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1Université de Lyon, Lyon F-69003, Université Lyon 1, CNRS UMR 5007, Laboratory of Process Control
and Chemical Engineering (LAGEP), Villeurbanne 69100, France

2Acsystème company (IT and Control engineering), Rennes, France

3Sponsors: PhD thesis CIFRE 2011/0876 between the french company Acsystème and the french
ministry of higher education and research: we thank for their financial support.

17th IFAC Symposium on System Identification (SYSID)
October, 2015, 19-21, Beijing, China

dufour@lagep.univ-lyon1.fr IFAC SYSID 2015, Paper MoB04.3 October, 19-21, 2015, Beijing, China 1 / 18



Table of contents

1 Context and motivations

2 General framework [Qian et al.: DYCOPS’13,ECC’14]

3 A particular case of the general approach: 1st order system
Models and step response
Observer design
Constrained optimization problem
Explicit control law
Simulation results

4 Conclusions and perspectives

5 Contacts and discussion

dufour@lagep.univ-lyon1.fr IFAC SYSID 2015, Paper MoB04.3 October, 19-21, 2015, Beijing, China 2 / 18



Context and motivations

Context and motivations

For further simulation or control purpose: need to know the value of all the
parameters of a continuous dynamic model.

How to generate experimental data for parameter estimation?

Open loop input design: Step, Multi sine, PRBS...

Solution: optimal experiment design (OED) (state of the art : Franceschini
and Macchietto [2008]).

Difficulty: parameter identification and optimal input design are often 2
decoupled tasks (offline identification).

Difficulty: how to take into account online the operational constraints.

=⇒ Our approach: online joined constrained OED and parameter
estimation = model predictive control (MPC) + observer.
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General framework [Qian et al.: DYCOPS’13,ECC’14]

Some recalls about Qian et al. work (1/2)

Aims to do together and online: OED + closed loop parameter identification.

Developed for linear or nonlinear, monovariable or multivariable, stable or
unstable continuous (state space) dynamic model based systems.

Is an online optimal input design which maximizes the sensitivities of the
measurements with respect to the unknown constant model parameters.

Combines observer design theory and an on-line (MPC).

Allows to specify input and output constraints to keep the process in a
desired operating zone.
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General framework [Qian et al.: DYCOPS’13,ECC’14]

Some recalls about Qian et al. work (2/2)

MPC Cost function based on the predicted Fisher Information Matrix M

F (ȳθl|k , ul|k , yp(k), x̂(k), θ̂(k)) = 1
Np

∑k+Np

l=k+1 Ml|k

u∗l|k = arg maxul|k

(
J(ul|k ) = λmin(F )

λmax (F )

)
ul|k = {u(k) . . . u(l) . . . u(k + Np)}, l ∈ [k k + Np].

k(l) = current(future) time index,Np = prediction horizon

(1)

Handling constraints:

Physical limitations of the inputs: umin ≤ u(k) ≤ umax , ∀k
On the estimated states and/or the measured outputs yp (dealing with safety,
operating zone, production, ...):

gmin ≤ g(x̂(k), yp(k), u(k)) ≤ gmax , ∀k (2)

Online input design = nonlinear constrained optimization problem = might
be too time consuming in certain cases.
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A particular case of the general approach: 1st order system Models and step response

Models and explicit step response

First order model: {
ẋ(t) = −1

τ
(x(t)− Gu(t)), t > tk

x(tk ) = yp(tk ),
(3)

x = measured state, u = measured input, θ (=the time constant
τ > 0)=unknown parameter, G ∈ R? = known static gain, yp(tk ) =
measured process output.

Sensitivity model: with xθ = ∂x
∂τ{

ẋθ(t) =
1

τ 2
x(t)− 1

τ
xθ(t)− G

τ 2
u(t), t > tk

xθ(t = 0) = 0,
(4)

Step response of sensitivity model: at current time tk , over the prediction
horizon Np (control horizon=1),

xθ(t) =

(
xθ(tk ) +

(yp(tk )− Gu(tk ))(t − tk )

τ̂ 2(tk )

)
exp(
−(t − tk )

τ̂(tk )
), t > tk . (5)
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ẋ(t) = −1

τ
(x(t)− Gu(t)), t > tk

x(tk ) = yp(tk ),
(3)

x = measured state, u = measured input, θ (=the time constant
τ > 0)=unknown parameter, G ∈ R? = known static gain, yp(tk ) =
measured process output.

Sensitivity model: with xθ = ∂x
∂τ{
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A particular case of the general approach: 1st order system Observer design

Observer design

Augmented system {
ẋa(t) = Aa(yp(t), u(t))xa(t), t > tk

ya(t) = Caxa(t), t > tk ,
(6)

where :

Aa(yp(t), u(t)) =

(
0 −yp(t) + Gu(t)

0 0

)
, Ca = [1 0]

xa(t) = [x(t) 1
τ ]T .

Extended Kalman filer (Besançon [2007])
˙̂xa(t) = Aa(yp(t), u(t))x̂a(t)− ρoS

−1
o (t)CT

a (Cax̂a(t)− yp(t)), t > tk

Ṡo(t) = −θoSo(t)− AT
a (yp(t), u(t))So(t)− So(t)Aa(yp(t), u(t)) + ρoC

T
a Ca, t > tk

˙̂xa(tk ) =

[
x̂(tk )

1

τ̂(tk )

]
(7)

where θo > 1, ρo > 0 and So(t = 0) are the observer tuning parameters.
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A particular case of the general approach: 1st order system Constrained optimization problem

Constrained optimal input design

General MPC formulation (1) is written here as:

max
uinf≤u(tk )≤usup

J(u(tk )) =

∫ tk +Np

tk

(xθ(t))2 dt (8)

Determination of uinf and usup from:

constraints on u and yp :{
uinf ,u ≤ u ≤ usup,u, ∀t > 0
yinf ≤ yp ≤ y sup

p , ∀t > 0
(9)

known static gain G : 

usup,y = max(
yinf

G
,
y sup

G
)

usup = min(usup,y , usup,u)

uinf ,y = min(
yinf

G
,
y sup

G
)

uinf = max(uinf ,y , uinf ,u).

(10)
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A particular case of the general approach: 1st order system Explicit control law

Explicit control law

Optimization problem (8), convex in u(tk ), becomes:

max
uinf≤u(tk )≤usup J(u(tk )) =

∫ tk +Np

tk

f2(t)u(tk )2 + f1(t)u(tk ) + f0(t)dt (11)

and may be rewritten as:

max
uinf≤u(tk )≤usup J(u(tk )) = c∞(tk )(u(tk )− umin(tk ))2 + Jmin(tk ) (12)

Optimal solution of (12) depends on umin(tk ): using the first order optimality
condition:

∂J

∂u(tk )
= 0 at u(tk ) = umin(tk ) (13)

leading to the explicit solution (see functions in the paper):{
umin(tk ) = umin(yp(tk ), τ̂(tk )) =

1

G

(
xθ(tk )τ̂(tk )2γ(.) + yp(tk )

)
γ(.) = γ(Np,Ts , τ̂(tk ), ν(Np,Ts , τ̂(tk )))

(14)
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condition:

∂J

∂u(tk )
= 0 at u(tk ) = umin(tk ) (13)

leading to the explicit solution (see functions in the paper):{
umin(tk ) = umin(yp(tk ), τ̂(tk )) =

1

G

(
xθ(tk )τ̂(tk )2γ(.) + yp(tk )

)
γ(.) = γ(Np,Ts , τ̂(tk ), ν(Np,Ts , τ̂(tk )))

(14)
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A particular case of the general approach: 1st order system Explicit control law

Explicit control law

u

J

Umin(tk)

Jmax

Jmin

Uinf Usup

Umax(tk)

Figure: Quadratic criterion: geometric interpretation

Explicitly defined optimal control law u?(tk ) = umax (tk ) :

umax (tk ) =


usup if umin(tk ) < uinf +

usup − uinf

2
uinf else
with usup and uinf defined in (10), and umin(tk ) defined in (14).

Control law: needs only online observer integration (=few computations).
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A particular case of the general approach: 1st order system Simulation results

Simulation results

Prescribed constraints :
0 6 u(k) 6 1 , ∀k ; (15)

0 6 y(k) 6 4 , ∀k . (16)

Two different cases:

open loop with PRBS input under input constraints (15);
closed loop with explicit optimal input design under input constraints (15) and
output constraints (16).

Setting the adaptive horizon prediction:

Np(tk )Ts = τ̂(tk ).

Tableau: The time constant τ : time-variant target of the unknown parameter

Time (s) 0 1000 2000 3000 3500 4000 4500 4750 5000
θ (s) 80 100 50 80 100 50 80 100 50
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A particular case of the general approach: 1st order system Simulation results

Simulation results

Figure: 1st order system: u∗ (at the top) and umin (at the bottom) in close loop
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Simulation results
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Tableau: Results analysis

Criteria OL CL
Maximum value taken by yp 6.14 3.655
Minimum value taken by yp 0.0 0.050

Mean sensitivity over[
Tfinal

100 , Tfinal

]
( 1

s ) 0.004 0.011
Mean time constant estimation error

over
[

Tfinal

100 , Tfinal

]
(%) 4.62 3.60
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Conclusions and perspectives

Conclusions and perspectives

The proposed approach is able to do together

+ online the optimal design of experiment;

+ identify online the time constant of the first order model at the same time.

The explicit control law reduces the online computational cost.

The input and output constraints specify the physical limitations imposed by
the system and ensure the efficiency of the OED.

The influence of the prediction horizon (the main tuning parameter) as to be
studied in more details.
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Contacts and discussion

Contacts and discussion

Software

ODOE4OPE (Optimal Design Of Experiments for Online Parameter Estimation)
Email: odoe4ope@univ-lyon1.fr; Website: odoe4ope.univ-lyon1.fr

Business contacts

Acsysteme: Expertise in automation, signal processing, optimization, software developing,
...
Website: www.acsysteme.com/en

LAGEP: Laboratory of Process Control and Chemical Engineering
Website: www-lagep.univ-lyon1.fr

Authors

Pascal DUFOUR: www.tinyurl.com/dufourpascal

Madiha NADRI: nadri@lagep.univ-lyon1.fr

Jun QIAN: www.junqian.sitew.fr
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Annex 1st order system

Main ideas

Offline synthesis:

determine xθ(tk ) and θ̂(tk );

get the predicted step response of the sensitivity model into the prediction
horizon Np;

determine the worst control law umin(tk ) (that minimize the MPC cost
function), in order to define the explicit optimal control law (that maximize
the MPC cost function) at each time tk .

Online computations:

at each current time tk , get the process measure yp(tk );

determine the current estimate of the time constant τ̂(tk ) based on the
process input applied u(tk ) and process output yp(tk );

compute the optimal control to apply u∗(tk ) = umax (tk ) based on the
measure yp(tk ), the estimation τ̂(tk ), the explicit control law umin(tk )
(defined offline) and the input bounds;

apply umax (tk ) from tk + ε to tk+1;

Iterative procedure at the next sampling time.
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Annex 1st order system

Sensitivity model step response

Laplace transform:

L( df
dt (t)) = sL(f (t))− f (tk ), t > tk ;

L( df
dt (t)) = sF (s)− f (tk ), t > tk .

(17)

Laplace transform of sensitivity model:

Xθ(s) =
xθ(tk )

s + 1
τ

+
yp(tk )− GsU(s)

τ 2(s + 1
τ )2

, (18)

The step response of sensitivity model (in the Laplace domain) is:

Xθ(s) =
xθ(tk )

s + 1
τ

+
yp(tk )− Gu(tk )

τ 2(s + 1
τ )2

. (19)
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Annex 1st order system

Determination of umin(tk)

The cost function is quadratic in its optimization argument u(tk ), which can be
rewritten explicitly:

max
uinf ≤u(tk )≤usup J(u(tk )) =

∫ tk +Np
tk

f2(t)u(tk )2 + f1(t)u(tk ) + f0(t)dt

où :

f2(t) = exp(−2(t−tk )
τ̂(tk )

)

(
G 2

τ̂(tk )4
(t − tk )2

)
∈ R+

f1(t) = exp(−(t−tk )
τ̂(tk )

)

(
−2(xθ(tk ) +

yp(tk )

τ̂(tk )2
(t − tk ))

G

τ̂(tk )2
(t − tk ) exp(−(t−tk )

τ̂(tk )
)

)
f0(t) = exp(−(t−tk )

τ̂(tk )
)

(
xθ(tk ) +

yp(tk )

τ̂(tk )2
(t − tk ) exp(−(t−tk )

τ̂(tk )
)

)
(20)

where f2(t) > 0, the problem (11) is convex and may be rewritten showing
characteristics of this parabola:

max
uinf ≤u(tk )≤usup J(u(tk )) = c∞(tk )(u(tk )− umin(tk ))2 + Jmin(tk ), (21)

where c∞ is a positive real (obtained from the integration f2(t) in (11)), and
where umin(tk ) is the worst control u(tk ) to apply, since it minimize at tk the
criteria J(.) (where J(.) = Jmin(tk ) ≥ 0, since J is the L2 norm of xθ).
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Annex 1st order system

Determination of umin(tk)

Hence, umin(tk ) has to be determined through the first order optimality condition:

∂J

∂u(tk )
= 0 at u(tk ) = umin(tk ) (22)

which leads to:

umin(tk ) =
−
∫ tk +Np

tk
f1(t)dt

2
∫ tk +Np

tk
f2(t)dt

. (23)

This leads to determine umin(tk ) :

umin(tk ) =
1

G
yp(tk ) +

τ̂(tk )2

G

∫ tk +Np

tk
(t − tk ) exp(−2(t−tk )

τ̂(tk ) )dt∫ tk +Np

tk
(t − tk )2 exp(−2(t−tk )

τ̂(tk ) )dt
xθ(tk ). (24)

⇒


umin(tk ) =

1

G

(
τ̂(tk )2γ(.)xθ(tk ) + yp(tk )

)
with

γ(Np ,Ts , τ̂(tk ), ν(Np ,Ts , τ̂(tk ))) =
2NpTsν(.) + τ̂(tk )(ν(.)− 1)

2(NpTs )2ν(.) + 2τ̂(tk )NpTsν(.) + τ̂(tk )2(ν(.)− 1)

ν(Np ,Ts , τ̂(tk )) = exp(
−2Np Ts

τ̂(tk )
).

(25)
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Annex 1st order system

Initial conditions and parameters

Tableau: Simulation conditions

Parameter Value (unit)
Time Tfinal 5250 (s)

Ts 1 (s)
Model and Process G 10 (-)

yp(0) 0 (-)
τ(0) 80 (s)

Observer ρo 1.02 (-)
θo 0.05 (-)

So

[
0.01 0

0 0.01

]
(−)

τ̂(0) 20 (s)
Controller [uinf ,u, u

sup,u] [0, 1]
[yinf , y

sup] [0, 4]
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