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Abstract

This paper presents a new efficient exact algorithm for listing triangles

in a large graph. While the problem of listing triangles in a graph has been

considered before, dealing with large graphs continues to be a challenge.

Although previous research has attempted to tackle the challenge, this is

the first contribution that addresses this problem on a compressed copy of

the input graph. In fact, the proposed solution lists the triangles without

decompressing the graph. This yields interesting improvements in both

storage requirement of the graphs and their time processing.

1 Background and motivation

Graphs are an effective modeling tool. They are used to represent objects and
to model problems in various domains and applications. A graph G = (V,E)
is composed of a set of vertices V (called also nodes) and a set of edges E
with the cardinalities |V (G)| = n and |E(G)| = m where n is called the order
of the graph and m its size. The set of edges E is a subset of V × V such
that (u, v) ∈ E means that vertices u and v are connected. Vertices generally
represent objects and edges relations between these objects. Vertices and edges
may also have labels that are associated to the properties of the objects and to
their relationships. The notations related to graphs are summarized in Table 1.

Finding triangles in a graph is a major problem that is encountered in several
applications related to the analysis of complex networks. A triangle, in an
undirected1 graph, is a set of three vertices such that each pair of them is
connected by an edge, i.e., a clique of 3 vertices. According to the application,
we may be interested in counting triangles or in listing all or some of them.

1i.e., we make no difference between (u, v) and (v, u) in V × V . We also assume that G is
simple ((v, v) /∈ E for all v, and that there is no multiple edge).

1



Table 1: Notation

Symbol Description

G(V,E) undirected graph where V is its vertex set and E its edge set
V (G) vertex set of the graph G
E(G) edge set of the graph G

G the complement of the graph G
N(v) the set of neighbors of vertex v
d(v) degree of vertex v
dmax(G) the greatest vertex degree in graph G. dmax if there is no ambiguity.
G[X] the subgraph of G induced by the set of vertices X
C(G) compression of G

Existing algorithms fit into two categories: in-memory algorithms and external-
memory ones. In-memory solutions are efficient when the graph can be entirely
loaded in memory while external-memory solutions focus on graphs that are
too large to be loaded in memory. These solutions try to ensure a low I/O
cost [2, 3, 9, 12, 18, 20, 33] and are generally extensions of in-memory solutions.
Most external-memory solutions are approximate solutions that do not find all
the triangles.

The main in-memory solutions are surveyed in [22] where the authors studied
space complexity of the existing algorithms and highlighted its importance in
complex network study. In [30], the authors present an intensive experimental
evaluation of various in-memory algorithms for counting and listing all triangles
in a graph. In [28], existing in-memory solutions are described within a uni-
fied framework that simplifies understanding of the difference between existing
solutions. The authors of [28] classify existing solutions into two approaches ac-
cording to the triangle finding method: the neighborhood intersection approach
and the adjacency testing approach. In the following, we review existing solu-
tions according to this taxonomy and using the same names of algorithms as
in [29], [22] and [28].

1.1 Neighborhood Intersection Approach

Algorithms in this category find triangles by parsing edges and computing in-
tersections between the sets of neighbors of adjacent vertices. A representative
algorithm is Edge-Iterator (see Algorithm 1) which can achieve O(mdmax) ⊆
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O(mn) ⊆ O(n3) time and O(m+ n) space [22].

Algorithm 1: Edge-Iterator

Data: graph G = (V,E).
Result: all triangles of G.
begin

for {u, v} ∈ E do

foreach w ∈ N(u) ∩N(v) do
output triangle {u, v, w}

end

end

end

Algorithm K3 [8] is a variant of Edge-Iterator that processes the vertices in
decreasing degree order. Algorithm Forward [30] is a time enhancement of Edge-
Iterator that computes intersection of just a subset of neighborhoods by using
an orientation of the graph. Algorithm Forward-Hashed [30] is a refinement of
Forward using hash sets for neighborhoods to compute intersection in constant
time. Algorithm Compact-Forward [22] is an extension of Forward that reduces
its space complexity.

1.2 Adjacency Testing Approach

In this approach, algorithms parse vertices and test the adjacency between each
pair of neighbors of the current vertex. The representative algorithm is called
Node-Iterator (see Algorithm 2). It can be implemented to achieveO(mdmax) ⊆
O(mn) ⊆ O(n3) time and O(n2) space [22]. Enhancements of this algorithm
can be obtained by ordering the vertices. Algorithm Node-Iterator-Core [1, 30]
processes first the vertex with the lowest degree, and then removes it. This
order can be obtained, in linear-time, by computing the core numbers of the
graph2. Node-Iterator-Core can achieve O(m

3

2 ). Hash sets are also used to
enhance adjacency testing such as in algorithm Node-Iterator-Hashed [30].

A related technique called Tree-Lister [19] can also achieve O(m
3

2 ). It com-
putes a covering tree, checks for each edge (u, v) that does not belong to the

2The k-core of a graph is the largest node induced subgraph with a minimum degree of at
least k.
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tree if {u, v, father(v)} is a triangle, removes the tree, and iterates.

Algorithm 2: Node-iterator

Data: graph G = (V,E).
Result: all triangles of G.
begin

for v ∈ V do

forall pairs of neighbors {u,w} of v do

if {u,w} ∈ V then
output triangle {u, v, w}

end

end

end

end

Our approach is completely different from the related work as we use com-
pressed graphs. In fact, we propose an exact algorithm that lists all triangles on
the compressed graph without decompressing it. We conduct extensive experi-
mental studies to evaluate the scalability and effectiveness of our algorithm on
real large dense/sparse graphs. We also compare our approach with the most
efficient algorithms of the literature to attest its efficiency.

The rest of the paper is organized as follows: Section 2 presents the com-
pression algorithm used to summarize input graphs. Section 3 describes our
approach: the exact triangle listing algorithm that operates on the compressed
graphs. Section 4 presents experimental results of the proposed framework on
dense and sparse graph datasets. The final section draws some conclusions and
presents future work.

2 Preliminaries

As mentioned before, we propose an exact algorithm that lists triangles on a
compressed graph without decompressing it.

With the era of big graphs, graph summarizing/compression is beginning
to get the attention it deserves. However, there is a need to explore this topic
further. The web graph is the first large graph subject to compression with
the work of Boldi and Vigna [4]. Graph compression methods differ by the
amount of graph properties preserved by compression, and are application de-
pendent. Graph compression may be used to reduce the storage requirement of
the graph, however, its main challenge is to obtain a compressed representation
of the graph that can be used, instead of the original graph, by the intended
application (analysis, mining, comparison, etc.). In [7], the authors propose an
algorithm that finds all frequent subgraphs in a database of large graphs where
the graphs are summarized by grouping the vertices that have the same label
into supervertices. In [13], the authors observe that users typically adopt a type
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Q of queries when querying a data graph G. They propose a graph compression
that ensures that each query in Q returns the same result when applied to G
and when applied to the compression of G. In [21], the authors approximate the
similarity between two large graphs by a similarity measure between compressed
versions of these graphs. They use modular decomposition [14, 25] to compress
the graphs. A modular decomposition of a graph consists in finding within the
graph all the sets of vertices that share the same neighborhood. These sets of
vertices are called modules.

Definition 1 A module of a graph G = (V,E) is a set M ⊆ V of vertices where
all vertices in M have the same neighbors in V�M .

The empty set, the singletons, and the vertex set V (G) satisfy the definition of
a module: they are called trivial modules. A graph that has only trivial modules
is called a prime graph.
By replacing each module by a vertex (a supervertex), we can compress a graph
step by step until no further compaction is possible. However, modules may
overlap leading to a non unique compression process. To avoid this and ensure
the uniqueness of the compressed graph, compression is achieved only with
modules that do not overlap. These modules are called strong modules [25].

Definition 2 A module is strong if it does not overlap any other module.

Two strong modules M1 and M2 are either adjacent or non adjacent [25].
M1 and M2 are adjacent if every vertex of M1 is adjacent to every vertex of M2

and nonadjacent otherwise [25].
A strong module M of G can take one of the following types [25]:

• Prime: the induced subgraph G[M ] is connected and its complement
G[M ] is also connected.

• Series: the induced subgraph G[M ] is a clique, i.e., a complete graph.

• Parallel: All strong modules contained in M are non-adjacent to each
other in the induced subgraph G[M ], i.e., G[M ] is not connected and
G[M ] is a complete graph.

We note that the type of module gives sufficient information about the structure
of the vertices within the module except for prime modules for which we need
to store adjacency information. Thus, we keep the edges between the vertices
of a prime module. Consequently, the resulting compressed graph retains all
the structural information of the original graph while requiring smaller storage
space.

Figure 1 illustrates the compression process. In this figure, (a) is the original
graph. Each subsequent figure shows the processing of a module. The last graph
in the figure, i.e., (f) is the final compressed graph. It is a prime module and
cannot be compressed further because we must keep its edges. However, graphs
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Figure 1: Compressed graphs obtained by compacting the strong modules of
G.
Each module is a set of vertices (that may be modules). Each module is prefixed
by its type: S for a series module, P for a parallel module and Pr for a prime
module.

can be compressed to a single vertex especially when the last compression step
concerns a series or a parallel module.

Modular decomposition of graphs has been the subject of several inves-
tigations mainly for its use in studying the properties of graphs and their
classes [14, 26]. The first algorithm proposed for decomposing a graph into
modules dates back to 1972 and runs in O(n4) [10]. This result was followed
by several improvements on both runtime complexity and simplicity of imple-
mentation of algorithms. The latest results provide quasi-linear algorithms that
run in O(n+m log n) [11,17,24] and more recently a linear-time algorithm that
runs in O(n +m) [15, 32]. A comprehensive review of these algorithms can be
found in [16]. Existing algorithms construct a modular decomposition tree of a
graph. this is a tree where the leaves are the vertices of the graph and the inter-
nal nodes are the modules. The tree shows clearly the content of each module.
However, it does not give the edges between the children of prime modules. We
modified the algorithm of [6,15] to compute the compressed graph by replacing
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modules by vertices and inserting edges between the vertices of prime modules.
This algorithm needs O(n + m) computation steps where n is the number of
vertices and m the number of edges in the graph. It is based on the notion
of factorizing permutations [6] which is a particular permutation of the set of
vertices in which strong modules appear consecutively. This concept and the
detailed algorithm are described in [6, 15]. In this paper, we do not introduce
a new method for computing the modules of a graph. However, we use this
concept with existing algorithms to compress a graph as depicted in Figure 1.

3 Proposed Framework

This section presents a new algorithm for exact triangle listing in large graphs.
Throughout the rest of the paper, we will refer to it by CGT for Compressed
Graph Triangulation. The key idea of CGT is to process the compressed ver-
sion of the graph instead of the original graph for space saving. Compression
is achieved off-line with modular decomposition as described in the previous
section. So, in this section, we focus on how the framework uses the compressed
graph to list the triangles of the original graph. The framework relies on two
main steps: (1) parsing of the compressed graph, and (2) listing its triangles.
We describe these steps in detail in the following sections.

3.1 Parsing the Compressed Graph

One of the key ideas of our algorithm is representing neighbors within a hash
table where each edge is represented by one vertex. We achieve this by parti-
tioning the compressed graph into a set of edge disjoint stars defined as follows:

Definition 3 (Ordered-Star Structure (OST)) An Ordered-Star Structure s =
(r, L) is an attributed, single-level, rooted tree where r is the root vertex and L is
the set of leaves. Edges exist between r and any vertex in L and no edge exists
among vertices in L and ∀l ∈ L, r < l.

To construct OST s, the n vertices of the graph G must be numbered from 1 to
n, independently of their labels that may not be integers and also not unique.
The order used in Definition 3 is the numerical order of these numbers.

For any vertex v in a graph G, we can extract the corresponding OST sv
as follows: sv = (v, Lv) where Lv = {u|(u, v) ∈ E and u < v} . Thus, we can
derive at most n− 1 OSTs from a graph containing n vertices. We call the set
of OST s of a graph G the ordered star representation of G, denoted by SS(G).
The partitioning process is detailed in Algorithm 3. The algorithm takes as
input a graph as a list of edges, and returns the set SS(G) of OST s of the
graph in the form of a hash table.

We note that OST s are edge disjoint stars. So, there is no edge overlapping
betweenOST s. The sum of all edges in the set of OST s is equal to the number of
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edges in the original graph. OSTs allows us to represent neighborhood efficiently
as each edge is represented by only one vertex.

Algorithm 3: Ordered Star Structure Construction(SS)

Data: A graph G as a set of edges E(G) = 〈e1, e2, . . . , em〉.
Result: Hash table of the OST s of G: SS(G) = {s1, s2, . . . , sl}.
begin

SS ← ∅;
foreach e = (u, v) ∈ E(G) do

if u < v then
insertIntoHash SS (u, L = L ∪ v)

end

else
insertIntoHash SS (v, L = L ∪ u)

end

end

return SS
end

Figure 2 shows an example of a graph and its partitioning into OST s. In this
figure, the black vertices represent root vertices and the white vertices represent
their leaves.

Figure 2: Graph partitioning into OST s

3.2 Triangle Listing in the Compressed Graph

The aim of our algorithm is to compute the list of all triangles of a graph G by
handling only C(G). In our framework, we first partition C(G) into OST s using
Algorithm 3. We obtain the hash table SS(C(G)). Every triangle in C(G) can
be classified into one of the following types:

• Type I: the three vertices of the triangle belong to the same module. We
will denote the set of this type of triangles △I .

• Type II: the triangle involves two modules. This type of triangles con-
cerns prime modules. We will denote the set of this type of triangles
△II .
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• Type III: the triangle involves three modules. It is a triangle of modules.
This type of triangles also concerns prime modules. We will denote the
set of this type of triangles △III .

We first describe how we obtain △I , △II , and △III and then how we derive
the triangles of G from them. We note that each of △I , △II , and △III is a
set of sets of vertices. Each of these subsets is either a singleton or a pair of
connected vertices, i.e., a potential partial triangle. The key idea of the triangle
listing algorithm is to rely on set operations applied when parsing the OSTs of
the compressed graph. So, we first give the main function of our framework that
implements a commutative product of sets of sets and allows us to construct
triplets and pairs of connected vertices, i.e., triangles or partial triangles from
adjacent modules. This product is denoted

∏
△ and is detailed in Algorithm

4 that takes, as parameters, sets of potential partial triangles, i.e., pairs of
connected vertices or singletons, and outputs the set of corresponding triangles
and potential partial triangles.

Algorithm 4: Finding Connected Vertices (
∏

△)

Data: sets of sets of connected vertices A1, A2, · · · , At where t ≥ 2.
Result: set of triangles and potential partial triangles.
begin

Let Ai = {Ai1, Ai2, · · · , Ai|Ai|} ;
output {{a1, a2, a3}|a1 ∈ Aij , a2 ∈ Ai′j′ , a3 ∈ Ai′′j′′ where i 6=
i′ or i 6= i′′ or i′ 6= i′′};

return A1 ∪A2 ∪ · · · ∪At ∪{{a1, a2}|a1 ∈ Aij , a2 ∈ Ai′j′ where i 6= i′}
end

Example:

Let us consider A = {{1}, {3, 4}} and B = {{6, 7}, {8}} entries of Algorithm
4. A and B are, for example, the sets of potential partial triangles from two
adjacent modules in the compressed graph.

∏
△(A,B), will output triangles

{3, 4, 6}, {3, 4, 7}, {3, 4, 8}, {1, 6, 7}, {3, 6, 7}, {4, 6, 7} and return the potential
partial triangles: {1}, {3, 4}, {6, 7}, {8}, {1, 6}, {1, 7}, {1, 8}, {3, 6}, {3, 7},
{3, 8}, {4, 6}, {4, 7} and {4, 8}.

3.2.1 Triangles of type I

A module, i.e., a vertex in C(G), may contain potential partial triangles of the
original graph G. As detailed in Algorithm 5 that takes as input a module M
and returns all the triangles and potential partial triangles inside it, C(G) has
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3 types of modules: serial, parallel and prime. We consider four cases:

Algorithm 5: Listing Triangles in a Module (ListI)

Data: a module M .
Result: set of triangles of type I in M augmented with potential partial

triangles.
begin

△I ← ∅;
switch type of M do

case a simple vertex do

△I ← {M};
case a series module do

Let M = {A1, A2, · · · , At};
△I ←△I ∪

∏
△(ListI(A1), ListI(A2), · · · , ListI(At));

case a parallel module do

foreach m ∈M do

△I ←△I ∪ ListI(m);
end

case a prime module do

△I ←△I ∪ ListIII(M);
△I ←△I ∪ ListII(M);

end

return △I

end

1. Case of a simple vertex v: If the considered module is just a simple
vertex, i.e., v, then we return the set {v} (a potential partial triangle).

2. Case of a parallel module: The components of a parallel module are
not connected. So, a triangle is not possible between them. However each
of them is a potential element of a triangle of type II or type III. So,
the algorithm is launched recursively on each component and we return
the union of obtained results (see details in Algorithm 5).

For example, in Figure 1(f), the parallel module P{10, 11} consists of
two elements. So, the algorithm will return the union of its result on each
element, i.e., {{10}, {11}}. Each of {10} and {11} are potential partial
triangles for the graph.

3. Case of a series module: In case of a series module, we return all the
combinations of triangles from different elements of the module returned
by calling recursively the algorithm on each of them. Furthermore, as each
element may also be involved in a triangle of type II or type III, we also
return the potential partial triangles using

∏
△ detailed in Algorithm 4.
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As an example, consider again Figure 1(f). The series module S{P{10, 11}, 8, 9}
is composed of three vertices: two simple vertices and a parallel module
P{10, 11}. We see that vertices 8 and 9 are in series with the parallel ver-
tex and therefore with its elements (10 and 11). The series vertex returns
the triangles {8, 9, 10}, {8, 9, 11} and the set of potential partial triangles
consisting of one or two elements: {8}, {9}, {10}, {11}, {8, 9}, {8, 10},
{8, 11}, {9, 10}, and {9, 11}.

4. Case of a prime module: In this case, we use Algorithm 7 to compute
the set of triangles of modules △III , i.e., triangles of type III, and Al-
gorithm 6 to compute △II the set of triangles of type II as illustrated in
Sections 3.2.2 and 3.2.3 respectively.

3.2.2 Triangles of type II

Adjacent modules may embed triangles of the original graph. This situation
occurs only with a prime module. To find the set of triangles from two adjacent
modules, the prime module is parsed edge by edge as illustrated in Algorithm 6
which returns the set of connected vertices by this edge using the commutative
product of sets,

∏
△, detailed in Algorithm 4.

For example, for the adjacent modules 1 and S{P{2, 3}, 4} in Figure 1(f),
Algorithm 6 returns triangles {1, 2, 4} and {1, 3, 4} as well as the set of potential
partial triangles {1}, {2}, {3}, {4}, {2, 4}, {3, 4}, {1, 4}, {1, 2}, and {1, 3}.

Algorithm 6: Listing Triangles of type II (ListII)

Data: A prime module M .
Result: List of triangles of type II.
begin

△II ← ∅;
foreach edge (mi,mj) ∈M do
△II ←△II ∪

∏
△(ListI(m1), ListI(m2))

end

return △II

end

3.2.3 Triangles of type III

From a triangle of modules, i.e., 3 adjacent modules, we list triangles involving
vertices from each module participating in the triangle as well as potential par-
tial triangles. To do so, we first compute the triangles of modules by parsing
the OST s of the prime module and intersecting their neighbors as illustrated
by the first loop of Algorithm 7. Then, the second loop of this algorithm uses
Algorithm 4 to list the triangles of the original graph that are embedded in the
triangles of modules.

As an illustration, consider again Figure 1(f) that contains a triangle of
modules involving vertices 5, P{6, 7}, and S{P{2, 3}, 4}. Algorithm 7 returns
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triangles {2, 5, 6}, {2, 5, 7}, {3, 5, 6}, {3, 5, 7}, {4, 5, 6} and {4, 5, 7}.

Algorithm 7: Listing Triangles of type III (ListIII)

Data: A prime module M .
Result: List of triangles of type III.
begin

△M ← ∅;
foreach si ∈ SS(M) do

foreach vi ∈ si.L do

δ ← si.L ∩ svi .L;
foreach u ∈ δ do

△M ←△M ∪ {u, si.r, vi};
end

end

end

△III ← ∅;
foreach δi = {m1,m2,m3} ∈ △M do

△III ←△III ∪
∏

△(ListI(m1), ListI(m2), ListI(m3));

end

return △III

end

The compressed graph C(G) is a module. So, to have its list of triangles, we
just need to compute the list of triangles of type I, i.e., △I by using Algorithm
5.

3.3 Complexity

Theorem 1 CGT lists all triangles in G = (V,E) in time O(t + m + n +
n′d′max + m′) and space O(n + m) where t is the number of triangles in G, n
and m are, respectively, the number of vertices and the number of edges of G
and n′, m′ and d′max are respectively the number of vertices, the number of edges
and the maximum degree of C(G).

Proof:

Let G be a graph of n vertices and m edges. We assume that the graphs are
available in their compressed form and we do not include the cost of compression
in this analysis. We recall that we can obtain C(G) in O(n+m) time complexity
and O(n + m) space cost [27]. Let n′ be the number of vertices in C(G) and
m′ its number of edges. Let d′max denotes the maximum vertex degree in C(G)
and let t be the number of triangles in G. The main part of the complexity of
CGT is related to the execution of Algorithm 4, i.e., the complexity of function∏

△.
∏

△ finds pairs and triads of connected vertices from the sets of vertices it
takes as parameters using a cartesian product of sets. Whatever the size of the
sets it takes as parameters and the number of times it is called, the final result
includes the triangles of G, the set of edges of G and its set of vertices. So the
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time complexity of this part of CGT is O(t + m + n). To process series and
parallel modules, the algorithm executes set unions. As only pairs of vertices
and singletons are stored, the total cost of these unions is equal to the size of
the resulting set, i.e., O(m+ n). Processing a prime module consists in using a
Node-Iterator like algorithm to parse its vertices and computing neighborhood
intersection in O(n′d′max) to find triangles of type III, and parse the edges
in O(m′) to find triangles of type II. Consequently, the total time cost is
O(t+m+ n+ n′d′max +m′) ∈ O(n3) as t is O(n3) and n′d′max ≤ ndmax ≤ nm.

Space complexity is obtained by a content-array representation of the com-
pressed graph. It is similar to the adjacency array representation with the
difference that the array contains the elements of a vertex (i.e., the constituents
of a module) and not its neighbors. Each entry of this array has two compo-
nents: the label of the vertex and the index of its first element in the array.
The neighbors are contained in hash maps using OSTs. Only prime modules
need to have a hash map for neighboring information. Use of OSTs allows us
to store each edge once. Consequently, storage of the compressed graph needs
2(n + #M) + #P ∗ #VP + m′ where #M , which is O(n), is the number of
modules in the compressed graph, #P is the number of prime modules and
#VP is the number of vertices in a prime module. The worst case is that all
the modules are prime, i.e., #M = #P . We note that the product #P ∗#VP

cannot be greater than 2n as the number of elements cannot exceed the number
of vertices augmented with the number of modules. This gives a space cost of
6n + m′. The algorithm also need an extra space to store △I , △II and △III

which contain in the worst case all the pairs of connected vertices and all the
vertices, i.e., 2m+ n space cost.

Total space cost is then 7n+2m+m′ ≤ 7n+3m ⊂ O(n+m) It is important
to note that even if compression reduces storage space of the graphs as we will
show in the next section, our memory representation does not reduce central
memory space of the graph. However, it remains comparable to the other so-
lutions. Furthermore, this graph representation allows us to store the labels of
the vertices.

4 Experiments

In this section, we evaluate our algorithm on various real-word datasets consist-
ing of sparse and dense graphs. We also compare our algorithm with the main
solutions proposed in the literature. The aim of this comparison is to show that
beside the storage efficiency of our approach due to graph compression, it has
an execution time comparable to the fastest algorithms. We first describe the
experimental environment, then the dataset, and finally we present our results
and discuss them.
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4.1 Experimental Setup

In this section, we present the computational experiments conducted by running
our algorithm. We evaluate execution time performance over different types of
graphs and scalability of the approach in terms of graph size. To compress
the input graph, we use an extension of the algorithm proposed in [6, 15] that
computes the modular decomposition of a graph in linear time. So, we compress
the input graph in O(n+m) time, where n is the number of vertices and m the
number of edges of the graph.

The experiments are performed on a 2.80 GHz Intel(R) Core(TM) i7 −
2640M 64 bits laptop with 8 GB of RAM running Linux. The algorithm is im-
plemented in C++ using the Standard Template Library (STL) and the GNU
compiler gcc version 4.8.1 set to the highest optimization level (−O3 optimiza-
tion option).

We compared our CGT algorithm with the existing efficient solutions of
triangle listing, namely Edge-Iterator, Edge-Iterator-Hashed [30], Forward and
Forward-Hashed [30], Compact-Forward [22], K3 [8], Node-Iterator and Node-
Iterator-Core [1, 30]. These algorithms were reviewed in Section 1. All these
algorithms are implemented in the same context as ours in [28], i.e., C++,
using the gcc compiler with the optimizer option O3. The algorithms were
implemented for counting triangles, and we modified them to list triangles.

We conduct experiments on the sparse and dense datasets described below
by considering two metrics: runtime and reduction rate.

4.2 Datasets

We evaluate the performance of our algorithm over large dense/sparse real
datasets from the PPI-RI database of biochemical data3 [5] and graphs from the
SNAP project at Stanford [23]. We considered both dense and sparse graphs
with dimensions varying from less than ten thousand vertices to more than a
million vertices, and from less than one hundred thousand edges to more than
one million edges. The characteristics of these datasets are shown in Table 2.
Their description is as follows:

• The PPI database (RI database) [5, 31]: This dataset contains graphs de-
scribing the known and predicted protein interactions. The graphs de-
scribe the following organisms: Mus musculus, Saccaromyces cerevisiae,
Caenorhabditis elegans, Drosophila melanogaster, Takifugu rubipres, Danio
rerio, Xenopus tropicalis, Bos taurus, Rattus norvegicus, and Homo sapi-
ens. They are large dense graphs with up to 332,458 edges. Table 3
describes them by giving the number of vertices |V | and number of edges
|E|.

For most PPI graphs, computation of the number of triangles is provided
by our algorithm and verified by another existing algorithm. We also
report the size on disk (in megabytes) of these datasets in the format in

3http://ferrolab.dmi.unict.it/ri/ri.html#description
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which we obtained them (a list of edges in plain text) and their compressed
graph version computed by our algorithm.

Dataset Type avg|V | avg|E| max|V | max|E|

PPI dense 7,828.9 107,134.8 12,578 332,458
SNAP sparse 1,706,900 2,812,893.75 2,394,385 5,021,410

Table 2: Graph Dataset Characteristics. avg|V |: average number of vertices.
avg|E|: average number of edges. max|V |: maximum number of vertices.
max|E|: maximum number of edges.

Graph Name n m ∆ m/n Size(G) Size(C(G)) Compression
time (sec)

Danio rerio 5,723 51,464 93,784 8.99 0.49M 0.29M 0.112
Takifugu rubipres 5,872 54,154 85,873 9.22 0.52M 0.30M 0.139
Saccaromyces cerevisiae 6,139 332,458 870,978 54.15 3.2M 1.7M 0.309
Xenopus tropicalis 6,153 59,538 87,187 9.67 0.57M 0.33M 0.113
Caenorhabditis elegans 6,175 52,368 78,597 8.48 0.50M 0.30M 0.142
Bos taurus 8,474 84,468 150,146 9.96 0.82M 0.47M 0.203
Drosophila melanogaster 8,625 78,932 98,244 9.15 0.76M 0.45M 0.125
Rattus norvegicus 8,766 79,864 84,757 9.11 0.77M 0.47M 0.204
MusMusculus 9,784 104,322 186,306 10.66 1M 0.58M 0.285
Homo sapiens 12,578 173,780 227,982 13.81 1.8M 1M 0.240

Table 3: A summary of the dense graph dataset used in our experiments, show-
ing for every graph, the number of vertices (n), the number of edges (m), the
number of triangles in the graph (∆), the ratio m/n, the size of the original
graph on disk (stored as a list of edges in plain text)(Size(G)), the size of the
compressed graph on disk (stored as a list of strong modules augmented with
the edges of prime modules in plain text)(Size(C(G))), and the compression
time.

Figure 3 gives the topography of the dense dataset in terms of modules.

• SNAP dataset : This is a substantial collection of graphs describing very
large networks, including social networks, communication networks, and
transportation networks. In our experiments, we use California road net-
work graphs and Wikipedia talk (communication) networks.

– California road networks describe the road networks of California.
Intersections and endpoints are represented by vertices and the roads
connecting these intersections or road endpoints are represented by
undirected edges.

– Wikipedia talk graph contains all the users and discussion from the
inception of Wikipedia till January 2008. Vertices in the network
represent Wikipedia users, and a directed edge from vertex i to vertex
j means that user i edited a talk page of user j at least once.
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Figure 3: Module-based description of the dense dataset.

This dataset contains four large sparse graphs of up to 2,394,385 vertices
and 5,021,410 edges. For most SNAP graphs, the exact triangle count
is provided by the source (which we have verified); in other cases, we
compute the exact count using our algorithm. We also report the size on
disk of these graphs and their corresponding compressed graphs. Table 4
summarizes the characteristics of these graphs.

Dataset n m ∆ m/n Size(G) Size(C(G)) Compression
time (sec)

roadNet-CA 1,965,206 2,766,607 120,676 1.40 84M 58M 1080.405
roadNet-PA 1,088,092 1,541,898 67,150 1.41 46M 30M 340
roadNet-TX 1,379,917 1,921,660 82,869 1.39 59M 39M 449
wiki-Talk 2,394,385 5,021,410 9,203,519 2.09 66M 64M 73221.801

Table 4: A summary of the sparse graph dataset used in our experiments,
showing for every graph, the number of vertices (n), the number of edges (m),
the number of triangles in the graph (∆), the ratio m/n, the size of the original
graph on disk (stored as a list of edges in plain text)(Size(G)), the size of the
compressed graph on disk (stored as a list of supervertices augmented with the
edges of prime modules, in plain text)(Size(C(G))), and the compression time.

Figure 4 gives the topography of the sparse dataset in terms of modules.

As shown in Figures 3 and 4, the sparse graphs are characterized by a large
number of parallel modules when compared to the number of series and prime
modules. The numbers of the different kinds of modules are more balanced in
the dense dataset.

16



 1

 10

 100

 1000

 10000

 100000

 1e+06

roadNet-PA roadNet-TX roadNet-CA Wiki-Talk

N
u

m
b

e
r 

o
f 

m
o

d
u

le
s
 (

lo
g

s
c
a

l)

Graph dataset

Serie
Parallel

Prime

Figure 4: Module-based description of the sparse dataset.

4.3 Results

We first compared the runtime of the different algorithms. Figure 5 plots the
results on both datasets. We note here that the graphs are compressed offline
and that the time necessary to compress the graphs is not considered in the
comparison.

Figure 5 shows clearly that our approach performs better when compared to
the existing algorithms. For dense graphs, our algorithm is the most efficient in
almost all datasets. For the sparse datatset, it achieves better than the other
solutions except for the roadNet-CA graph for which it achieves almost as well
as the fastest algorithm Forward-Compact. We can see in Figure 4 that the
roadNet-CA graph has the greatest number of prime modules that are the most
time-consuming in CGT.

We also studied the impact of compression on the runtime of CGT. Given
a graph G(V,E) and its compressed graph C(G), the reduction rate RR of G is

given by RR =
RRedge

RRvertex
∗100%, where RRvertex is the reduction rate of vertices

RRvertex = ((|V (G)| − |V (C(G)|)/|V (G)|) and RRedge is the reduction rate of
edges RRedge = ((|E(G)| − |E(C(G)|)/|E(G)|). The average reduction rate of
sparse graphs is 1.43% and the average reduction rate of dense graphs is 51.76%.

Figure 6 shows the impact of the reduction rate on runtime in sparse and
dense graphs. We see that when reduction rate grows, runtime decreases in
both sparse and dense graphs.
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5 Conclusion and future work

Triangle listing is an important graph problem that can be encountered in sev-
eral real word applications. Actually, this problem receives an increasing at-
tention especially for large graphs. In this paper, we show that tackling this
challenge goes also through the representation of the graphs. So, we propose an
algorithm that lists triangles in a compressed graph without decompressing it.
Our experimental evaluation shows clearly that our approach is space efficient
and has a time complexity comparable to the fastest algorithms. Furthermore,
our solution facilitates parallelism because we partition the compressed graphs
into OSTs that can be handled by different machines with independent pro-
cessing/discovering of triangles inside and outside each module. This can be
envisaged as a future work of this paper. Also, the actual version of the solu-
tion works in-memory as we assume that the compressed file fits in memory. So,
an interesting extension is to design an external memory solution by allying par-
titioning and compression and adequate solutions to decrease I/O costs. This
last prospect also directs us towards working on external-memory solutions for
graph compression. In fact, we relied on an in-memory algorithm to compress
the graphs. Even if compression is achieved offline, it cannot be used on graphs
that do not fit in memory. Consequently, we have to work on new methods to
compress large graphs or adapt existing ones. It is also important to work on
the representation of the compressed graph in memory as it plays an important
role in space efficiency of the proposed framework.

Acknowledgements: The authors would like to thank the anonymous re-
viewers for their valuable comments on earlier drafts of this paper.
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Figure 5: Comparison with existing algorithms.
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