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Abstract. The possibility of developing increasingly sophisticated robots, and the availability of
cloud-connected resources, have boosted the interest in the study of real world applications of
service robotics. However, in order to operate under natural or less structured conditions, and
given the information processing bottleneck and the reactivity required for a secure execution of
the task, it is desirable that the agent can exploit more efficiently the local information available,
so that being more autonomous, and relying less on remote computation. This study explores a
strategy for obtaining reliable approach tasks. It considers the anticipation of perception, by taking
into account the statistical regularities and the information redundancies induced in the sensory-
motor coupling. From an initial perception of the object assisted by remote computation, contextual
features are defined for capturing bodily sensations emerging in the task. The observations based on
proprioceptive and visual data are fused in a Bayesian Network, which is in charge of assessing the
saliency during the object approach, thus constituing a local discriminative processing of the object.
The strategy proposed reduces dependency on context-free models of behavior, while providing an
estimate on the degree of confidence in the progress of the task.

Key words: Cognitive robotics, Embodied cognition, Humanoid robotics, Ego-localization, Top-
down visual attention, Robot Vision.

1 Introduction

Ubiquitous computing is now a reality, given the progresses in the fields of infor-
mation technology and artificial intelligence. In everyday life we have access to
various applications offered on mobile devices. Just to mention a few, we can ob-
tain information about a product from a captured image, or identify a song from an
audio sample. In such applications, given the computational limitations of the local
device, the processing is performed remotely on dedicated servers, equipped with
extensive knowledge data-bases and a vast computing power. The local device is
simply in charge of running the client application, thus, ensuring the aspects related
to the usability in the human-machine interaction.

From the success of ubiquitous computing, several efforts are aiming at devel-
oping solutions to more challenging scenarios in heath-care, assistance, or service
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robotics. Hence, robot applications can share knowledge or be assisted by cloud-
connected resources. In this sense, there are currently initiatives that focus on the
definition of robot architectures (e.g. Vasiliu et al[20]), that integrate distributed
resources to the task, so mitigating specific constraints of the robot platform. In par-
allel, several research communities are engaged in the definition of ontologies for
knowledge sharing, distributed learning, and the collection and reuse of information
for practical applications (e.g. Waibel et al[21]).

However, since robots take action on the environment, the safety aspect is par-
ticularly affected by the information bottleneck during remote computing. When
moving, the agent would ideally not depend at all on remote resources, since the
communication with the server can be interrupted. It would also have the least pos-
sible of top-down deliberation, since it must be reactive to unexpected disturbances.
Thus, it has to be endorsed with autonomy in order to ensure the maximum local
progress on the task.

In this study, inspired by the research on embodied cognition, we explore the
emergency of information during the task. From a first-person perspective defini-
tion of the approach, and taking into account the redundancies and the statistical
regularities induced in the sensory-motor coupling, we examine the possibility of
exploiting the anticipation of multi-sensory, contextual, and more diversified ev-
idence about the object. To this end, we study a Bayesian network structure for
information fusion, to discriminate the saliency related to the object.

This paper is organized as follows. In Sec. 2 some related contributions from
the cognitivist approach to artificial intelligence are discussed, and contrasted to the
point of view of embodied cognition research, that considers the emergent aspects
of behavior. In Sec. 3 the definition of the approach task is presented. In Sec. 4 the
aspect of autonomy is tackled, where the design of the features and the structure of
the Bayesian network are detailed. A case-study has been developed and conducted
with the robot Nao, which is going to be discussed in Sec. 5. Finally, the conclusions
are given in Sec. 6.

2 Related work

Vision-based locomotion control is a challenging task for walking robots. Unlike
natural beings, which are in possession of extremely sophisticated sensory organs,
the vast majority of the research in robotic vision has been carried out with quite in-
ferior equipment, usually employing general purpose cameras. Moreover, the body
structure and the actuation system utilized is much less stable, fine, and accurate,
when compared to the natural musculo-skeletal system. In view of such limitations,
some studies (e.g., Lewis & Simo[12], and Michel et al.[14]) have resorted to cap-
ture information from extra-corporal sensory, for achieving higher quality observa-
tions. Unfortunately, robot motion may occlude the cameras thus compromising the
solution. Furthermore, the generality of the solution is affected once the scene is
adapted to the task.
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On-board solutions have been attempted under the visual servoing (VS) frame-
work (see Chaumette & Hutchinson[4] and Corke[6]), which relates variations on
image features to the spatial instantaneous velocity of a flying (dismembered) cam-
era. A study by Dune et al.[7] has considered a monocular vision task with the robot
HRP2. Given the walk style of the robot, the solution involved the cancellation of
the oscillatory contribution to the control signal (also called the sway motion). A
work by Moughlbay et al.[15] has considered approaching tasks with the robot Nao.
In both studies, in order to handle the image noise, the tracking technique by Com-
port et al.[5] was employed. The algorithm is based on visual odometry and required
of a realistic 3D model of part of the room.

Model-based navigation have been explored in the simultaneous localization and
mapping (SLAM) research (see Thrun et al.[19]). Examples of contributions in the
field are numerous. Just to mention a few, in the work by Hornung et al.[10], starting
from a volumetric map of the environment, precise indoor localization is obtained by
adapting a range sensor to the robot’s head. A work by Oriolo et al.[16] considered
building the map on-line by fusing proprioceptive, inertial, and visual information,
within an extended Kalman filter. In general, map-based navigation has produced
impressive results, but it has also received some criticism. According to Shapiro[18],
EC researchers disagree with the premise that organisms must firstly represent the
environment for then navigating its topology. Indeed, this would be inconvenient to
unstructured or reactive situations. Moreover, from the practical point of view, map-
based solutions present as a drawback requiring maintenance, where environmental
changes must be systematically acknowledged.

The works discussed so far fall within the so-called cognitivist research paradigm
of artificial intelligence, that addresses the problem of automation under a repre-
sentational focus, in which, the solution of the task is modeled explicitly. In the
last decades a different perspective has been adopted through the multi-disciplinary
research in embodied cognition (EC). Under the EC methodology, behavior is
viewed as a complex system, emerging from the interactions with the environment
(Anderson[1], Hoffmann & Pfeifer[9]). Thus, knowledge representation is thought
to be grounded in the physical coupling (Brooks[2]), so emergent behavior would
be neither explicitly described nor planned in advance.

The analysis of the sensory-motor coupling in natural tasks, from a dynamic sys-
tem perspective, appears as a promising research direction, that can provide more
efficient, easier to implement, and robust solutions. In this sense, a work by Lun-
garella & Sporns[13] has explored the relation between sensory-motor coordination,
body morphology, and information processing. The study reported that higher levels
of information correlation occurred when actions and perceptions were coordinated.
Moreover, sensory-motor coordination reduced the dimensionality of the informa-
tion content, given the perceptual regularities induced in the task. From these results,
the information emerging in the task, including the motor activity, the body config-
uration, and the visual saliency, can be exploited to anticipate the evolution of the
object in the field of vision. Thus, reducing the dependency on intensive context-free
computations for perceiving the object in the scene.



4 H. F. Chame and C. Chevallereau

3 Task definition

The on-board localization is obtained from the definition of a sensory ego-cylinder,
that heuristically takes the z-axis perpendicular to the ground, under the assumption
of motion over a plane surface. Figure 1a illustrates the frames defined in the study.
The frame G was placed at the ground level between the feet of the robot, it corre-
sponds to the origin of the ego-cylinder. The frame T was set at the center of mass of
the robot. The frame C is placed at the camera location on the forehead. The trans-
formation between the reference frames G, T , and C, depend on the current joint
configuration q of the robot. They are obtained by the classical modeling approach
(see Khalil & Dombre[11]), that considers the body as a set of interconnected serial
structures departing from a common reference, which is taken as frame T .

Task illustrations
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Fig. 1: (a) Frontal view of the task reference frames (camera C, trunk T , ground G).
The z-axis is represented in blue and the y-axis in green. The x-axis goes towards the
reader and is plotted as a red dot. Notice that the frames are not necessarily aligned.
(b) Upper view of the task. The localization of the object is denoted by ζ. The black
dot represents the object’s center, the black arrow illustrates the direction of the
projection on the motion plane of the mean normal direction to the tracked face of
the object. The agent with the heading direction is represented in blue. A desired
configuration in relation to the object is represented by τ∗. The trajectory followed
to approach the object is illustrated in light blue. (c) Illustration of the look-at task.
The position of the object center corresponds to O. After the head correction, the
x-axis of the camera frame C will be aligned with the direction CO.

As illustrated on Fig. 1b, the localization ζ of the object is represented by the
four parameters

ζ =
[

ρ θ ι φ
]t
, (1)
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where ρ, θ, and ι are position components. Respectively, the distance, the azimuth,
and the height of the center of the object. The parameter φ corresponds to the orien-
tation of the object around the z-axis. It is estimated by the difference between the
projection on the motion plane of the mean normal direction to the tracked face of
the object, and the heading direction of the agent. The observation of the object’s
pose with respect to the camera frame C is obtained by defining a virtual oriented
trapezoid, which delimits the image region containing the tracked face (see Fig. 2).

Bounding trapezoid

A B

CD

A∗ B∗

C∗D∗

Fig. 2: The localization of the can is estimated by fitting the salient trapezoid to a
rough geometric model of the object, which in this case is a cylinder. Notice that the
lateral face of the can at the left is not salient. The observation of the approach error
ê (see Eq. (2)) is obtained from the spatial relation between the current view at the
left and the desired view at the right.

The task considered is the approach to a specific face of a static object, by walk-
ing on a plane, in a scene without obstacles. More specifically, starting from the
knowledge of a desired ego-centric perception of the object, the agent has to au-
tonomously return as close as possible to such state once disturbed. The behavior
can be viewed as a regulation task where the control parameters include a 2D pose,
which is defined with respect to a movable reference frame (on-board). Hence, the
localization component ι is assumed to be constant. Formally, the approach error e
expresses the desired configuration τ∗ of the body (see Fig. 1b) in the actual ego-
centric perspective, such that

e =
[

τρ∗ τθ∗ τφ∗
]t
. (2)

The solution of the task is based on the parallel execution of two motor behaviors:
the walk and the look-at tasks. The former is in charge of steering the robot to ensure
convergence toward the object. In order to take into account the aesthetics of motion,
human walk is mimicked. That is, non-holonomic motion is used when human is far
from the object, but holonomic motion is preferred when human is close enough to
the goal. Thus, the Cartesian evolution of the walk task is described by
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ẏ
ω

=

 λ(k1êρ)+ γ(k2cos(êθ)êρ)
γ(k3sin(êθ)êρ)

λ(k4sin(êθ− êφ)+ êφ)+ γk5êφ

 . (3)

where ẋ and ẏ are the linear velocities, and ω is the angular velocity. The holonomic
walk includes independent corrections along the 3 degrees of freedom, with different
gains k2, k3, k5. The non-holonomic walk does not include correction along the
y-axis, since no lateral displacement is permitted. A correction along the walking
direction is applied proportionally to the error distance êρ with gain k1. The steering
correction is chosen to direct the agent toward the object with gain k4. The transition
to the holonomic motion depends on the distance êρ, such that λ = 1/(1+ exp(s1 ∗
(êρ− s2))), where s1 is a proportional gain, and s2 is the sensitive distance for the
transition.

The look-at task is in charge of directing the view towards the object, thus main-
taining it centered on the image. As illustrated in Fig. 1c, α and β are respectively
the pitch and yaw angles of the Nao robot neck, that affect the pose of the camera
frame C. The head motion is described by[

α̇

β̇

]
=

[
atan2(lι,cos(lθ)ζ̂ρ)

lθ

]
, (4)

where lθ and lι are the azimuth and the height correction desired, and ζ̂ρ is the
observed distance to the object, expressed with respect to frame T .

4 Behavior autonomy

As discussed earlier, the tasks in charge of the agent are moving toward the object
and controlling the gaze direction. The available sources of information include
the image acquired by the camera and the proprioceptive registry of the robot. The
difficulty of the task consists in finding the object of interest on the image, by relying
mostly on contextual representations. As illustrated in the diagram of Fig. 3, the
idea is to provide the agent with an autonomous implementation of the behavior
that can be continuously assessed. Thus, the agent would resort to remote services
only when the level of confidence about the correctness of the task is low. For this,
we will rely on the coupling between action and perception. The perception is based
on the analysis of properties related to the image blobs (e.g. the area, the radio-
aspect, and the topology), which results from the color saliency. It is also based on
the comparison of body postures, and the spatial relation between the agent and the
object. The actions concern the motion control and a prediction of the localization,
from the motion undertaken.

Table 1 details the definition of contextual features for assisting the object per-
ception. The first two measurements are obtained from a particularly useful class of
image features, which is known as moment (Corke[6]). For a binary image B[x,y]
the (p+q)th order moment is defined by
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Task execution diagram

Fig. 3: The deliberative process evaluates the consistency of the autonomous lo-
cal execution of the behavior. Once inconsistency is detected, remote processes are
queried for support.

mpq =
ymax

∑
y=0

xmax

∑
x=0

xpyqB(x,y) . (5)

The radio-aspect F3 is defined from the width and height of the minimum bounding-
box (MBB) enclosing the blob, where the angle between the MBB’s principal axis
and the image x-axis is γ = 0.5(atan(2m11/(m20−m02))). The feature F4 includes
proprioceptive information from the instantaneous posture of the neck. The feature
F5 represents the topographic relation between the blobs, it is a descriptor of the
presence of saliency at a four cardinal neighborhood.

Table 1: Saliency features

Expression Description

F1 = (m10
m00

, m01
m00

) Centroid.
F2 = m00 Area.
F3 = Bheight/Bwidth Radioaspect, where B denotes the oriented bounding box.
F4 = (α,β) Posture, with α and β the pitch and yaw neck angles.
F5 = v(S,s) Topology, where v attributes a 4-bit vicinity code according to the

saliency set S around the blob s.

The anticipation process involves a deterministic motion model, that assumes an
ideal noise-free robot, moving at constant velocity v = [ẋ, ẏ,ω]t, along the time in-
terval ∆t. Thus, a prediction for the localization of the object ζ̃ is obtained from
the last observation available ζ̂, and the expected displacement m = v∆t. Table 2
presents the definition of a set of features that relate the actual saliency to the antic-
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ipated information flow. Figure 4 illustrates the feature F1. In a periphery-to-center
flow, information from salient regions (e.g, the blobs centroids) are projected to the
sensory ego-space. Notice that among the features defined, some are not directly
related to the motion of the agent, such is the case of F3 and F5.

Saliency anticipation

Fig. 4: The agent is approaching the red can on the top of the table. The white dots
correspond to the center of the salient objects. The estimate on the distance to the
blob center is unavailable during the saliency analysis, thus, the last observation ζ̂ρ

is employed. The projection of the blobs in the ego-cylinder is represented by the
blue dots, whereas the predicted localization is represented by the yellow dot.

Table 2: Anticipation features.

Expression Description

F1 = |σ(F ′1− ζ̃)| F ′1 denotes the projection of the blob centroid in the ego-space, ζ̃ is the
predicted localization of the object, and σ weights the contribution of
each component.

F2 = 1− F2(
ζ̂ρ+mρ

ζ̂ρ

)
F2(k−1)

Relation between the actual blob’s area F2 and the simulated area from
the expected motion m. Here F2(k−1) denotes the saliency during the
last observation ζ̂.

F3 = |F3(k)−F3(k−1)| Difference between the current and the last detected radio-aspect.
F4 = |F̌4− F̃4| Difference between the simulated posture of the neck F̌4, that would

center the blob on the visual field, and the predicted attitude of the
neck F̃4.

F5 = ∑
i∈N

δ(F5(k−1)i,F5i) Estimate of the topographic relation through the Kronecker delta
function δ(a,b). The neighborhood set is defined by N =
{le f t,right,up,down}.
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The information fusion for the discriminative process is accomplished in a
Bayesian Network (BN), which is a directed acyclic graph, that represents the con-
ditional probabilities of interconnected random variables. The BNs have been em-
ployed for diverse automatic diagnosing and recognition tasks (see Ertel[8]). In a
BN, a node is assumed to be conditionally independent from non-successors, given
its parents. The joint probability p(X1, ...,Xn) of the nodes Xi is expressed by

p(X1, ... ,Xn) =
n

∏
j=1

p(X j|parents(X j)). (6)

One important advantage of knowledge representation through BNs is that the in-
formation contained is directly understandable by humans, which facilitates doing
future modifications (e.g. including new features, or more complex observations).
As illustrated in Fig. 5, the structure of the network corresponded to a tree of height
2. The root node is a binomial random variable, which represents the probability
that the blob saliency matches up with the object of interest. The intermediate nodes
Bi are binomial random variables that represent the a posteriori probability of the
features, given the observation of the object. This layer is included in order to sim-
plify adjustments to the contribution of the features to the discriminative process.
Probabilistic independence is assumed between the nodes Bi, which is also known
as a naive Bayes classifier. The leaves Oi are multinomial random variables that rep-
resent the a posteriori probability of observing a particular intensity of Fi, given Bi.
The tree can easily accommodate new features by horizontal expansion. The most
likely blob s among the saliency set S is obtained by maximizing the expression

s = argmaxs∈S p(Ob ject| Bi,Oi). (7)

Thus, the BN can be used to classify the salience, while providing an estimate of the
certainty in such classification. As we shall see in the case study, this information
is of crucial importance to the deliberative process, once it has to decide whether or
not resorting to remote processing.

Bayesian network for object recognition

Ob ject

B3B2B1 B4 B5

O3O2O1 O4 O5

Fig. 5: Bayesian network for contextual information fusion.
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5 Case Study

The case study included simulations of the task in Webots version 7.4.0, and a real
approach task with the robot Nao. The robot is 58 cm tall, weighs 4.8 kg, has 25
degrees of freedom, and is equipped with a CMOS digital camera with a 58 degree
field of view. The algorithms were implemented in the C++ programming language,
and run under Ubuntu version 12.04.5 LTS. The vision processing was obtained
with the support of the OpenCV library version 2.4.8. The Bayesian network imple-
mentation was provided by the dlib C++ Library version 18.13.

In the scenario envisaged, the agent is expected to be assisted by remote re-
sources. Thus, the first detection of the object, including the initial segmentation,
and the virtual oriented trapezoid as seen from the desired configuration, are as-
sumed to be provided remotely. This requirement was simulated in the study. The
initial segmentation was manually provided through the GrabCut technique (Rother
et al. [17]), and the desired pose was shown by demonstration (i.e. by placing the
robot in front of the object). A color-based segmentation technique, defined under
the Markof random field formalism, has been employed from our prior work (see
Chame & Chevallereau[3]), for detecting the color saliency. The resulting algorithm
presented a computational complexity O(kn2), where k is the maximum number of
iterations allowed in the optimization process, and n is the number of pixels.

In the walk task the agent had to move to the desired location, and to stop once all
the components of the observed localization error ê (see Eq. (2)) were smaller than
a given threshold ε. The tolerance considered was a radial distance ερ = 0.05 meters
(m), the azimuth εθ = 0.04 radians (rad), and εφ = 0.1 rad for the orientation com-
ponent. The walk primitive of the robot receives commands in position, expressed
in the Cartesian space. A motion request is sent by the walk task, according to Eq.
(3), under the assumption of constant velocity motion. The mean walk velocity was
estimated to be around v = [0.022 m/s,0.04 m/s,0.106 rad/s]t. Continuous motion
was achieved by sending commands at regular time intervals. In order to prevent
that unforeseen delays affect the fluidity of the walk, the actual displacement sent
considered a larger delay (e.g. 1.5 times the expected value). Thus, a new command
would be ideally sent before the routine could finish the previous one. If this would
not be the case (e.g. due to losing the object, a program crash, etc.), the robot would
stop moving after a while. This strategy ensured a fluid walk while keeping the
safety aspects. For speeding up convergence, given the observation noise and the
fact that the walk primitive is less precise in continuous motion, once the robot was
nearly at the desired location (at êρ < 0.1 m), the walk task switched to a step-by-
step policy (i.e. a new correction was sent only after finishing the previous one).

The look-at task was also controlled in position. The correction of the head pos-
ture, through the actuation of the neck joints α and β, was obtained from Eq. (4)
by assuming constant velocity motion. The tolerance ε = 0.03 rad was admitted
for convergence. The head posture is regulated independently from the walk. This
means that the motions induced by the walk can affect the convergence of the look-
at task, specially at slow turning of the head. Thus, a velocity profile of 4 rad/s was
employed and convergence was obtained in few iterations.
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The study of the anticipation process was based on the design of a controlled
scene that contained a single salient object. The observation of the evidence was
accomplished through the definition of data partitions, which were obtained from
the statistical analysis of the information flow, as recorded by the agent. The Near-
est Neighboor Method (see Ertel[8]) was employed to classify the observation
Oi ∈ {0,1,2}, with 0 the lowest and 2 the highest intensity. A more complex task
was then designed to evaluate the network performance. As illustrated in Fig 6,
various stimuli of the same kind were placed on the scene, where the agent had
to approach a specific soda can. Despite stimuli were relatively close to each other,
with the BN, the agent was able to do the task autonomously (i.e. without remote as-
sistance, as provided in Fig. 3) from different initial configurations, under different
feedback delay profiles (between 100 to 2000 ms). Figure 7 shows a comparison of
the performance of the network for two delays profiles. As noted, although the task
was accomplished in both cases, at higher delay the network is less discriminative,
since the anticipation is less consistent.

Multiple objects in the scene On-board view

Fig. 6: On the left two trajectories followed are superimposed. Starting from the
same position, the agent was required to approach a distinct can over the table.
Some on-board views and their corresponding saliency are displayed on the right.

Based on the simulation results, we proceeded to do the experiment in the robotic
lab of the IRCCyN, which is an unstructured environment, under natural and artifi-
cial illumination. As shown on Fig. 8, two colored tea cans were placed one beside
the other at a distance around 4 cm, and the robot was required to approach one of
them. Given the characteristics of the robot, the perceptive delay was set to 1700
ms, including at most two iterations for centering the object in the field of vision.
The experiment was executed in two motion modalities. In the first one, a step-by-
step approach was attempted, where the robot finished the motion before process-
ing additional commands. In the second one, a continuous approach was adopted.
The initial trials were conducted off-line, that is, the local deliberative module was
disconnected (see Fig. 3), in order to evaluate the autonomous execution of the be-
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Fig. 7: Comparison of the network response with two delay profiles. The upper
row presents the results for a 300 ms delay the bottom the delay at the bottom row
corresponds was 1700. The first column shows the evolution of the observations Oi
(with 0 the lowest and 2 the highest intensity). The signal are shifted vertically for
visualization, such that Oi = 2(i−1)+Oi. The second column shows the output of
the network. The tracked can over the table is represented by s1, and s2 corresponds
to the lateral neighbor (see Fig. 6). As it can be noted, the discriminative power of
the network is reduced as the delay increases.

havior. Thus, the network was allowed to select the most likely blob conforming to
Eq. (7), regardless of the probability obtained. Under these conditions, the task was
accomplished 7/10 times with step-by-step motion, and 5/10 times with continuous
motion. Among the reasons that affected the off-line execution of the task are: unex-
pected peaks on the feedback delay (e.g. the expected delay profile was occasionally
exceeded in more than 2000 ms), irregular performance of the walk primitive, and
momentary degradation on the color saliency detection.

Interestingly, the performance of the network in the off-line trials was very con-
sistent, by yielding a chance po < 0.5 to blobs selected under degraded conditions.
Therefore, it provided a reliable information about the degree of confidence on the
task. Though, as shown in Fig. 7, at high delay profiles the discriminative power
of the BN drops. Thus, the difference pd between the two most likely candidates
may be employed as an indicator of the actual discriminative power of the network.
In a new set of trials on-line execution was attempted by activating the deliberative
process. A tolerance pd > 0.2 and po > 0.6 for the task reliability was set, so the
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deliberative process paused the behavior when the threshold was reached and waited
for the user, who acting as the remote resource, selected the blob corresponding to
the object. In the on-line execution of the experiment the task was accomplished all
the times.

Approaching sequence On-board view

Fig. 8: Experimental task. The trajectory followed is shown on the left, whereas
some on-board views and their corresponding color salience are shown on the right.

6 Conclusions

This study has focused on the problem of the autonomy of humanoid approach tasks.
It has explored an efficient means of employing distributed resources, towards de-
veloping more realistic and robust applications for service robotics. Given the risks
in the on-line implementation of the task, we concentrated our efforts in exploiting
the emergence of contextual information, notably, the redundancies and the statisti-
cal regularities induced in the sensory-motor coupling. We examined the possibility
of employing the anticipation of the information flow to assist a local, multi-sensory,
perceptive process, thus, reducing the dependency on context-free representations.
In view of the stochastic difficulties inherent to the task, in the form of sensory
noise, processing delays, and disturbances from the environment, we employed a
Bayesian network structure to fuse information. The results obtained suggested that
it is a convenient and easy-to-employ technique, which produces reliable informa-
tion about the degree of confidence on the task. Such information can be evaluated
by a local deliberative process, that can resort to remote assistance in case the agent
is no longer able to autonomously accomplish the task.
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