An explicit optimal input design for first order systems identification

Pascal DUFOUR^{1,3}, Madiha NADRI¹ and Jun QIAN^{1,2,3}

¹Université de Lyon, Lyon F-69003, Université Lyon 1, CNRS UMR 5007, Laboratory of Process Control and Chemical Engineering (LAGEP), Villeurbanne 69100, France

²Acsystème company (IT and Control engineering), Rennes, France

³Sponsors: PhD thesis CIFRE 2011/0876 between the french company Acsystème and the french ministry of higher education and research: we thank for their financial support.

17th IFAC Symposium on System Identification (SYSID) October, 2015, 19-21, Beijing, China

Table of contents

Context and motivations

2 General framework [Qian et al.: DYCOPS'13,ECC'14]

A particular case of the general approach: 1st order system

- Models and step response
- Observer design
- Constrained optimization problem
- Explicit control law
- Simulation results
- 4 Conclusions and perspectives
 - 5 Contacts and discussion

• For further simulation or control purpose: need to know the value of all the parameters of a continuous dynamic model.

- For further simulation or control purpose: need to know the value of all the parameters of a continuous dynamic model.
- How to generate experimental data for parameter estimation?

- For further simulation or control purpose: need to know the value of all the parameters of a continuous dynamic model.
- How to generate experimental data for parameter estimation?
- Open loop input design: Step, Multi sine, PRBS...

- For further simulation or control purpose: need to know the value of all the parameters of a continuous dynamic model.
- How to generate experimental data for parameter estimation?
- Open loop input design: Step, Multi sine, PRBS...
- Solution: optimal experiment design (OED) (state of the art : Franceschini and Macchietto [2008]).

- For further simulation or control purpose: need to know the value of all the parameters of a continuous dynamic model.
- How to generate experimental data for parameter estimation?
- Open loop input design: Step, Multi sine, PRBS...
- Solution: optimal experiment design (OED) (state of the art : Franceschini and Macchietto [2008]).
- Difficulty: parameter identification and optimal input design are often 2 decoupled tasks (offline identification).

- For further simulation or control purpose: need to know the value of all the parameters of a continuous dynamic model.
- How to generate experimental data for parameter estimation?
- Open loop input design: Step, Multi sine, PRBS...
- Solution: optimal experiment design (OED) (state of the art : Franceschini and Macchietto [2008]).
- Difficulty: parameter identification and optimal input design are often 2 decoupled tasks (offline identification).
- O Difficulty: how to take into account online the operational constraints.

- For further simulation or control purpose: need to know the value of all the parameters of a continuous dynamic model.
- How to generate experimental data for parameter estimation?
- Open loop input design: Step, Multi sine, PRBS...
- Solution: optimal experiment design (OED) (state of the art : Franceschini and Macchietto [2008]).
- Difficulty: parameter identification and optimal input design are often 2 decoupled tasks (offline identification).
- O Difficulty: how to take into account online the operational constraints.

 \Rightarrow Our approach: online joined constrained OED and parameter estimation = model predictive control (MPC) + observer.

Table of contents

Context and motivations

2 General framework [Qian et al.: DYCOPS'13,ECC'14]

3 A particular case of the general approach: 1st order system

- Models and step response
- Observer design
- Constrained optimization problem
- Explicit control law
- Simulation results
- 4 Conclusions and perspectives
 - 5 Contacts and discussion

• Aims to do together and online: OED + closed loop parameter identification.

- Aims to do together and online: OED + closed loop parameter identification.
- Developed for linear or nonlinear, monovariable or multivariable, stable or unstable continuous (state space) dynamic model based systems.

- Aims to do together and online: OED + closed loop parameter identification.
- Developed for linear or nonlinear, monovariable or multivariable, stable or unstable continuous (state space) dynamic model based systems.
- Is an online optimal input design which maximizes the sensitivities of the measurements with respect to the unknown constant model parameters.

- Aims to do together and online: OED + closed loop parameter identification.
- Developed for linear or nonlinear, monovariable or multivariable, stable or unstable continuous (state space) dynamic model based systems.
- Is an online optimal input design which maximizes the sensitivities of the measurements with respect to the unknown constant model parameters.
- O Combines observer design theory and an on-line (MPC).

- O Aims to do together and online: OED + closed loop parameter identification.
- Developed for linear or nonlinear, monovariable or multivariable, stable or unstable continuous (state space) dynamic model based systems.
- Is an online optimal input design which maximizes the sensitivities of the measurements with respect to the unknown constant model parameters.
- O Combines observer design theory and an on-line (MPC).
- Allows to specify input and output constraints to keep the process in a desired operating zone.

• MPC Cost function based on the predicted Fisher Information Matrix M

$$F(\bar{y}_{\theta l|k}, u_{l|k}, y_{\rho}(k), \hat{x}(k), \hat{\theta}(k)) = \frac{1}{N_{\rho}} \sum_{l=k+1}^{k+N_{\rho}} M_{l|k}$$

$$u_{l|k}^{*} = \arg \max_{u_{l|k}} \left(J(u_{l|k}) = \frac{\lambda_{min}(F)}{\lambda_{max}(F)} \right)$$

$$u_{l|k} = \{u(k) \dots u(l) \dots u(k+N_{\rho})\}, l \in [k \ k+N_{\rho}].$$

$$k(l) = \text{current}(\text{future}) \text{ time index}, N_{\rho} = \text{prediction horizon}$$

$$(1)$$

• Handling constraints:

- Physical limitations of the inputs: $u_{min} \leq u(k) \leq u_{max}, \forall k$
- On the estimated states and/or the measured outputs y_p (dealing with safety, operating zone, production, ...):

$$g_{min} \leq g(\hat{x}(k), y_p(k), u(k)) \leq g_{max}, \ \forall k$$
(2)

• MPC Cost function based on the predicted Fisher Information Matrix M

$$F(\bar{y}_{\theta l|k}, u_{l|k}, y_{p}(k), \hat{x}(k), \hat{\theta}(k)) = \frac{1}{N_{p}} \sum_{l=k+1}^{k+N_{p}} M_{l|k}$$

$$u_{l|k}^{*} = \arg \max_{u_{l|k}} \left(J(u_{l|k}) = \frac{\lambda_{min}(F)}{\lambda_{max}(F)} \right)$$

$$u_{l|k} = \{u(k) \dots u(l) \dots u(k+N_{p})\}, l \in [k \ k+N_{p}].$$

$$k(l) = \text{current}(\text{future}) \text{ time index}, N_{p} = \text{prediction horizon}$$

$$(1)$$

- Handling constraints:
 - Physical limitations of the inputs: $u_{min} \le u(k) \le u_{max}, \ \forall k$
 - On the estimated states and/or the measured outputs y_ρ (dealing with safety, operating zone, production, ...):

$$g_{min} \leq g(\hat{x}(k), y_p(k), u(k)) \leq g_{max}, \ \forall k$$
(2)

• MPC Cost function based on the predicted Fisher Information Matrix M

$$F(\bar{y}_{\theta l|k}, u_{l|k}, y_{\rho}(k), \hat{x}(k), \hat{\theta}(k)) = \frac{1}{N_{\rho}} \sum_{l=k+1}^{k+N_{\rho}} M_{l|k}$$

$$u_{l|k}^{*} = \arg \max_{u_{l|k}} \left(J(u_{l|k}) = \frac{\lambda_{min}(F)}{\lambda_{max}(F)} \right)$$

$$u_{l|k} = \{u(k) \dots u(l) \dots u(k+N_{\rho})\}, l \in [k \ k+N_{\rho}].$$

$$k(l) = \text{current}(\text{future}) \text{ time index}, N_{\rho} = \text{prediction horizon}$$

$$(1)$$

- Handling constraints:
 - Physical limitations of the inputs: $u_{min} \le u(k) \le u_{max}, \ \forall k$
 - On the estimated states and/or the measured outputs y_p (dealing with safety, operating zone, production, ...):

$$g_{min} \leq g(\hat{x}(k), y_p(k), u(k)) \leq g_{max}, \ \forall k$$
(2)

Online input design = nonlinear constrained optimization problem = might be too time consuming in certain cases.

Table of contents

Context and motivations

2 General framework [Qian et al.: DYCOPS'13,ECC'14]

3 A particular case of the general approach: 1st order system

- Models and step response
- Observer design
- Constrained optimization problem
- Explicit control law
- Simulation results
- 4 Conclusions and perspectives
 - 5 Contacts and discussion

Models and explicit step response

• First order model:

$$\begin{cases} \dot{x}(t) = -\frac{1}{\tau}(x(t) - Gu(t)), \ t > t_k \\ x(t_k) = y_{\rho}(t_k), \end{cases}$$
(3)

x = measured state, u = measured input, θ (=the time constant $\tau > 0$)=unknown parameter, $G \in \mathbb{R}^* =$ known static gain, $y_p(t_k) =$ measured process output.

• Sensitivity model: with $x_{\theta} = \frac{\partial x}{\partial \tau}$

$$\begin{cases} \dot{x}_{\theta}(t) = \frac{1}{\tau^2} x(t) - \frac{1}{\tau} x_{\theta}(t) - \frac{G}{\tau^2} u(t), \ t > t_k \\ x_{\theta}(t=0) = 0, \end{cases}$$
(4)

• Step response of sensitivity model: at current time t_k , over the prediction horizon N_p (control horizon=1),

$$x_{\theta}(t) = \left(x_{\theta}(t_k) + \frac{(y_{\rho}(t_k) - Gu(t_k))(t - t_k)}{\hat{\tau}^2(t_k)}\right) \exp(\frac{-(t - t_k)}{\hat{\tau}(t_k)}), \ t > t_k.$$
(5)

Models and explicit step response

• First order model:

$$\begin{cases} \dot{x}(t) = -\frac{1}{\tau}(x(t) - Gu(t)), \ t > t_k \\ x(t_k) = y_{\rho}(t_k), \end{cases}$$
(3)

x = measured state, u = measured input, θ (=the time constant $\tau > 0$)=unknown parameter, $G \in \mathbb{R}^* =$ known static gain, $y_p(t_k) =$ measured process output.

• Sensitivity model: with $x_{\theta} = \frac{\partial x}{\partial \tau}$

$$\begin{cases} \dot{x}_{\theta}(t) = \frac{1}{\tau^2} x(t) - \frac{1}{\tau} x_{\theta}(t) - \frac{G}{\tau^2} u(t), \ t > t_k \\ x_{\theta}(t=0) = 0, \end{cases}$$
(4)

• Step response of sensitivity model: at current time t_k , over the prediction horizon N_p (control horizon=1),

$$x_{\theta}(t) = \left(x_{\theta}(t_k) + \frac{(y_{\rho}(t_k) - Gu(t_k))(t - t_k)}{\hat{\tau}^2(t_k)}\right) \exp(\frac{-(t - t_k)}{\hat{\tau}(t_k)}), \ t > t_k.$$
(5)

Models and explicit step response

• First order model:

$$\begin{cases} \dot{x}(t) = -\frac{1}{\tau}(x(t) - Gu(t)), \ t > t_k \\ x(t_k) = y_p(t_k), \end{cases}$$
(3)

x = measured state, u = measured input, θ (=the time constant $\tau > 0$)=unknown parameter, $G \in \mathbb{R}^* =$ known static gain, $y_p(t_k) =$ measured process output.

• Sensitivity model: with $x_{\theta} = \frac{\partial x}{\partial \tau}$

$$\begin{cases} \dot{x}_{\theta}(t) = \frac{1}{\tau^2} x(t) - \frac{1}{\tau} x_{\theta}(t) - \frac{G}{\tau^2} u(t), \ t > t_k \\ x_{\theta}(t=0) = 0, \end{cases}$$
(4)

• Step response of sensitivity model: at current time t_k , over the prediction horizon N_p (control horizon=1),

$$x_{\theta}(t) = \left(x_{\theta}(t_k) + \frac{(y_{\rho}(t_k) - Gu(t_k))(t - t_k)}{\hat{\tau}^2(t_k)}\right) \exp(\frac{-(t - t_k)}{\hat{\tau}(t_k)}), \ t > t_k.$$
(5)

Observer design

Observer design

Observer design

Augmented system

$$\left\{ egin{array}{l} \dot{x}_{a}(t)=\mathcal{A}_{a}(y_{
ho}(t),u(t))x_{a}(t), \ t>t_{k} \ y_{a}(t)=\mathcal{C}_{a}x_{a}(t), \ t>t_{k}, \end{array}
ight.$$

where :

$$\begin{aligned} A_{a}(y_{p}(t), u(t)) &= \begin{pmatrix} 0 & -y_{p}(t) + Gu(t) \\ 0 & 0 \end{pmatrix}, \ C_{a} &= [1 \ 0] \\ x_{a}(t) &= [x(t) \ \frac{1}{\tau}]^{T}. \end{aligned}$$

(6)

Observer design

Augmented system

$$\left(egin{array}{l} \dot{x}_a(t) = A_a(y_{
ho}(t),u(t))x_a(t), \ t>t_k \ y_a(t) = C_a x_a(t), \ t>t_k, \end{array}
ight.$$

where :

$$\begin{aligned} A_{a}(y_{p}(t), u(t)) &= \begin{pmatrix} 0 & -y_{p}(t) + Gu(t) \\ 0 & 0 \end{pmatrix}, \ C_{a} &= [1 \ 0] \\ x_{a}(t) &= [x(t) \ \frac{1}{\tau}]^{T}. \end{aligned}$$

Extended Kalman filer (Besançon [2007])

$$\begin{cases} \dot{\hat{x}}_{a}(t) = A_{a}(y_{p}(t), u(t))\hat{x}_{a}(t) - \rho_{o}S_{o}^{-1}(t)C_{a}^{T}(C_{a}\hat{x}_{a}(t) - y_{p}(t)), \ t > t_{k} \\ \dot{S}_{o}(t) = -\theta_{o}S_{o}(t) - A_{a}^{T}(y_{p}(t), u(t))S_{o}(t) - S_{o}(t)A_{a}(y_{p}(t), u(t)) + \rho_{o}C_{a}^{T}C_{a}, \ t > t_{k} \\ \dot{\hat{x}}_{a}(t_{k}) = \left[\hat{x}(t_{k}) \ \frac{1}{\hat{\tau}(t_{k})}\right] \end{cases}$$

$$(7)$$

where $\theta_o > 1$, $\rho_o > 0$ and $S_o(t = 0)$ are the observer tuning parameters.

(6)

Constrained optimal input design

• General MPC formulation (1) is written here as:

$$\max_{u_{inf} \le u(t_k) \le u^{sup}} J(u(t_k)) = \int_{t_k}^{t_k + N_p} (x_\theta(t))^2 dt$$
(8)

(10)

Constrained optimal input design

• General MPC formulation (1) is written here as:

$$\max_{u_{inf} \le u(t_k) \le u^{sup}} J(u(t_k)) = \int_{t_k}^{t_k + N_p} (x_{\theta}(t))^2 dt$$
(8)

- Determination of $u_{inf} = u(t_k) \le u^{sup}$ from:
 - constraints on u and y_p :

$$\begin{cases} u_{inf,u} \le u \le u^{sup,u}, \ \forall t > 0\\ y_{inf} \le y_p \le y_p^{sup}, \ \forall t > 0 \end{cases}$$
(9)

(10)

Constrained optimal input design

• General MPC formulation (1) is written here as:

$$\max_{u_{inf} \le u(t_k) \le u^{sup}} J(u(t_k)) = \int_{t_k}^{t_k + N_p} (x_{\theta}(t))^2 dt$$
(8)

• Determination of u_{inf} and u^{sup} from:

• constraints on u and y_p :

$$\begin{cases} u_{inf,u} \leq u \leq u^{sup,u}, \ \forall t > 0\\ y_{inf} \leq y_p \leq y_p^{sup}, \ \forall t > 0 \end{cases}$$
(9)

• known static gain G :

$$\begin{cases} u^{sup,y} = max(\frac{y_{inf}}{G}, \frac{y^{sup}}{G}) \\ u^{sup} = min(u^{sup,y}, u^{sup,u}) \\ u_{inf,y} = min(\frac{y_{inf}}{G}, \frac{y^{sup}}{G}) \\ u_{inf} = max(u_{inf,y}, u_{inf,u}). \end{cases}$$
(10)

• Optimization problem (8), convex in $u(t_k)$, becomes:

$$\max_{u_{inf} \le u(t_k) \le u^{sup}} J(u(t_k)) = \int_{t_k}^{t_k + N_p} f_2(t) u(t_k)^2 + f_1(t) u(t_k) + f_0(t) dt$$
(11)

• Optimization problem (8), convex in $u(t_k)$, becomes:

$$\max_{u_{inf} \le u(t_k) \le u^{sup}} J(u(t_k)) = \int_{t_k}^{t_k + N_p} f_2(t) u(t_k)^2 + f_1(t) u(t_k) + f_0(t) dt$$
(11)

and may be rewritten as:

$$\max_{u_{inf} \le u(t_k) \le u^{sup}} J(u(t_k)) = c_{\infty}(t_k)(u(t_k) - u_{min}(t_k))^2 + J_{min}(t_k)$$
(12)

• Optimization problem (8), convex in $u(t_k)$, becomes:

$$\max_{u_{inf} \le u(t_k) \le u^{sup}} J(u(t_k)) = \int_{t_k}^{t_k + N_p} f_2(t) u(t_k)^2 + f_1(t) u(t_k) + f_0(t) dt$$
(11)

and may be rewritten as:

$$\max_{u_{inf} \le u(t_k) \le u^{sup}} J(u(t_k)) = c_{\infty}(t_k)(u(t_k) - u_{min}(t_k))^2 + J_{min}(t_k)$$
(12)

• Optimal solution of (12) depends on $u_{min}(t_k)$: using the first order optimality condition:

$$\frac{\partial J}{\partial u(t_k)} = 0 \text{ at } u(t_k) = u_{min}(t_k)$$
(13)

• Optimization problem (8), convex in $u(t_k)$, becomes:

$$\max_{u_{inf} \le u(t_k) \le u^{sup}} J(u(t_k)) = \int_{t_k}^{t_k + N_p} f_2(t) u(t_k)^2 + f_1(t) u(t_k) + f_0(t) dt$$
(11)

and may be rewritten as:

$$\max_{u_{inf} \le u(t_k) \le u^{sup}} J(u(t_k)) = c_{\infty}(t_k)(u(t_k) - u_{min}(t_k))^2 + J_{min}(t_k)$$
(12)

• Optimal solution of (12) depends on $u_{min}(t_k)$: using the first order optimality condition:

$$\frac{\partial J}{\partial u(t_k)} = 0 \text{ at } u(t_k) = u_{min}(t_k) \tag{13}$$

leading to the explicit solution (see functions in the paper):

$$\begin{cases} u_{min}(t_k) = u_{min}(y_p(t_k), \hat{\tau}(t_k)) = \frac{1}{G} \left(x_\theta(t_k) \hat{\tau}(t_k)^2 \gamma(.) + y_p(t_k) \right) \\ \gamma(.) = \gamma(N_p, T_s, \hat{\tau}(t_k), \nu(N_p, T_s, \hat{\tau}(t_k))) \end{cases}$$
(14)

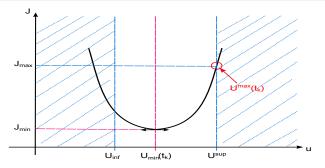


Figure: Quadratic criterion: geometric interpretation

• Explicitly defined optimal control law $u^{\star}(t_k) = u^{max}(t_k)$:

$$u^{max}(t_k) = \begin{cases} u_{sup} \text{ if } u_{min}(t_k) < u_{inf} + \frac{u^{sup} - u_{inf}}{2} \\ u^{inf} \text{ else} \\ \text{ with } u^{sup} \text{ and } u_{inf} \text{ defined in (10), and } u_{min}(t_k) \text{ defined in (14).} \end{cases}$$

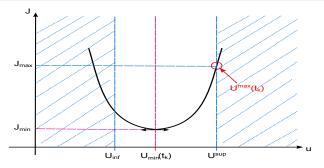


Figure: Quadratic criterion: geometric interpretation

• Explicitly defined optimal control law $u^{\star}(t_k) = u^{max}(t_k)$:

$$u^{max}(t_k) = \begin{cases} u_{sup} \text{ if } u_{min}(t_k) < u_{inf} + \frac{u^{sup} - u_{inf}}{2} \\ u^{inf} \text{ else} \\ \text{ with } u^{sup} \text{ and } u_{inf} \text{ defined in (10), and } u_{min}(t_k) \text{ defined in (14).} \end{cases}$$

• Control law: needs only online observer integration (=few computations).

Simulation results

• Prescribed constraints :

$$0 \leq u(k) \leq 1, \forall k;$$
 (15)

$$0 \leqslant y(k) \leqslant 4, \ \forall k. \tag{16}$$

- Two different cases:
 - open loop with PRBS input under input constraints (15);
 - closed loop with explicit optimal input design under input constraints (15) and output constraints (16).
- Setting the adaptive horizon prediction:

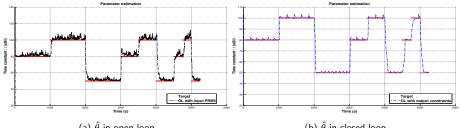
$$N_p(t_k)T_s=\hat{\tau}(t_k).$$

Tableau: The time constant τ : time-variant target of the unknown parameter

Time (s)	0	1000	2000	3000	3500	4000	4500	4750	5000
θ (s)	80	100	50	80	100	50	80	100	50

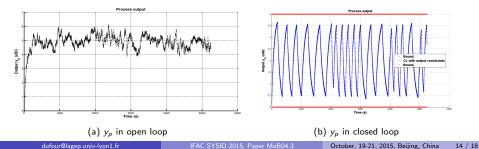
Simulation results

Simulation results



(a) $\hat{\theta}$ in open loop

(b) $\hat{\theta}$ in closed loop



Simulation results

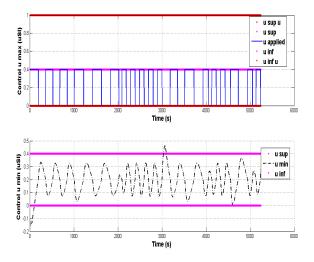
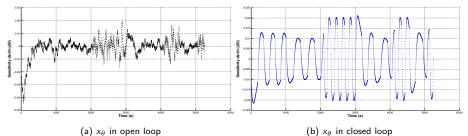


Figure: 1st order system: u^* (at the top) and u_{\min} (at the bottom) in close loop

dufour@lagep.univ-lyon1.fr

Simulation results



1000

Tableau: Results analysis

Criteria	OL	CL
Maximum value taken by y_p	6.14	3.655
Minimum value taken by y_p	0.0	0.050
Mean sensitivity over		
$\left[rac{T_{final}}{100}, \ \ T_{final} ight]\left(rac{1}{s} ight)$	0.004	0.011
Mean time constant estimation error		
over $\left[rac{{{\cal T}_{\it final}}}{100}, ~~{{\cal T}_{\it final}} ight]$ (%)	4.62	3.60

- O The proposed approach is able to do together
 - + online the optimal design of experiment;
 - $+\,$ identify online the time constant of the first order model at the same time.

- O The proposed approach is able to do together
 - + online the optimal design of experiment;
 - $+\,$ identify online the time constant of the first order model at the same time.
- O The explicit control law reduces the online computational cost.

- O The proposed approach is able to do together
 - + online the optimal design of experiment;
 - $+\,$ identify online the time constant of the first order model at the same time.
- O The explicit control law reduces the online computational cost.
- The input and output constraints specify the physical limitations imposed by the system and ensure the efficiency of the OED.

- O The proposed approach is able to do together
 - + online the optimal design of experiment;
 - $+\,$ identify online the time constant of the first order model at the same time.
- The explicit control law reduces the online computational cost.
- The input and output constraints specify the physical limitations imposed by the system and ensure the efficiency of the OED.
- The influence of the prediction horizon (the main tuning parameter) as to be studied in more details.

Contacts and discussion

Software

• ODOE4OPE (Optimal Design Of Experiments for Online Parameter Estimation) Email: odoe4ope@univ-lyon1.fr; Website: odoe4ope.univ-lyon1.fr

Business contacts

Acsysteme: Expertise in automation, signal processing, optimization, software developing,
 ...
 M(Leiter expertise expertise expertise)

Website: www.acsysteme.com/en

• LAGEP: Laboratory of Process Control and Chemical Engineering Website: www-lagep.univ-lyon1.fr

Authors

- Pascal DUFOUR: www.tinyurl.com/dufourpascal
- Madiha NADRI: nadri@lagep.univ-lyon1.fr
- Jun QIAN: www.junqian.sitew.fr

Main ideas

Offline synthesis:

- determine $x_{\theta}(t_k)$ and $\hat{\theta}(t_k)$;
- get the predicted step response of the sensitivity model into the prediction horizon N_p ;
- determine the worst control law $u_{min}(t_k)$ (that minimize the MPC cost function), in order to define the explicit optimal control law (that maximize the MPC cost function) at each time t_k .

Online computations:

- at each current time t_k , get the process measure $y_p(t_k)$;
- determine the current estimate of the time constant τ̂(t_k) based on the process input applied u(t_k) and process output y_p(t_k);
- compute the optimal control to apply u*(t_k) = u^{max}(t_k) based on the measure y_p(t_k), the estimation
 î(t_k), the explicit control law u_{min}(t_k) (defined offline) and the input bounds;
- apply $u^{max}(t_k)$ from $t_k + \epsilon$ to t_{k+1} ;
- Iterative procedure at the next sampling time.

Sensitivity model step response

• Laplace transform:

$$L(\frac{df}{dt}(t)) = sL(f(t)) - f(t_k), t > t_k;$$

$$L(\frac{df}{dt}(t)) = sF(s) - f(t_k), t > t_k.$$
(17)

• Laplace transform of sensitivity model:

$$X_{\theta}(s) = \frac{x_{\theta}(t_k)}{s + \frac{1}{\tau}} + \frac{y_{\rho}(t_k) - GsU(s)}{\tau^2(s + \frac{1}{\tau})^2},$$
(18)

• The step response of sensitivity model (in the Laplace domain) is:

$$X_{\theta}(s) = \frac{x_{\theta}(t_k)}{s + \frac{1}{\tau}} + \frac{y_{\rho}(t_k) - Gu(t_k)}{\tau^2 (s + \frac{1}{\tau})^2}.$$
 (19)

Determination of $u_{min}(t_k)$

The cost function is quadratic in its optimization argument $u(t_k)$, which can be rewritten explicitly:

$$\begin{cases} \max_{\substack{u_{inf} \leq u^{t_{k}} \leq u^{sup}}} J(u(t_{k})) = \int_{t_{k}}^{t_{k}+N_{p}} f_{2}(t)u(t_{k})^{2} + f_{1}(t)u(t_{k}) + f_{0}(t)dt \\ \text{où} : \\ f_{2}(t) = \exp(\frac{-2(t-t_{k})}{\hat{\tau}(t_{k})}) \left(\frac{G^{2}}{\hat{\tau}(t_{k})^{4}}(t-t_{k})^{2}\right) \in \mathcal{R}^{+} \\ f_{1}(t) = \exp(\frac{-(t-t_{k})}{\hat{\tau}(t_{k})}) \left(-2(x_{\theta}(t_{k}) + \frac{y_{p}(t_{k})}{\hat{\tau}(t_{k})^{2}}(t-t_{k}))\frac{G}{\hat{\tau}(t_{k})^{2}}(t-t_{k})\exp(\frac{-(t-t_{k})}{\hat{\tau}(t_{k})})\right) \\ f_{0}(t) = \exp(\frac{-(t-t_{k})}{\hat{\tau}(t_{k})}) \left(x_{\theta}(t_{k}) + \frac{y_{p}(t_{k})}{\hat{\tau}(t_{k})^{2}}(t-t_{k})\exp(\frac{-(t-t_{k})}{\hat{\tau}(t_{k})})\right) \end{cases}$$
(20)

where $f_2(t) > 0$, the problem (11) is convex and may be rewritten showing characteristics of this parabola:

$$\max_{u_{inf} \le u(t_k) \le u^{sup}} J(u(t_k)) = c_{\infty}(t_k)(u(t_k) - u_{min}(t_k))^2 + J_{min}(t_k),$$
(21)

where c_{∞} is a positive real (obtained from the integration $f_2(t)$ in (11)), and where $u_{min}(t_k)$ is the worst control $u(t_k)$ to apply, since it minimize at t_k the criteria J(.) (where $J(.) = J_{min}(t_k) \ge 0$, since J is the L^2 norm of x_{θ}).

dufour@lagep.univ-lyon1.fr

۲

Determination of $u_{min}(t_k)$

Hence, $u_{min}(t_k)$ has to be determined through the first order optimality condition:

$$\frac{\partial J}{\partial u(t_k)} = 0 \text{ at } u(t_k) = u_{min}(t_k)$$
(22)

which leads to:

$$u_{min}(t_k) = \frac{-\int_{t_k}^{t_k + N_p} f_1(t) dt}{2\int_{t_k}^{t_k + N_p} f_2(t) dt}.$$
(23)

This leads to determine $u_{min}(t_k)$:

$$u_{min}(t_k) = \frac{1}{G} y_p(t_k) + \frac{\hat{\tau}(t_k)^2}{G} \frac{\int_{t_k}^{t_k + N_p} (t - t_k) \exp(\frac{-2(t - t_k)}{\hat{\tau}(t_k)}) dt}{\int_{t_k}^{t_k + N_p} (t - t_k)^2 \exp(\frac{-2(t - t_k)}{\hat{\tau}(t_k)}) dt} x_{\theta}(t_k).$$
(24)

$$\Rightarrow \begin{cases} u_{min}(t_k) = \frac{1}{G} \left(\hat{\tau}(t_k)^2 \gamma(.) x_{\theta}(t_k) + y_{\rho}(t_k) \right) \\ \text{with} \\ \gamma(N_{\rho}, T_s, \hat{\tau}(t_k), \nu(N_{\rho}, T_s, \hat{\tau}(t_k))) = \frac{2N_{\rho} T_s \nu(.) + \hat{\tau}(t_k)(\nu(.) - 1)}{2(N_{\rho} T_s)^2 \nu(.) + 2\hat{\tau}(t_k) N_{\rho} T_s \nu(.) + \hat{\tau}(t_k)^2 (\nu(.) - 1)} \\ \nu(N_{\rho}, T_s, \hat{\tau}(t_k)) = \exp(\frac{-2N_{\rho} T_s}{\hat{\tau}(t_k)}). \end{cases}$$

$$(25)$$

Initial conditions and parameters

	Parameter	Value (unit)
Time	T _{final}	5250 (s)
	T_s	1 (s)
Model and Process	G	10 (-)
	$y_p(0)$	0 (-)
	au(0)	80 (s)
Observer	ρο	1.02 (-)
	θ_o	0.05 (-)
	S _o	$\begin{bmatrix} 0.01 & 0 \\ 0 & 0.01 \end{bmatrix} (-)$
	$\hat{ au}(0)$	20 (s)
Controller	$\begin{bmatrix} u_{inf,u}, & u^{sup,u} \\ y_{inf}, & y^{sup} \end{bmatrix}$	[0, 1]
	[y _{inf} , y ^{sup}]	[0, 4]

Tableau: Simulation conditions