related to the injectivity of the map T and more
precisely to its rank. Indeed, let us give the following
proposition:

Proposition 1: Assume that the matrix-valued functions
A, B, C in system (1) have the canonical structure (20).
Assume moreover that condition (6) holds. Then, for all
(z,x,θ ,w) such that z = T (x,θ ,w) and such that:

rank
(

∂T
∂ (x,θ)

(x,θ ,w)
)
= d +m(n+1)

then the matrix P defined in (24)-(25) has full column rank.
Proof: The proof follows from equation (25) in the case

in which zi = Ti(x,θ ,w). Indeed, differentiating with respect
to (x,θ) this equation yields to:

∂Ti

∂ (x,θ)
(x,θ ,w)=

∂Ti

∂ (x,θ)
(x,θ ,w)V>i θa+Pi(Ti(x,θ ,w),w)

This implies that

[1−V>i θa]
∂Ti

∂ (x,θ)
(x,θ ,w) = Pi(Ti(x,θ ,w),w)

Hence:

Diag(1−V T
1 θa, ...,1−V T

r θa)
∂T

∂ (x,θ)
(x,θ ,w) = P(z,w)

Again, since condition (6) holds, it yields that Diag(1−
V T

1 θa, ...,1−V T
r θa) is invertible and consequently P is full

rank if ∂T
∂ (x,θ) (x,θ ,w) is.

Consequently, since it is known that z converges asymp-
totically to imT , if T is injective and full rank, the observer
given in (26) is well defined after a certain time. However,
in the transient period, there is no guarantee that this matrix
is well defined. This problem has been deeply investigated
in [12] considering an autonomous second order system with
only one parameter.

B. Numerical illustration

In order to show the performances of the observer (12)-
(26), a second order linear system in the form (1) is simulated
in Matlab where:

A(θ) =
(

θ1 1
θ2 0

)
; B(θ) =

(
θ3
θ4

)
; C(θ) = ( 1 0 )

θi’s, the initial value x(0) and the input signal are given in
Table I.

θ1 = θ2 =−1; θ3 = θ2 = 0.5

x(0) = (x1(0) x2(0)) = (1 −1)

u(t) = sin(t)+ sin(2.2t)+ sin(4.5t)+ sin(6.7t)+ sin(7t)

TABLE I
SYSTEM CONFIGURATION.

It is assumed that the state (x1,x2) and the parameters
(θ1,θ2,θ3,θ4) are unknown and are estimated with:

ż(t) = Λz(t)+Ly(t)
ẇ(t) = Λw(t)+Lu(t)
(x̂(t), θ̂(t)) =

(
PT (w(t),z(t))P(w(t),z(t))

)−1

×PT (w(t),z(t))z(t)

(27)

where, P is obtained from (24). Λ, L and the initial config-
uration of z(0) and w(0) are given in Table II. The ordinary
differential equations in (27) are solved with the Matlab
lsim function. As is proved in Theorem 2 and Proposition
1, the rank of the matrix P is related to observability property
and to the number of λi’s considered. In this simulation, there
are r = 7 eigenvalues which is more than the least that can
be taken, since there are 6 unknown parameters.

Λ = Diag(−1, −1.25, −1.5, −1.75, −2, −2.25, −2.5)

L = (1 1 1 1 1 1 1)T ; z(0) = w(0) = (0 0 0 0 0 0 0)T

(x̂, θ̂) = (x̂1 x̂2 θ̂1 θ̂2 θ̂3 θ̂4)

TABLE II
OBSERVER CONFIGURATION.

The simulation results are depicted in Figures 1-2: the
estimated states and parameters converge to their true values
after a transition phase due to the arbitrary choice of z(0)



Fig. 1. Output and its derivative: target and estimations (case without
output noise).

Fig. 2. Parameters θ1 and θ2: target and estimations (case without output
noise).

and w(0). The convergence speed of this observer can be
tuned arbitrarily by selecting larger eigenvalues λi’s (see
[1] for more details). From Theorem 2 and Proposition 1
it is inferred that if the input is properly selected, and if
one can take a sufficiently large number of eigenvalues, the
matrix P is asymptotically full rank (however, in the transient
period, there is no such guarantee). This is the reason why in
the algorithm, when the matrix P is too badly conditioned,
the parameters are kept constant and the state estimate is
obtained by integrating the model. For instance, this occurs
at the beginning of the simulation (up to the time 4s). To see
the observer robustness, a pseudo random noise with standard
uniform distribution on the interval ±10%y(t) is added to the
output signal. The figures 3 and 4 show the efficiency of the
estimation algorithm with such output noise.

Fig. 3. Output and its derivative: target and estimations (case with output
noise).

Fig. 4. Parameters θ3 and θ4: target and estimations (case with output
noise).

V. CONCLUSIONS

The design of a nonlinear Luenberger observer to estimate
the state and the unknown parameters of a parametrized
linear system was studied here. In a first part of the study,
a Luenberger observer was shown to exist. This result is
obtained from the injectivity property of a certain mapping.
This result has been used on a second order linear system
example and seems to offer very promising results.
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