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WELL-BALANCED AND ASYMPTOTIC PRESERVING

SCHEMES FOR KINETIC MODELS

CASIMIR EMAKO AND MIN TANG

Abstract. In this paper, we propose a general framework for designing nu-
merical schemes that have both well-balanced (WB) and asymptotic preserving
(AP) properties, for various kinds of kinetic models. We are interested in two
different parameter regimes, 1) When the ratio between the mean free path and
the characteristic macroscopic length ε tends to zero, the density can be de-
scribed by (advection) diffusion type (linear or nonlinear) macroscopic models;
2) When ε = O(1), the models behave like hyperbolic equations with source
terms and we are interested in their steady states. We apply the framework
to three different kinetic models: neutron transport equation and its diffusion
limit, the transport equation for chemotaxis and its Keller-Segel limit, and
grey radiative transfer equation and its nonlinear diffusion limit. Numerical
examples are given to demonstrate the properties of the schemes.

1. Introduction

Transport equations are important since they arise in many important appli-
cations, ranging from neutron transport, radiative transfer, semiconductor device
simulation to E.coli chemotaxis. These models describe particles that travel freely
for a certain distance and then change their directions by scattering, interacting
with background media or tumbling. The mean free path (the average distance a
particle travels between two successive velocity changes) is an important parameter,
when it is small compared to the typical length scales, various macroscopic model
can be derived asymptotically or analytically [6, 24, 29].

Let the dimensionless parameter ε denote the ratio of the mean free path and the
typical length scale. Numerical solutions to the transport equation are challenging
when ε is small, since it requires the numerical resolution of the small scale. To
develop a multi-scale scheme whose stability and convergence are independent of
ε refers to the asymptotic preserving (AP) property. When ε = O(1), the models
behave like hyperbolic equations with source terms. When the source terms in the
system become stiff, the usual numerical methods may give poor approximations
to the steady state solutions [4, 25]. To maintain the steady states or to achieve
them in the long time limit with an acceptable level of accuracy refers to the well
balanced (WB) property.

In this work, we present a general framework to build schemes that have both
properties. Two different kinetic models are considered to illustrate the idea of our
proposed framework
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Transport equation for Chemotaxis and its Keller-Segel limit

Bacteria undergo run and tumble process as mentioned in [15, 31, 32]. During the
run phase, bacteria move along a straight line and change their directions during
the tumble phase. This individual motion is called the velocity jump process and
modeled by the so-called Othmer-Dunbar-Alt model [2, 28] which reads
(1.1)














∂tf
ε +

v

ε
· ∇xf

ε =
1

ε2

(

1

|V |

∫

V

(

1 + εφ(v′ · ∇xS)
)

f ε(v′)dv′ −
(

1 + εφ(v · ∇xS)
)

f ε(v)

)

,

∂tS
ε −D∆Sε + αSε = βρε(x, t) :=

1

|V |

∫

V

f εdv.

Here f ε(x, v, t) is the amount of cells with velocity v ∈ V (V is a sphere) at position
x and time t > 0, φ(u) is a decreasing function in u, Sε(x, t) is the concentration
of the chemical substance. The parameters D,α, β are positive constants and ε
is the ratio of the average run distance between two successive tumbles and the
characteristic macroscopic length.

When ǫ→ 0, the solution of (1.1) f ε(x, v, t) tends to ρ0(x, t), which is indepen-
dent of v and satisfies the following Keller-Segel type equation [6, 9, 16, 20, 29] :

(1.2)







∂tρ =
1

3
∆ρ+∇

(

( 1

|V |

∫

V

vφ(v∂xS)dv
)

ρ

)

,

∂tS −D∆S + αS = βρ.

Many numerical schemes have been proposed to study (1.1) [5, 11, 13].

Gray radiative transfer equation and its nonlinear diffusion limit:

The gray radiative transfer equation concerns photon transport and its interaction
with the background material. It has wide application in astrophysics and inertial
confinement fusion. The system for the radiative intensity I and the material
temperature is

(1.3)











1

c
∂tI +

1

ε
v · ∇xI =

σ

ε2

(

1

|V |
acT 4 − I

)

+ q(v),

Cv∂tT =
σ

ε2
(ρ− acT 4),

where ρ :=
∫

V
Idv, σ(x, T ) is the opacity and a, c, Cv are positive constants

represent the radiation constant, light speed and heat capacity respectively. Similar
to the chemotaxis case, when ε goes to zero, the radiative intensity I approaches a
Planckian at the local temperature 1

|V |acT
4 and the photon temperature satisfies

the following nonlinear diffusion equation:

(1.4) a∂tT
4 + Cv∂tT = ∇x(

ac

3σ
∇xT

4) +

∫

V

q dv.

It is important to preserve the steady state temperature distribution when t→ ∞.

A scheme for such problems is AP if it preserves the limiting equation (1.2) or
(1.4) when ε→ 0 at the discrete level. AP schemes were first designed for the neu-
tron transport equation to use unresolved cells to capture the macroscopic diffusion
limit model [23, 24]. It has been successfully extended to a lot of applications, we
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refer to the review paper [17] for more discussions. In the literature, many pa-
pers have been devoted to build AP schemes for diffusion limit of the transport
equations, for example [1, 5, 8, 26].

WB schemes are developed for hyperbolic equations with source terms. They
have been proposed for various applications, including the Saint-Venant system
with a source term, the non-isothermal nozzle flow equations, etc. By balancing
the numerical flux with the source term, WB schemes can capture the steady state
solutions exactly or with at least a second order accuracy [19]. A very limited list of
such references includes but not limits to quasi-steady scheme [25], kinetic schemes
[30, 35], central schemes [22], interface scheme [19], and other references there in
[3].

Recently designing schemes that are either AP or WB, or have both properties
attracts a lot of interests, both for kinetic chemotaxi model [13, 14, 27] and grey
radiative transfer equation [12, 33]. Generally, it is very hard to have a scheme that
have both properties and this is the goal of our present paper.

The paper is organized as follows: In section 2, the scheme framework composed
of two steps: prediction step and steady problem step, is described and we show
that the AP and WB properties can be achieved. Section 3 and 4 are respectively
devoted to the construction of AP and WB schemes for the transport equation
for chemotaxis and the gray radiative transfer equation. In the prediction step,
we first extend the unified gas approach for neutron transport equation [26] to the
chemotaxis model (1.1) and construct a new AP scheme for E.coli chemotaxis, while,
for the gray radiative transfer equation, the scheme in [33] is employed. Then, in
the steady problem step, we use the numerical results obtained by an AP scheme
for the steady state equation of (1.1) or (1.3) to modify the numerical flux. The
performances of the proposed schemes are presented in section 5 and we conclude
with some discussion in section 6.

2. The scheme framework and its WB and AP properties

In this part, we introduce a general framework of designing WB and AP schemes,
while the details of the discretization are given in section 3 and section 4. In the
subsequent part of the paper, we consider the one dimensional problem and use a
uniform grid with

xi = i∆x, i ∈ Z, tn = n∆t, n ∈ N.

Extensions to the two dimensional case are straightforward.
To illustrate the idea, we consider the following simplest one dimensional neutron

transport equation

(2.1) ∂tf +
1

ε
v∂xf =

σT
ε2

(ρ− f)− σaρ+ q,

with ρ := 1
2

∫ 1

−1 fdv. When ε → 0, the solution of the above equation tends to ρ0
which satisfies the following diffusion equation

∂tρ0 − ∂x
( 1

3σT
∂xρ0

)

+ σaρ0 = q.

The formal derivation is standard by substituting the Chapman-Enskog expansion

f = f (0) + εf (1) + ε2f (2) + · · ·
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into (2.1). When ε is small, the solution to (2.1) f can be approximated by

(2.2) f = ρ(0) −
ε

σT
v∂xρ

(0) +O(ε2).

We are interested in ε ranging from O(1) to very small, the numerical scheme
writes:

(2.3)

fn+1
i − fn

i

∆t
+

v

ε∆x

(

(1 − α̃)fn
i + α̃fn+1

i − f̂n
i−1/2

)

= 0, v > 0,

fn+1
i − fn

i

∆t
+

v

ε∆x

(

f̂n
i+1/2 −

(

(1 − α̃)fn
i + α̃fn+1

i

)

)

= 0, v < 0,

where fn
i are the approximation of the average f(x, tn) in the interval (xi−1/2, xi+1/2) =

(xi −∆x/2, xi +∆x/2) and

(2.4) α̃ = min

(

1,
∆t

ε

)

.

The determination of f̂n
i+1/2 consists of two steps: the prediction step and the

steady problem step.

Prediction step: The prediction step is to evolve the equation (2.1) for one
time step by an AP scheme. Starting from fn

i obtained from the nth iteration, the

predictions f̃n+1
i and ρ̃n+1

i = 1
2

∫ 1

−1 f
n+1
i dv can be found by any scheme that is AP.

The requirement that, when ε→ 0, the scheme preserves the diffusion limit at the
discrete level can only be achieved when

(2.5) f̃n+1
i ≈ ρ̃n+1

i +O(ε)

and ρ̃ni is a discretization of the limiting diffusion equation. Here in this paper we
use the unified gas approach developed in [26, 34, 33] for various kinetic models.

Steady problem step: The second step is devoted to the computation of
the steady state problem. On each cell [xi, xi+1], we solve the following stationary
problem:

(2.6) v · ∂xf̂ =
σT
ε

(

ρ̂− f̂
)

− εσaρ̂+ εq

together with inflow boundary conditions

(2.7)

{

f̂(xi, v) = (1− α̃)fn
i + α̃f̃n+1

i , v > 0,

f̂(xi+1, v) = (1− α̃)fn
i+1 + α̃f̃n+1

i+1 , v < 0.

Here f̃n+1
i is determined by the prediction step. Then f̂n

i+1/2 in (2.3) is given by

the outflow of the above steady state problem in each cell such that

(2.8) f̂n
i+1/2(v) = f̂(xi+1, v), v > 0 f̂n

i+1/2(v) = f̂(xi, v), v < 0.

First of all, when ǫ is at O(1) or ∆x,∆t ≪ ε, i.e. α̃ = ∆t/ε, we show that (2.3)
is a consist discretization for (2.1). We only consider the case when v > 0. Since
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f̂n
i−1/2 is obtained from the steady problem step, it can be approximated by

(1−∆t/ε)fn
i−1 +∆t/εf̃n+1

i−1 +∆x∂xf̂
n(xi−1, v)

=(1−∆t/ε)fn
i−1 +∆t/εf̃n+1

i−1 +
∆x

v

(σT
ε

(

ρ̂ni−1 − f̂n
i−1

)

− εσaρ̂
n
i−1 + εq

)

=fn
i−1 +

∆x

v

(σT
ε

(

ρni−1 − fn
i−1

)

− εσaρ
n
i−1 + εq

)

+O(∆t2) +
∆x

v
O(∆x).

From the CFL condition, ∆t < ǫ
max |v|∆x, (2.3) can then be approximated by

fn+1
i − fn

i

∆t
+

v

ε∆x

(

fn
i − fn

i−1

)

=
σT
ε2

(

ρni−1 − fn
i−1

)

− σaρ
n
i−1 + q +O(∆x).

The derivation for v < 0 is the same.

Moreover, we have the following proposition:

Proposition 2.1. When AP schemes are used in the prediction step and steady
problem, the numerical scheme given in (2.3) has both WB and AP properties.

Proof. AP property: When ε tends to zero, since AP schemes are used for the
prediction step, we have (2.5). From (2.4), when ε is small, α̃ = 1, then the
boundary conditions for the steady state problem (2.6) on each cell becomes

f̂(xi, v) = ρ̃n+1
i +O(ε), v > 0, f̂(xi+1, v) = ρ̃n+1

i+1 +O(ε), v < 0.

When ε is small, at the leading order, the boundary conditions for the steady state
problem (2.6) are isotropic. Therefore we have

f̂ = ρ̂+O(ε)

and
f̂n
i+1/2 = f̂(xi+1, v) = ρ̃n+1

i+1 +O(ε), v > 0,

f̂n
i+1/2 = f̂(xi, v) = ρ̃n+1

i +O(ε), v < 0.

Then from (2.3),

fn+1
i =

f̂i− 1
2
+ ε∆x

v∆t f
n
i

1 + ε∆x
v∆t

= f̂n
i− 1

2

+O(ε) = ρ̃n+1
i +O(ε), v > v0,

fn+1
i =

f̂i+ 1
2
− ε∆x

v∆t f
n
i

1− ε∆x
v∆t

= f̂n
i+ 1

2

+O(ε) = ρ̃n+1
i +O(ε), v < −v0.

with v0 small positive value away from 0. Therefore, we get

ρn+1
i = ρ̃n+1

i +O(ε).

Since ρ̃n+1
i satisfy the macroscopic equation at the discrete level, i.e. the leading

order of fn+1
i evolves according to a discrete diffusion equation, which gives the AP

property of the proposed scheme (2.3).

WB property: To prove the WB property, we assume that at time tn, fn
i =

f̄(xi, v) where f̄(x, v) is the solution to the steady state equation (2.6) with given
inflow boundary conditions on the whole computational domain. We need to show
that when ∆x, ∆t are small enough, fn+1

i = fn
i +O(∆x∆t). For the resolved case

under consideration,

α̃ =
∆t

ε
.
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Since the scheme at the prediction step is consistent, consider the simplest first
order method, we have

f̃n+1
i = fn

i +O(∆x,∆t).

The inflow boundary conditions in (2.7) becomes
{

f̂(xi, v) = (1− α̃)fn
i + α̃f̃n+1

i = fn
i +O(∆x∆t), v > 0,

f̂(xi+1, v) = (1− α̃)fn
i+1 + α̃f̃n+1

i+1 = fn
i+1 +O(∆x∆t), v < 0.

Since the steady state problem is solved in a cell of size ∆x, by the simplest Taylor
expansion, the out flow can be approximated by at least second order accuracy, so
that

f̂n
i+1/2 = f̄(xi+1, v) +O(∆x∆t,∆x2), v > 0;

f̂n
i+1/2 = f̄(xi, v) +O(∆x∆t,∆x2), v < 0.

Thus, (2.3) yields

(2.9)

fn+1
i =

f̂i− 1
2
+ ε∆x

v∆t f
n
i

1 + ε∆x
v∆t

= f̄(xi, v) +O(∆x∆t,∆x2), v > 0,

fn+1
i =

f̂i+ 1
2
− ε∆x

v∆t f
n
i

1− ε∆x
v∆t

= f̄(xi, v) +O(∆x∆t,∆x2), v < 0.

Due to the CFL condition, O(∆t) = O(∆x), the solution approximate the steady
state f̄ with a formally second order accuracy O(∆x2). �

Remark 2.2. The framework in this section does not depend on specific AP methods
for the time evolutionary problem and the steady state problem, we can choose any
scheme in the literature that has been proved to be AP for various kinetic models.

Remark 2.3. The accuracy of preserving the steady state problem can be improved
by using higher order method in space and time, or we can repeat once the steady
problem step by replacing f̃n+1

i from the prediction step by fn+1
i obtained in (2.9).

3. The chemotaxis kinetic model

In this section, we apply the framework in section 2 to the chemotaxis kinetic
model (1.1). Two specific AP schemes are respectively chosen for the time evolu-
tionary problem and steady state problem. We first extend the unified gas kinetic
scheme (UGKS) in [26, 36, 34] to get an AP scheme for the time evolutionary prob-
lem, then solve the steady state equation by extending the scheme in [18] which
was originally designed for the isotropic neutron transport equation. In [5], the
authors have proposed AP schemes for the chemotaxis kinetic model, our approach
is different. The details are described below.

As in [26], the UGKS is a finite volume approach of integrating (1.1) over
[xi−1/2, xi+1/2]× [tn, tn+1]× V . Let

fn
i =

1

∆x

∫ xi+1/2

xi−1/2

f(x, v, tn) dx, ρni =
1

|V |

∫

V

fn
i dv.

ρn+1
i and fn+1

i are updated as follows

(3.1)
ρn+1
i − ρni

∆t
+
Fn
i+1/2 − Fn

i−1/2

∆x
= 0,
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(3.2)
fn+1
i − fn

i

∆t
+

Φn
i+1/2 − Φn

i−1/2

∆x
=

1

ε2
(

ρn+1
i − fn+1

i

)

+
1

ε

(

1

|V |

∫

V

φ(vσi+1/2)f
n
i − φ(vσi+1/2)f

n
i

)

.

Here the numerical flux

(3.3)

Φn
i+1/2 ≈

1

ε∆t

∫ tn+1

tn
vf(xi+1/2, v, t) dt,

Fn
i+1/2 ≈

1

|V |

∫

V

( 1

ε∆t

∫ tn+1

tn
vf(xi+1/2, v, t) dt

)

dv.

Since one dimensional problem is considered here, we use discrete ordinate method
for the velocity discretization. The most crucial step for UGKS is to determine
Φn

i+1/2 and Fn
i+1/2. The details are as below:

3.1. Determine Φn
i+1/2, F

n
i+1/2. In one dimensional space, the chemotaxis model

(1.1) can be rewritten as follows:

(3.4) ∂tf
ε +

1 + εφ(v∂xS
ε)

ε2
f ε +

v

ε
∂xf

ε =
1

ε2
T 1f,

where (T 1f)(x, t) :=
1

|V |

∫

V

(

1 + εφ(v∂xS)
)

f(x, v, t)dv.

To approximate the flux Fn
i+1/2 in (3.3), we first approximate ∂xS by a piecewise

constant function such that

∂xS ≈ ∂xS(xi+1/2) := σi+1/2, x ∈ [xi, xi+1).

It is important to note that σi+1/2 approximate ∂xS in the interval [xi, xi+1) while
fn
i is the density average over the cell [xi−1/2, xi+1/2). This choice is important
to preserve the advection term in the limiting Keller-Segel model when ε becomes
small.

On the interval [xi, xi+1), multiplying both sides of (3.4) by exp
(

(1+εφ(vσi+1/2)

ε2 t
)

yields

d

dt

[

f(x+
v

ε
t, v, t) exp

(

(1 + εφ(vσi+1/2)

ε2
t

)]

=
T 1f(x, t)

ε2
exp

(

(1 + εφ(vσi+1/2)

ε2
t

)

.

Integrating the above equation over (tn, t) yields
(3.5)

f(xi+1/2, v, t) = f(xi+1/2 −
v

ε
(t− tn), v, tn) exp

(

−
(1 + εφ(vσi+1/2)

ε2
(t− tn)

)

+
1

ε2

∫ t

tn
T 1f(xi+1/2 −

v

ε
(t− s), s) exp

(

−
(1 + εφ(vσi+1/2)

ε2
(t− s)

)

ds.

This is an exact expression for f(xi+1/2, v, t) that will be used to determine Φn
i+1/2,

Fn
i+1/2 in (3.3). At this stage, we need to approximate f(x, v, tn) and T 1f(x, t) on

the right hand side of (3.5). f is approximated by a piecewise constant function
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and T 1f by a piecewise linear function as follows:

f(x, v, tn) =

{

fn
i , x < xi+1/2,

fn
i+1, x > xi+1/2,

T 1f(x, t) =

{

T 1fn
i+1/2 + δLT 1fn

i+1/2(x − xi+1/2), x < xi+1/2,

T 1fn
i+1/2 + δRT 1fn

i+1/2(x− xi+1/2), x > xi+1/2.

Here T 1fn
i+1/2, δ

LT 1fn
i+1/2, δ

RT 1fn
i+1/2 are defined by:







































T 1fn
i+1/2 :=

1

|V |

∫

V −

(1 + εφ(vσi+1/2))f
n
i+1 +

1

|V |

∫

V +

(1 + εφ(vσi+1/2))f
n
i ,

δLT 1fn
i+1/2 :=

T 1fn
i+1/2 − T 1fn

i

∆x/2
,

δRT 1fn
i+1/2 :=

T 1fn
i+1 − T 1fn

i+1/2

∆x/2
,

with V + = V ∩ R
+ and V − = V ∩R

−.
Substituting the above approximations into (3.5) yields an expression for f(xi+1/2, v, t)
such that:
For v > 0,
(3.6)

f(xi+1/2, v, t) = fn
i exp

(

−
(1 + εφ(vσi+1/2)

ε2
(t− tn)

)

+
T 1fn

i+1/2

1 + εφ(vσi+1/2)

(

1− exp

(

−
(1 + εφ(vσi+1/2)

ε2
(t− tn)

))

+ vε
δLT 1fn

i+1/2

(1 + εφ(vσi+1/2))2

·

[(

1 +
1 + εφ(vσi+1/2)

ε2
(t− tn)

)

exp

(

−
(1 + εφ(vσi+1/2)

ε2
(t− tn)

)

− 1

]

,

and for v < 0,
(3.7)

f(xi+1/2, v, t) = fn
i+1 exp

(

−
(1 + εφ(vσi+1/2)

ε2
(t− tn)

)

+
T 1fn

i+1/2

1 + εφ(vσi+1/2)

(

1− exp

(

−
(1 + εφ(vσi+1/2)

ε2
(t− tn)

))

+ vε
δRT 1fn

i+1/2

(1 + εφ(vσi+1/2))2

·

[(

1 +
1 + εφ(vσi+1/2)

ε2
(t− tn)

)

exp

(

−
(1 + εφ(vσi+1/2)

ε2
(t− tn)

)

− 1

]

.

Then the flux Φn
i+1/2(v) in (3.3) can be approximated by

(3.8)
Φi+1/2(v) = Avfn

i+1 +BvT 1fn
i+1/2 + Cv2δRT 1fn

i+1/2, for v < 0,

Φi+1/2(v) = Avfn
i +BvT 1fn

i+1/2 + Cv2δLT 1fn
i+1/2, for v > 0,
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where the coefficients A(v, ε,∆t), B(v, ε,∆t), C(v, ε,∆t) can be determined explic-
itly such that

(3.9)

A(v, ε,∆t) : =
ε

∆t
(

1 + εφ(vσi+1/2)
)

(

1− exp
(

−
1 + εφ(vσi+1/2)

ε2
∆t

)

)

,

B(v, ε,∆t) : =
1

ε(1 + εφ(vσi+1/2))

−
ε

∆t(1 + εφ(vσi+1/2))2

(

1− exp
(

−
1 + εφ(vσi+1/2)

ε2
∆t

)

)

,

C(v, ε,∆t) : =
2ε2

∆t(1 + εφ(vσi+1/2))3

(

1− exp
(

−
1 + εφ(vσi+1/2)

ε2
∆t

)

)

−
1

(1 + εφ(vσi+1/2))2

(

1 + exp
(

−
1 + εφ(vσi+1/2)

ε2
∆t

)

)

.

Furthermore, Fn
i+1/2 in (3.3) is given by

(3.10) Fn
i+1/2 =

1

|V |

∫

V −

Avfn
i+1dv +

1

|V |

∫

V +

Avfn
i dv +

1

|V |
T 1fn

i+1/2

∫

V

vBdv

+
1

|V |
δRT 1fn

i+1/2

∫

V −

Cv2dv +
1

|V |
δLT 1fn

i+1/2

∫

V +

Cv2dv.

and we complete the construction of the scheme. We can prove that the scheme is
AP by employing similar approach as in [26].

3.2. AP property. In this part, we give a formal derivation of the AP property
for the UGKS proposed in (3.1)–(3.2). When ε goes to zero, asymptotic expansions
of A,B,C given in (3.9) read

A = O(ε), B =
1

ε
− φ(vσi+1/2) +O(ε), C = −1 +O(ε).

The leading order term of (3.2) yields fn+1
i = ρn+1

i + O(ε) and we only need to
show that (3.1) satisfies the equation for ρ in (1.2), at the discrete level. Suppose
that fn

i = ρni +O(ε), then



























T 1fn
i+1/2 =

1

2

(

ρni + ρni+1

)

+O(ε),

δLT 1fn
i+1/2 =

ρni+1 − ρni
∆x

+O(ε),

δRT 1fn
i+1/2 =

ρni+1 − ρni
∆x

+O(ε).

We deduce that the expansion of Fn
i+1/2 reads:

Fn
i+1/2 = −

ρni + ρni+1

2|V |

(
∫

V

vφ(vσi+1/2)dv

)

−
ρni+1 − ρni

3∆x
+O(ε).
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Therefore,

Fn
i+1/2 − Fn

i−1/2

∆x

=−
ρni+1 − 2ρni + ρni−1

3(∆x)2
+
(

−
( 1

|V |

∫

V

vφ(vσi+1/2)dv
)ρni + ρni+1

2

+
( 1

|V |

∫

V

vφ(vσi−1/2)dv
)ρni + ρni−1

2

)

+O(ε).

In the limit of ε→ 0, the discretization (3.1) becomes

ρn+1
i − ρni

∆t
=
ρni+1 − 2ρni + ρni−1

3(∆x)2

+

(

1

|V |

(
∫

V

vφ(vσi+1/2)dv

)

ρni + ρni+1

2
−

1

|V |

(
∫

V

vφ(vσi−1/2)dv

)

ρni + ρni−1

2

)

.

which is a consistent discretization of the equation for ρ in (1.2). The proposed
scheme is AP.

3.3. Steady state problem for the chemotaxis kinetic model. To solve the
steady state problem, we start from the most used discrete ordinate method [7, 21].
The discrete ordinate method is to discretize the velocity space V = [−1, 1] by a
quadrature set {µm, ωm} (m ∈ Vm = {−N, · · · ,−1, 1, · · · , N}). In one dimensional
case, the most used and well accepted quadrature is the Gaussian quadrature. In
order to preserve the diffusion limit equation, the points µm and weights ωm satisfy

µ−m = −µm, ω−m = ωm, m ∈ 1 · · ·N,
∑

m

ωm = 2,
∑

m

ωmµ
2
m =

2

3
.

The discrete ordinate method for the steady state chemotaxis kinetic model on each
cell [xi, xi+1) writes
(3.11)

µm∂xfm =
1

2ε

∑

n∈V

ωn

(

1 + εφ(µnσi+1/2)
)

fn−
1

ε

(

1 + εφ(µmσi+1/2)
)

fm, m ∈ Vm.

This is a linear ODE system with constant matrix coefficient. Together with the
inflow boundary conditions, the exact solution can be obtained analytically. We use
the following procedure to construct the general solution on each interval [xi, xi+1).
We seek eigenfunctions of the form

(3.12) lm exp(−
ζ

ε
x).

By substituting this form into (3.11), one obtains

(3.13)
[(

1 + εφ(µmσi+1/2)
)

− µmζ
]

lm =
1

2

∑

n∈V

ωn

(

1 + εφ(µmσi+1/2)
)

lm.

The above equation holds for all m ∈ Vm which indicates that ζ is the eigenvalue
of the matrix

(3.14) E = U−1
(

I −
1

2
W

)(

I + εφ(Uσi+1/2)
)

.
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Here U = Diag(µm)m∈Vm and φ(Uσi+1/2) = Diag
(

φ(µmσi+1/2)
)

m∈Vm
are diagonal

matrixes, W is a rank 1 matrix whose rows are (ωm)m∈Vm . Due to (3.13), ζ is the
root of

(3.15)
1

2

∑

m∈Vm

(

1 + εφ(µmσi+1/2)
)

ωm

1 + εφ(µmσi+1/2)− µmζ
= 1

and the eigenvector associated to ζ can be given by

(3.16) lm =
1

1 + εφ(µmσi+1/2)− µmζ
, m ∈ Vm.

It is easy to check that when ε 6= 0, ζ = 0 is a simple root if φ(u) = −φ(−u).

Besides if νm =
1+εφ(µmσi+1/2)

µm
(m ∈ Vm) are different from each other, since

the sign of νm are determined by µm, the functional 1
2

∑

m∈Vm

(

1+εφ(µmσi+1/2)
)

ωm

1+εφ(µmσi+1/2)−µmζ

tends to plus or minus infinity when ζ approaches νm from left or right. Therefore,
(3.15) has 2N simple roots when ε is away from zero. However when ε → 0, E
becomes U−1(I −W/2) whose eigenvalues admit a zero double root [7, 18]. The
general solutions to (3.11) are different for these two different cases, we discuss
them separately in the subsequent part.

Case I: If (3.15) has 2N different simple roots, we can find 2N linearly in-

dependent eigenfunctions of the form lm exp(− ζ
εx). Then the general solution to

(3.11) can be written as

fm(x) =
∑

ζn<0

Bnlnm exp
(

−
ζn
ε
(x− xi+1)

)

+
∑

ζn>0

Anlnm exp
(

−
ζn
ε
(x − xi)

)

,

The coefficients Bn, An can be determined by the inflow boundary conditions
{

fm(xi+1) = fR
m, m < 0,

fm(xi) = fL
m, m > 0.

Then the outflows are given by

fm(xi) =
∑

ζn<0

Bnlnm exp
(ζn
ε
∆x

)

+
∑

ζn>0

Anlnm, m < 0,

fm(xi+1) =
∑

ζn<0

Bnlnm +
∑

ζn>0

Anlnm exp
(

−
ζn
ε
∆x

)

, m > 0.

Case II: We consider the limiting case when E = U−1(I−W/2), the eigenvalues
for this matrix have been proved in [18] to have the following propperty

Theorem 3.1. The equation

1

2

∑

m∈Vm

ωm

1− µmζ
= 1

has 2(N − 1) simple roots appear in positive/negative paris while 0 is a double root.
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We set the double zero eigenvalue ζN and ζ−N and rearrange eigenvalues ζn from
the lowest to the highest.

ζ1−N < · · · < ζ−1 < 0 < ζ1 < · · · < ζN−1.

For eigenvalues different of zero, eigenfunctions are exponential functions as in
(3.12). Let us find eigenfunctions corresponding to the zero eigenvalue. By using
the same token as in [18], we are looking for solution of the form αmx+ βm.

Injecting αmx+ βm into (3.11) gives two solutions

1

1 + εφ(µmσi+1/2)
,

x

1 + εφ(µmσi+1/2)
−

εµm
(

1 + εφ(µmσi+1/2)
)2 .

Finally the general solution of (3.11) writes

fm(x) =
cN

1 + εφ(µmσi+1/2)
+

c−N

1 + εφ(µmσi+1/2)

(

x−
εµm

1 + εφ(µmσi+1/2)

)

+
∑

1≤|n|≤N−1

cnl
n
m exp

(

−
ζn
ε
x

)

,

where cn (1 ≤ |n| ≤ N) are constants to be determined by the boundary conditions.
Since ε can become very small, overflow may occur when evaluating exp

(

−ξnx/ε
)

.
In order to have cn at the same scale as fm(x), we rewrite the general solution in
the interval (xi, xi+1) into
(3.17)

fm(x) =
c1

1 + εφ(µmσi+1/2)
+

c2
1 + εφ(µmσi+1/2)

(

(x− xi)−
µmε

1 + εφ(µmσi+1/2)

)

+
∑

n<0

Bnlnm exp
(

−
ζn
ε
(x− xi+1)

)

+
∑

n>0

Anlnm exp
(

−
ζn
ε
(x− xi)

)

,

with c1, c2, B
n, An constants. Then we can determine c1, c2, B

n, An by the inflow
boundary condition, so that the outflow.

4. The radiative transport equation

For the radiative transport equation (1.3), the same as in the previous section, we
can choose two specific AP schemes respectively for the time evolutionary problem
and steady state problem. For the time evolutionary problem, the UGKS scheme
proposed in [33] is employed, while similar discretization as in subsection 3.3 can
be used to solve the steady state problem. We sketch the discretization used in [33]
in the subsequent part and for more details and the proof of AP, one can refer to
[33].

4.1. The AP UGKS for the grey radiative transport equation. The idea is
to first introduce ψ = acT 4 and rewrite the system (1.3) into

(4.1)











1

c
∂tI +

1

ε
v∂xI =

σ

ε2

(

1

|V |
ψ − I

)

+ q(x, v),

ε2∂tψ = β(ψ)σ(ρ − ψ),

where ρ :=
∫

V
Idv is the total radiation intensity and β is a function of ψ given by

β(ψ) =
4ac

Cv

(

ψ

ac

)3/4

.
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Then we take the integral with respect to v in (4.1) and get a system for ρ, ψ, with
an advection term depending on

∫

V vI dv. Similar as the UGKS for the chemotaxis

model, the first step is to get a prediction for ρn+1 by
(4.2)















ρn+1
i = ρni +

∆t

∆x

(

Fn
i−1/2 − Fn

i+1/2

)

+
σc∆t

ε2
(ψn+1

i − ρn+1
i ) + c∆t

∫

V

qidv,

ψn+1
i = ψn

i +
σβn+1

i ∆t

ε2
(

ρn+1
i − ψn+1

i

)

,

where

Fn
i+1/2 :=

c

|V |

∫

V

( 1

ε∆t

∫ tn+1

tn
vI(xi+1/2, v, t) dt

)

dv, qi(v) :=
1

∆x

∫ xi+1/2

xi−1/2

q(x, v)dx.

After discretizing the velocity space by discrete-ordinate method, the numerical
flux Fn

i−1/2 and source term are approximated by

Fn
i−1/2 ≈ A

N
∑

m=−N

ωmµm(In−i−1/2,m1µm>0 + In+i−1/2,m1µm<0) +
2D

3∆x
(ψn+1

i − ψn+1
i−1 )

+B

N
∑

m=−N

ωmµ
2
m(δxI

n
i−1,m1µm>0 + δxI

n
i,m1µm<0) + |V |ε2

C

σ

∑

m∈Vm

ωmµmqi,m,

∫

V

qidv ≈
∑

m∈Vm

ωmqi,m =
∑

m∈Vm

ωmqi(µm).

Here 1µm<0, 1µm>0 are the characteristic functions, δxI
n
i,m are the approximations

to ∂xI(xi, µm, t
n) by the slope limiters and In±i−1/2,m are given by

In−i−1/2,m = Ini−1,m +
∆x

2
δxI

n
i−1,m, In+i−1/2,m = Ini,m −

∆x

2
δxI

n
i,m.

The coefficients A,B,C,D depend on ε and ∆t, which will be specified later.
After obtaining the macroscopic variables ρn+1

i , ψn+1
i from (4.2), In+1

i,m are com-
puted by

(4.3)

In+1
i,m = Ini,m +

∆t

∆x

(

Φn
i−1/2,m − Φn

i+1/2,m

)

+
σc∆t

ε2

(

ψn+1
i

|V |
− In+1

i,m

)

+ c∆tqi,m,

where Φn
i−1/2,m are given by

Φn
i−1/2,m =Aµm

(

In−i−1/2,m1µm>0 + In+i−1/2,m1µm<0

)

+ Cµmψ
n+1
i−1/2

+D
(

µ2
mδxψ

n+1,L
i−1/2 1µm>0 + µ2

mδxψ
n+1,R
i−1/2 1µm<0

)

+B
(

µ2
mδxI

n
i−1,m1µm>0 + µ2

mδxI
n
i,m1µm<0

)

+Eδtψ
n+1
i−1/2 +

|V |ε2C

σ
µmqi,m,
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with ψn+1
i+1/2, δxψ

n+1,R
i−1/2 , δxψ

n+1,L
i−1/2 , δtψ

n+1
i−1/2 being defined by

ψn+1
i+1/2 =

1

2
(ψn+1

i + ψn+1
i+1 ). δxψ

n+1,L
i−1/2 =

ψn+1
i−1/2 − ψn+1

i−1

∆x/2
,

δtψ
n+1
i−1/2 =

ψn+1
i−1/2 − ψn

i−1/2

∆t
, δxψ

n+1,R
i−1/2 =

ψn+1
i − ψn+1

i−1/2

∆x/2
.

δxψ
n+1,L
i−1/2 and δxψ

n+1,R
i−1/2 are the same and we use different notations in order to be

consistent with notations in [33]. In [33], different notations are used for δxψ
n+1,R
i−1/2

and δxψ
n+1,L
i−1/2 in order to consider different approximations for ψn+1

i−1/2. Some of

them can lead to the case when δxψ
n+1,R
i−1/2 and δxψ

n+1,L
i−1/2 are different.

Let ν = cσ
ε2 , the coefficients A,B,C,D,E appeared in all above formula are given

by

A =
c

ε∆tν
(1− exp−(ν∆t)) ,

C =
c2σ

|V |ε3∆tν

(

∆t−
1

ν
(1 − exp (−ν∆t))

)

,

D = −
c3σ

|V |ε4∆tν2

(

∆t(1 + exp (−ν∆t))−
2

ν
(1− exp (−ν∆t))

)

,

B = −
c2

ε2ν2∆t
(1− exp (−ν∆t)− ν∆t exp (−ν∆t)) ,

E =
c2σ

|V |ε3ν3∆t

(

1− exp (−ν∆t) − ν∆t exp (−ν∆t)−
1

2
(ν∆t)2

)

.

4.2. Steady states for the radiative transport equation. We use the discrete
ordinate method similar as in subsection 3.3 and refer to [12] for more details. The
one dimensional discrete ordinate steady state problem for (4.1) reads

(4.4) µm∂xIm =
σ

ε
(
∑

m

ωmIm − Im) + εqm.

We use the same AP scheme as in subsection 3.3 and the above equation falls into
the category of Case II. The only difference is that there exists a source term qm,
which can be easily built into the scheme by constructing an approximated par-
ticular solution. The general solution with source term qm can be given by the
summation of the general solution of the homogeneous problem and the approxi-
mated particular solution. Then the coefficients in front of the general solutions of
the homogeneous equation can be determined by the continuity of solution at the
cell edge. For more details, we refer to [18].

5. Numerical simulations

In this section, we apply the well-balanced and AP scheme designed in Section
2 to two test cases: kinetic chemotaxis and radiative transport models.

5.1. Chemotaxis model. The first simulation concerns the chemotaxis model
(1.1). Simulations are set on x ∈ [−1, 1] and v ∈ [−1, 1]. We take Nv = 32 points
for the velocity and Nx = 500 points for the space discretization. Parameters in
(1.1) are chosen as in [14] such that

χS = 1, D = 15, β = 60, α = 3.
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Figure 1. Convergence order with respect to ∆x. Here the log-log
plot of the mesh sizes with respect to the L1 norm of the probability
density error in all directions is displayed. The mesh sizes are 1/20,
1/40, 1/80, 1/160 and e∆x := maxx∈(−1,1) ‖f∆x(x, t)−f2∆x(x, t)‖1
are plotted for different ε.

and φ is of the form

φ(x) = −χS tanh
x

δ
, with δ = 1.

We impose specular boundary conditions for f ε and Dirichlet conditions for Sε.
The initial condition is composed of two bumps in x located at ±0.65 such that

f0(x, v) = 5 exp
(

−10(x− 0.65)2 − 10(x+ 0.65)2
)

exp
(

−20(v − 0.5)2 − 20(v + 0.5)2
)

.

To ensure the stability of the numerical scheme, the time step ∆t is chosen as
follows

∆t =

{

∆x2, for ε < ∆x2,

ǫ∆x, else.

The requirement for the time step can be improved if the limiting discretization is
implicit, the strategy of constructing an implicit limiting discretization has been
discussed in [33]. The goal of our present paper is to illustrate the idea of the
AP-WB framework and thus we keep using the simple scheme.

5.1.1. AP property. In order to verify the AP property of our scheme, we show
that the convergence order of the scheme is independent of ε. In figure 1, we plot
e∆x := ‖f∆x(t)−f2∆x(t)‖1 with respect to ∆x for different values of ε and uniform
convergence with respect to ǫ can be observed numerically. This guarantees the AP
property.
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5.1.2. Model convergence in ε. As predicted by the theoretical analysis, when ε→
0,

f ε → ρ01v∈V ,

where ρ0 is the solution to the limiting Keller-Segel equation. To verify the above
convergence, the total densities ρε are displayed in Figure 2 for different values of
ε ranging from 10−1 to 10−6. As a comparison, we plot the solution of the limiting
model in Figure 2 and can observe that ρε get closer to ρ0 as ε goes to zero.

The convergence order in ε can be seen in Figure 3, where we have plotted
‖f ε(x, v) − ρε(x)1v∈V ‖2 for different ε in the logarithm scale. The numerical results
indicate that the order of convergence is close to 1.
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rh
o

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
Plot of the macroscopic density rho at time T=1

ε = 0
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ε = 10−2

ε = 10−5
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Figure 2. Plot of the macroscopic density for different values of
ε. ε = 0 is the solution to the macroscopic Keller-Segel equation.
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log(error) = 0.9 ∗ log(ε) + 1.2

data1
 linear fit

Figure 3. Convergence order in ε of the chemotaxi model (1.1).

5.1.3. WB property. In order to check the WB property, we calculate the long time
behavior of the kinetic scheme for ε = 1. The steady state is characterised by the
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vanishing of the macroscopic flux J . A way to measure whether the steady state is
reached is to look at the evolution of the residues rn at a given time tn defined by

rn :=

∥

∥

∥

∥

∥

∑

m∈V

ωm|fn+1(µm)− fn(µm)|

∥

∥

∥

∥

∥

2

.

Figure 4 shows the decrease of the residues and its stabilization when the steady
state is reached. In addition, the flux J is of order ∆x2 at this steady state as
displayed in Figure 5.

Time 
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si

du
es
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Decreasing property of residues

Figure 4. The evolution of residues with respect to time.
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Macroscopic flux at time T=100

Figure 5. The macroscopic flux J at time T = 100.

5.2. Test case 2 : Radiative transport. We consider the radiative transport
equation (1.3) on x ∈ [0, 1] and v ∈ [−1, 1]. The source term q is given by

(5.1) q(x, v) = v|v|+ σx

(

|v| −
1

2

)

.

When ε = 1, we can have analytical nonzero steady state for this choice of q(x, v).
Though q(x, v) in (5.1) can take negative values, which is non-physical, it can be
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Figure 6. Convergence order with respect to ∆x. Here the log-log
plot of the mesh sizes with respect to the L1 norm of the probability
density error in all directions is displayed. The mesh sizes are 1/10,
1/20, 1/40, 1/80 and e∆x := maxx∈(0,1) ‖I∆x(x, t) − I2∆x(x, t)‖1
are plotted for different ε.

used to test the scheme performance. We use uniform grids in x with Nx = 400
and 32 Gaussian quadrature for the velocity space. The parameters are set to be

σ = 1, a = 0.01372, c = 29.98, Cv = 0.01.

For I, Dirichelet boundary condition on the left and specular reflection on the right
are prescribed. To guarantee the stability, the time step is given by

∆t =











0.95
∆x2

c
, for ε < 0.95∆x

c ,

0.95ε
∆x

c
, else.

5.2.1. AP property. In this part, we show that the convergence order of the scheme
is independent of ε. In Figure 7, we plot e∆x := maxx∈(0,1) ‖I∆x(x, t)−I2∆x(x, t)‖1
with respect to ∆x for different values of ε. Uniform convergence can be observed
which confirms the AP property of the scheme.

5.2.2. Model convergence with respect to ε. The theoretical analysis indicates that

Iε →
ψ0

2
1v∈V , ε→ 0,

where ψ0 = ac(T 0)4 and T 0 is the solution to the limiting equation (1.4). To verify
the above convergence, the total densities ρε are displayed in Figure 7 for different
values of ε ranging from 10−1 to 10−6. As a comparison, we plot the solution of
the limiting model in Figure 2 and can observe that Iε get closer to ψ0/2 as ε goes
to zero.
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The convergence order in ε can be seen in Figure 8, where we have plotted
‖Iε(x, v)− ρε1v∈V ‖2, for different ε in the logarithm scale. The numerical results
indicate that the order of convergence is close to 0.6.
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Figure 7. Total density for different values of ε. ε = 0 corre-
sponds to the limiting nonlinear diffusion model (1.4).

log(ε)

-14 -12 -10 -8 -6 -4 -2

lo
g
(e
r
r
o
r
)

-9

-8

-7

-6

-5

-4

-3

-2

-1

0
Plot of the log(error) versus log(ε)

 
y = 0.58*x - 0.19

data1
   linear

Figure 8. Convergence order in ε of the grey radiative transport
model (1.3).

5.2.3. WB property. For the source term q as in (5.1), when ε = 1, the steady state
is given by

I(x, v) = |v|x, ρ = x.

The time evolution of the residues rn is given in Figure 9, it decrease and stabilize
at T = 1. In Figure 10, the captured steady state is plotted.

6. Conclusion

A general framework of developing AP and WB schemes is proposed in this
paper. Two parameter regimes are considered: the (advection) diffusion type (linear
or nonlinear) limit when ε << 1 and the long time behavior of the hyperbolic
equations with source terms when ε = O(1). The framework is composed of two
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Figure 9. Evolution of residues with respect to time.
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Figure 10. The total density of the steady state at time T = 1
when ε = 1.

steps. We first calculate a prediction with an AP scheme for the time evolutionary
problem and then use the prediction to set up the inflow boundary conditions for
the steady state problem in each cell. The steady state problem in each cell is
solved by an AP scheme for the steady state equation, then the obtained outflows
in each cell are used for modifying the numerical flux to achieve WB.

The details of the discretizations for transport equations for chemotaxis and gray
radiative transfer are given. The numerical results in section 5 verify the AP and
WB properties of our proposed scheme. In particular, the AP schemes for the time
evolutionary transport equation for chemotaxis and the corresponding steady state
equation are new.

One may argue about the computational cost of our proposed framework, the
advantage is that, any AP schemes for the time evolutionary problem and steady
state problem are applicable, thus we can choose those simple ones. First of all,
the key principle underlying most WB schemes consists of using values constructed
from a local discrete equilibrium, therefore if we are interested in unknown steady
states, it is hard to avoid the steady problem step. On the other hand, in the
prediction step, we can use those AP scheme that can implement the implicit stiff
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terms explicitly as in [10], or at least more efficient than using the Newton type
solvers for nonlinear algebraic systems. (2.3) can be updated explicitly afterwards,
the total computational cost is composed of some explicit calculations plus solving
the steady state problems.

The proposed framework can be extended to the hyperbolic system with relax-
ations, we will pursue more applications in the future.
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