
HAL Id: hal-01265050
https://hal.science/hal-01265050

Submitted on 2 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An explicit optimal input design for first order systems
identification

Pascal Dufour, Madiha Nadri, Jun Qian

To cite this version:
Pascal Dufour, Madiha Nadri, Jun Qian. An explicit optimal input design for first order systems
identification. 17th IFAC Symposium on System Identification (SYSID) 2015, Oct 2015, Beijing,
China. �10.1016/j.ifacol.2015.12.151�. �hal-01265050�

https://hal.science/hal-01265050
https://hal.archives-ouvertes.fr


This document must be cited according 
to its final version which is published in a conference as:

P. Dufour, M. Nadri, J. Qian, 
"An explicit optimal input design for first order systems identification", 

17th IFAC Symposium on System Identification,(SYSID) 2015, 
Beijing, China, pp. 344-349 october 19-21, 2015

You downloaded this document from the 
CNRS open archives server, on the webpages of Pascal Dufour: 

http://hal.archives-ouvertes.fr/DUFOUR-PASCAL-C-3926-2008

http://hal.archives-ouvertes.fr/DUFOUR-PASCAL-C-3926-2008


An explicit optimal input design for first
order systems identification

Pascal Dufour ∗ Madiha Nadri ∗ Jun Qian ∗,∗∗
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Abstract: This paper focuses on the problem of closed loop online identification of the time
constant in the single input single output (SISO) first order linear model. A new explicit
approach for the simultaneous online optimal experiment design (OED) and model parameter
identification is presented. Based on the observation theory and a model based predictive
control (MPC) algorithm, this approach aims to solve an optimal control problem where input
and output constraints may be specified. This constrained control objective aims to maximize
the sensitivity of the model output with respect to the unknown model parameter (the time
constant). The control law is derived explicitly offline and simple to be implemented: the input
may be computed fast online while the unknown model time constant is estimated at the same
time.

Keywords: Optimal experiment design, input design, identification, linear systems, observers,
predictive control.

1. INTRODUCTION

When using dynamic models for simulation, control or
optimization, all model parameters need to be numerically
known. Among the dynamic models, the first order linear
model is the simplest model: it is based on a static gain and
a time constant. Methods to estimate the value of the pa-
rameters of a considered model concern the identification
task (see Ljung (1999)), which relies on experimental data.
OED may be useful if no data exist for identification, since
it aims to design new experimental data (see Franceschini
and Macchietto (2008)) which are often used offline for
the identification procedure, hence decoupling these two
procedures.
This paper focuses on the coupled online OED and param-
eter estimation for such a first order linear model, where
the time constant (that may vary during the time) has
to be estimated. For such estimation problem, one may
first think to apply a step input. But, this input in not
sufficiently persistent (i.e., when the steady is reached in
that case after some time, the output does not contain
enough information on the dynamic, and the time constant
can not be estimated). Pseudo-random binary sequence
(PRBS) is a better open loop approach, since it features
a rich input signal. However, open loop control does not
allow to maintain the process output is a prescribed region,
for example if the process has still to be used in the
meantime for production. Therefore, an input design for

? This PhD thesis is between the LAGEP and the french company
Acsystème which is gratefully acknowledged for the funding. The
french ministry of higher education and research, for the financial
support of this CIFRE PhD thesis 2011/0876, is also acknowledged.

identification based on closed loop control is required. In
Shouche et al. (2002), the authors developed a constrained
MPC based on an auto regressive model with external
inputs (ARX) with a persistent input constraint, where
the parameters are estimated online by regression. This
led to a non-convex simultaneous online identification and
control problem.
The new method developed here for the SISO first order
linear model is a particular development of a general
approach (Qian et al. (2013, 2014)) developed for mul-
tivariable nonlinear models. In these papers, an approach
combining the closed loop online parameter identification
with OED has been proposed for the input design. Based
on a MPC, it aims to compute online the optimal input
that maximize a norm of the sensitivities of the process
outputs with respect to the unknown model parameters,
which are estimated at the same time by an observer. The
predictive controller handles input and output constraints
while its cost function is based on the sensitivity criterion.
Here, based on this approach, for the SISO first order
linear model, the problem is to design a controller and an
estimator that both allow to estimate the unknown time
constant (that may varies) and to maintain the process in a
prescribed region. Based on the linearity of the model and
assuming that the argument of the MPC is a single value
(hence, the control horizon is tuned to one), an explicit
controller can be derived offline, which avoid to solve any
online optimization task.
This paper is structured as follows: Section 2 deals with
some recalls on the previous general approach of Qian
et al. (2013, 2014) developed for multivariable nonlinear
models. Section 3 contains the proposed algorithm for the



constrained optimal closed loop online identification of the
time constant in a SISO first order linear model. In section
4, the simulation results demonstrate the efficiency of this
approach.

2. PRELIMINARIES

In Qian et al. (2013, 2014), the algorithm features the
following steps:

Offline synthesis

• define a dynamic (nonlinear or linear) non au-
tonomous system modelled by ordinary differential
equations. This model contains known and unknown
model parameters.
• define the sensitivity dynamic model of the model

state with respect to the unknown model parameters.
• define an augmented dynamic model, where the state

contains the model state and the unknown model
parameters. It is used to define an observer that aims
to estimate the unknown model parameters and (if
possible) the model state.
• define a nonlinear MPC constrained optimization

problem based on the maximization of the norm of the
sensitivity dynamic model state to design a persistent
input.

Online computations

• at each current time tk, get the measure of the process
output yp(tk)
• then, based on the process input applied u(tk) and
yp(tk), integrate the observer to get the current esti-
mate of the unknown parameters
• then, based on the measure yp(tk), the parameter es-

timations, the nonlinear MPC constrained optimiza-
tion problem is solved since, in a general case, and due
to the nonlinearity of the problem, the search for the
optimal control umax(tk) to be applied at each sample
time requires the online integration of the 2 prediction
models used with the nonlinear MPC resolution.
• then, umax(tk) is applied from tk + ε to tk+1, where ε

is the time necessary for the whole loop (i.e, take the
measure, integrate the observer, solve the constrained
optimization problem). Hence, the main cost in time
is related to the resolution of the constrained opti-
mization problem involving model integrations, which
might be important compared to the sampling time.

3. NEW ALGORITHM

3.1 Main ideas

For the previous approach, let us now consider the simplest
SISO case: the well known first order model where x ∈ R
is the measured state, u is the measured input, with one
unknown parameter (the time constant T > 0), the known
static gain G ∈ R?, yp(tk) is the measured process output
at the current time tk considered as the initial time: ẋ(t) =

−1

T
x(t) +

G

T
u(t), t > tk

x(t = tk) = x(tk) = yp(tk)
(1)

In that case, the whole online numerical resolution may
be simplified to get an explicit controller derived offline,
hence reducing the online computational burden.

Offline synthesis The control law may be designed offline
as follows:

• define the sensitivity dynamic model, in the time
domain.

• define an augmented dynamic model, where the state
contains the model state and the unknown time
constant. It is used to define an observer that aims
to estimate the unknown time constant.

• get the predicted step response of the sensitivity
model into the prediction horizon Np. It is based on
the Laplace transform applied to the process model
and to the sensitivity model: hence, the formula is
parametrized for any initial conditions of the model
state x(tk) and the sensitivity model state xs(tk)

• due to the convexity of the constrained quadratic
problem, get the worst control law umin(tk) (that
minimize the MPC cost function) and therefore the
persistent control law umax(tk) (that maximize the
MPC cost function as requested by the method) to
be applied at each time tk.

Online computations

• at each current time tk, get the process measure yp(tk)
• then, based on the process input applied u(tk) and
yp(tk), integrate the observer to get the current esti-

mate of the time constant T̂ (tk)
• then, based on the measure yp(tk) and the estimation

T̂ (tk), the optimal control to apply u(tk) = umax(tk)
(constrained in magnitude) is computed, simply ob-
tained from the evaluation of the explicit control
law defined offline based on umin(tk) and the input
bounds.

• then, umax(tk) is applied from tk + ε to tk+1, where ε
is the time necessary for the whole loop (i.e, take the
measure, integrate the observer, compute umax(tk)).
Hence, the main cost in time is the observer integra-
tion: it is low in that case compared to the sampling
time (if it is larger than the order of the ms). There-
fore, the proposed algorithm for the SISO first order
model is a very fast control algorithm.

Following the existing general method given in Qian et al.
(2013, 2014), the steps of the main ideas for this new input
design are detailed in the following parts.

3.2 Sensitivity model

Using the considered SISO model (1), the sensitivity model
state xs = ∂x

∂T is given by:
ẋs(t) =

1

T 2
x(t)− 1

T
xs(t)−

G

T 2
u(t), t > tk

xs(t = tk) = xs(tk)
xs(t = 0) = 0

(2)

3.3 Observer design

From the first order model (1), the augmented state is
xa(t) = [x(t) 1

T ]T in the augmented model:



{
ẋa(t) = Aa(yp(t), u(t))xa(t), t > tk

ŷ(t) = Caxa(t), t > tk
(3)

where:

Aa(yp(t), u(t)) =

(
0 −yp(t) +Gu(t)

0 0

)
Ca = [1 0] (4)

Remark 1. The system (3-4) is observable if (u(t), yp(t))
is a persistent input (Besançon (2007)).

Different observers based on the augmented model (3-4)
may be used to estimate the unknown model parameter
T (Besançon (2007)). A possible observer, which state is
x̂a(t) = [x̂(t) 1

T̂ (t)
]T , may be written here as an extended

Kalman filter (EKF):

˙̂xa(t) = Aa(yp(t), u(t))x̂a(t)− ρoS−1o CT
a (Cax̂a(t)− yp(t)), t > tk

Ṡo(t) = −θoSo(t)−AT
a (t)So(t)− So(t)Aa(t) + ρoC

T
a Ca, t > tk

x̂a(t = tk) = x̂a(tk) = [yp(tk)
1

T̂ (tk)
]

So(t = tk) = So(tk)
(5)

where ρo > 1, θo > 0 and So(t = 0) (a symmetric positive
definite matrix) are the observer tuning parameters.

3.4 Sensitivity model step response

In the MPC framework, the optimization procedure aims
to find the optimal u(tk) to be applied during the next
sample time through the maximization of the norm of
the sensitivity dynamic model state. This requires here
to evaluate xs(t) into the prediction horizon Np. Starting
from the current time t = tk, let us apply a step u(tk)
for the process input in the MPC procedure. We use the
Laplace transform formula, for a function f(t) starting
from any initial condition f(tk) at any initial time tk, is:

L(
df

dt
(t)) = sL(f(t))− f(tk), t > tk

⇐⇒ L(
df

dt
(t)) = sF (s)− f(tk), t > tk

(6)

Therefore, applying the Laplace transform to the system
(1-2), at the current time tk leads to:

Xs(s) =
xs(tk)

s+ 1
T

+
(yp(tk)−GsU(s))

T 2(s+ 1
T )2

, t > tk. (7)

where Xs(s) is the Laplace transform of xs(t). Based
on the Laplace transform of the input step function fed
into (7), the response of the sensitivity model over the
prediction horizon Np is (in the Laplace domain):

Xs(s) =
xs(tk)

s+ 1
T

+
(yp(tk)−Gu(tk))

T 2(s+ 1
T )2

, t > tk (8)

Hence, the predicted sensitivity response into the future
requires the current process measure yp(tk), the unknown
model time constant T and of course the input value u(tk).
Based on the usual inverse Laplace transform formula, the
step response xs(t) into the prediction horizon Np may be
written in the time domain, where the unknown parameter
T is replaced by the last current estimation from the
observer at tk (T̂ (tk)):

xs(t) = ...(
xs(tk) +

(yp(tk)−Gu(tk))(t− tk)

T̂ (tk)2

)
e

−(t−tk)

T̂ (tk) , t > tk

(9)

From (9), let us notice two well known particular cases for
the first order system which have to be avoided to be able
to estimate the time constant:

(1) In open loop, starting from any initial condition
(yp(0), xs(0) = 0), if u(t) is kept constant, after a
certain time, the sensitivity tends to 0.

(2) Moreover, in the previous case, if the initial condition
is a steady state (hence yp(t)−Gu(t) = 0, ∀t ≥ 0 and
since xs(0) = 0), then the sensitivity is 0 ∀ t .

3.5 Constrained optimal input design

In the present case, the MPC formulation of Qian et al.
(2013, 2014) is written as: max

uinf≤u(tk)≤usup
J(u(tk)) =

∫ tk+Np

tk

(xs(t))
2
dt

where xs(t) is obtained from (9)

(10)

where the control bounds uinf and usup are adjusted offline
according to the prescribed constraints on u and yp:{

uinf,u ≤ u ≤ usup,u, ∀t > 0
yinf ≤ yp ≤ ysup, ∀t > 0

(11)

In the following, if there is no such input constraints, uinf,u
is set to −∞ and usup,u is set to +∞. If there is no such
output constraints, yinf is set to −∞ and ysup is set to
+∞. In there is neither such input constraints nor output
constraints, the problem is not well defined.
Since any step response of a first order system is
monotonous and takes its maximum (or minimum) value
at the steady state, and taking account of the sign of the
static gain (it may be positive or negative) then the control
bounds uinf and usup in (10) may be simply tuned offline
from (11) and the known static gain G:

usup,y = max(
yinf
G

,
ysup

G
)

usup = min(usup,y, usup,u)

uinf,y = min(
yinf
G

,
ysup

G
)

uinf = max(uinf,y, uinf,u)

(12)

Due to the input to output linearity of the sensitivity
model, the sensitivity involved in the integration in (10) is
quadratic in its optimization argument u(tk):





max
uinf≤u(tk)≤usup

J(u(tk)) =∫ tk+Np

tk

f2(t)u(tk)2 + f1(t)u(tk) + f0(t)dt

where:

f2(t) = e
−2(t−tk)

T̂ (tk)

(
G2

T̂ (tk)4
(t− tk)2

)
∈ R+

f1(t) = e
−(t−tk)

T̂ (tk) ...(
−2(xs(tk) +

yp(tk)

T̂ (tk)2
(t− tk))

G

T̂ (tk)2
(t− tk)e

−(t−tk)

T̂ (tk)

)

f0(t) = e
−(t−tk)

T̂ (tk)

(
xs(tk) +

yp(tk)

T̂ (tk)2
(t− tk)e

−(t−tk)

T̂ (tk)

)
(13)

Due to the positive sign of f2(t), the problem (13) is
convex and may be rewritten showing characteristics of
this parabola:

{
max

uinf≤u(tk)≤usup
J(u(tk)) = ...

...c∞(tk)(u(tk)− umin(tk))2 + Jmin(tk)
(14)

where c∞(tk) is a positive real (obtained from the inte-
gration of f2(t) in (13)), and where umin(tk) is the worst
control u(tk) to apply, since it minimizes at tk the criteria
J(.) (where J(.) = Jmin(tk) ≥ 0, since J is the L2 norm
of xs). Hence, umin(tk) has to be determined through the
first order optimality condition:

∂J

∂u(tk)
= 0 at u(tk) = umin(tk) (15)

which leads to:

umin(tk) =
−
∫ tk+Np

tk
f1(t)dt

2
∫ tk+Np

tk
f2(t)dt

(16)

This leads to determine umin(tk) by the integration of the
two dynamic models, starting at each tk from the two
initial conditions yp(tk) and xs(tk) and with the estimation

T̂ (tk):


umin(tk) =

1

G
yp(tk)...

...+
T̂ (tk)2

G

∫ tk+Np

tk
(t− tk)e

−2(t−tk)

T̂ (tk) dt∫ tk+Np

tk
(t− tk)2e

−2(t−tk)

T̂ (tk) dt

xs(tk)
(17)

By pursuing the integration and replacing tk+Np
−tk by the

product NpTs (where Ts is the constant sampling time),
this leads to:



umin(tk) =
1

G

(
T̂ (tk)2γ(.)xs(tk) + yp(tk)

)
with

γ(Np, Ts, T̂ (tk), ν(Np, Ts, T̂ (tk))) =

2NpTsν(.) + T̂ (tk)(ν(.)− 1)

2(NpTs)2ν(.) + 2T̂ (tk)NpTsν(.) + T̂ (tk)2(ν(.)− 1)
and

ν(Np, Ts, T̂ (tk)) = e
−2NpTs

T̂ (tk)

(18)

Due to the symmetry property of such a parabola with
respect to the vertical line, which is passing through
(umin(tk),Jmin(tk)), one may conclude with the optimal
control law for umax(tk):

umax(tk) =


uinf if umin(tk) > uinf +

usup − uinf
2

usup otherwise
where:
usup and uinf are defined in (12)
and umin(tk) is defined in (18)

(19)
Therefore, the optimal control law umax(tk) may be ex-
plicitly defined offline and is a bang bang control which
value is evaluated online with the process measure and the
time constant estimation, and is either the minimum of the
maximum input value allowed. In as to be noted that the
proposed solution is derived using the first order condition,
and the constrained are enforced later resulting in bang-
bang control. In a general framework, this approach is
not necessarily optimal. But here, since the first order
condition condition is used to find the worst control (and
not the best one), the optimal control is really found (and
not a suboptimal solution).

4. SIMULATION RESULTS

Simulations allow to compare 2 controller performances:

• case OL: an open loop PRBS input,
• case CL: the optimal closed loop controller with

input constraints and output constraints based on the
algorithm (19).

The time constant Tp of the simulated process is assumed
to vary in 9 periods, between 3 values (50, 80 and 100s) as
step functions, with 3 different length for each step (1000,
500 and 250s). Runs are done with Matlab 1 under the
following conditions (table 1):

Table 1. Simulation conditions

Parameter Value (unit)

Time Tfinal 5250 (s)
Ts 1 (s)

Model and Process G 10 (-)
yp(0) 0 (-)
Tp(0) 80 (s)

Observer ρo 1.02 (-)
θo 0.05 (-)

So

[
0.01 0

0 0.01

]
(−)

T̂ (0) 20 (s)

Controller [uinf,u, u
sup,u] [0, 1]

[yinf , y
sup] [0, 4]

After some trial-errors, the prediction horizon Np is tuned
at each tk according to:

Np(tk)Ts = T̂ (tk)

Simulations results are summarized in table 2: they allow
to see that for the 2 cases, in spite of a 300 % initial
error given by the initial condition of the time constant
fed into the observer, the estimation of the time varying
process time constant is done with a good accuracy for
each step. But the estimations is better in the closed

1 www.mathworks.com



Fig. 1. Time constant: time varying target and estimation
(with closed loop control with constraints on u and y)

Fig. 2. Time constant: time varying target and estimation
(with open loop control with constraints on u)

loop (mean error over
[
Tfinal

100 , Tfinal

]
is 3.6%, see Fig.

1) rather than 4.62% in open loop where it is more noisy
(Fig. 2). Let us notice that in open loop, at the beginning,
a very large estimation error occurs, which is not the
case in closed loop (the short period where it occurs

is not in
[
Tfinal

100 , Tfinal

]
). The drawback of the OL is

that the output is uncontrolled (ranging between 0 and
6.14 (Fig. 3)). If such output values are not acceptable,
it is preferable to use the proposed closed loop control
algorithm CL with both input constraints and output
constraints (Fig. 4) where the output ranges between 0.05
and 3.65 (hence always within the bounds of the output
constraints). Such output constraints impact uinf and usup

and hence the control values umin(t) and umax(t) applied
(see Fig. 5). The sensitivity maximized in CL (see Fig. 6)
is 3 times higher in average than in OL (see Fig. 7).

Table 2. Results analysis

Criteria Input
OL CL

Maximum value taken by yp 6.14 3.655

Minimum value taken by yp 0.0 0.050

Mean sensitivity over[
Tfinal

100
, Tfinal

]
( 1
s

) 0.004 0.011

Mean time constant estimation error

over

[
Tfinal

100
, Tfinal

]
(%) 4.62 3.60

Fig. 3. Output (with open loop control with constraints
on u)

Fig. 4. Output (with closed loop control with constraints
on u and y)

Fig. 5. Input (with closed loop control with constraints on
u and y), top: umax, bottom: umin

5. CONCLUSIONS

In this paper, an explicit bang bang controller has been
proposed for the estimation of the time constant in a first
order linear model. This input design relies on an observer
(solved online with the input and output measures) and a
constrained MPC problem, which exact optimal solution is
derived explicitly offline. Hence, online computational cost
is very low since it concerns mostly the observer integra-
tion. Perspectives are concerned with the optimal tuning
of the control horizon and the robustness of this approach
with respect to output noise and model uncertainties.
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