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Abstract

For periodically inhomogeneous media, a generalized theory of elastody-

namic homogenization is proposed so that even the long-wavelength and

low-frequency asymptotic expansions of the resulting effective (or macro-

scopic) motion equation can, approximately but simultaneously, capture all

the acoustic and some of the optical branches of the microscopic dispersion

curve. The key to constructing the generalized theory resides in incorporating

new kinematical degrees of freedom in conjunction with rapidly oscillating

body forces as microscopic and macroscopic loadings while satisfying an

energetical consistency constraint reminiscent of Hill-Mandel lemma. By this

constraint, an effective displacement field is naturally defined as the projection

of a microscopic one onto the dual to the space of body forces. To illustrate

these results, a two-phase string is studied in detail.
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1. Introduction

The elastodynamic homogenization approaches reported up to now in

the literature are observed to run into difficulties when being used to model

dynamical effects over a wide frequency range.

1. The classical lowest-order Long-Wavelength (LW) Low-Frequency (LF)

homogenization approaches (Bensoussan et al., 1978; Sanchez-Palencia,

1980) yield a homogeneous substitution Cauchy medium which misses all

dispersive effects and all internal resonances, i.e., all optical oscillation

modes.

2. The higher-order LW-LF asymptotic homogenization approaches (Boutin

and Auriault, 1993; Andrianov et al., 2008) lead to effective strain-

gradient media which can model well dispersive behaviors and size

effects but are valid only near the acoustic branches independently of

the order of the asymptotic approximations used.

3. The high-frequency asymptotic approaches (Daya et al., 2002; Craster

et al., 2010; Nolde et al., 2011; Antonakakis et al., 2014; Colquitt et al.,

2014; Boutin et al., 2014) are successful in capturing high-frequency

optical modes but still valid only in the vicinity of some finite frequency.

4. The high-contrast asymptotic approaches (Auriault and Bonnet, 1985;

Smyshlyaev, 2009; Auriault and Boutin, 2012) have a wide frequency

validity domain englobing an infinite number of optical branches. How-

ever, the corresponding effective behavior is complex and nonlocal in

time.

5. The non-asymptotic theory of Willis (1997, 2011) yields exactly the

whole dispersion curve. Nonetheless, the described effective fields are
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only relevant for low frequencies (Srivastava and Nemat-Nasser, 2014;

Nassar et al., 2015b).

The main purpose of the present paper is to construct a generalized theory

of elastodynamic homogenization for periodic media which improves the

quality of the Willis effective behavior as an approximation to the microscopic

behavior in a way that LW-LF asymptotic expansions become able to capture,

approximately but simultaneously, all the acoustic and some of the optical

branches of the microscopic dispersion curve. To achieve this purpose, new

kinematical Degrees Of Freedom (DOFs) are taken into account so as to

describe some short-wavelength components of the microscopic displacement

field which become dominant at high frequencies. The new DOFs are excited

by incorporating various rapidly oscillating body forces on the microscale

and on the macroscale under an energetical consistency constraint hereafter

called Energy Equivalency Principle (EEP). The EEP is a balance between

the microscopic and macroscopic virtual works and is later proven to yield

a generalized version of the well-known Hill-Mandel lemma. With respect

to Willis theory, we underline two major differences. First, the incorporated

loadings are much richer than those employed by Willis (1997, 2011). This

has the consequence of reducing the error commited during the upscaling

process and providing an extended frequency validity domain. Second, the

EEP concerns virtual works and not their expectancies. From the physical

standpoint, this leads to a clear distinction between the macroscale and

the microscale in terms of wavelengths. Nevertheless, it should be pointed

out that the generalized theory presented here is by construction limited to

periodically inhomogeneous media while Willis theory is formally valid both
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for periodically and randomly inhomogeneous media.

The paper is organized as follows. In section 2, we recall some geometri-

cal elements useful for describing periodic media, summarize the equations

governing the kinematics and dynamics of them, and simplify these equations

by using Bloch-wave expansions. The main body of the generalized theory is

presented in section 3. The EEP is first postulated; the space of admissible

body forces is then defined as the set of macroscopically applied loadings;

the effective displacement field associated to a microscopic displacement is

obtained by the EEP and proven to be an improvement over the one defined

by Willis; the effective motion equation is finally derived in a formal way and

a Hill-Mandel relation is demonstrated. In section 4, an analytical LW-LF

asymptotic approximation to the effective motion equation is given for a

particular 1D two-phase string. Exact and approximate dispersion curves are

plotted and compared. It appears then how the resulting asymptotic model,

though based on LF expansions, can simultaneously capture acoustic and

optical branches while conserving a low-order local motion equation.

2. Preliminaries

In this section, some geometrical elements useful for the study of peri-

odic media are recalled. The governing equations of linear elasticity are

recapitulated. Bloch-wave expansions of fields and work are also introduced.

2.1. Geometry and periodicity

Let Ω be a d-dimensional infinite body. Define E as the vector space of

translations acting on the points of Ω. Given d independent translations

(bj)j=1...d, denote by R the subset of E obtained by integer combinations of
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these vectors. The subset R is called a lattice. Then, a scalar, vector or

tensor field h defined over Ω is said to be R-periodic if and only if it satisfies

h(x+ r) = h(x) for all points x ∈ Ω and all translations r ∈ R. Accordingly,

h needs being defined only over a unit cell

T =

xo + r

∣∣∣∣∣∣r =
d∑
j=1

rjbj,−1/2 ≤ rj < 1/2

 ⊂ Ω,

where xo, its center, is an arbitrary point of Ω. Note that while R-periodicity

is well defined, the choice of bj and T is not unique.

Symbolize by E ∗ the dual space of E . A wavenumber k ∈ E ∗ acting on

a translation r ∈ E produces a phase shift k · r where (·) is the usual dot

product. Now, points of Ω and vectors of E can be identified after choosing

some origin xo. In what follows, we drop xo so as to write k · x instead of

k · (x− xo) for simplicity. The reciprocal lattice R∗ of the direct lattice R

is defined as the subset of E ∗ consisting of wavenumbers ξ such that eiξ·x

is R-periodic, with i2 = −1. Also of interest is the first Brillouin zone T ∗

defined as the set of wavenumbers closer to the null wavenumber than to any

other wavenumber of R∗, i.e.,

T ∗ = {k ∈ E ∗|‖k‖ < ‖k − ξ‖,∀ξ ∈ R∗ − {0}} .

This zone is uniquely defined and independent of T .

A function h defined over Ω can be expanded into plane waves over E ∗

such that

h(x) =
∫

E ∗
h̃ke

ik·x ddk.

In particular, when h is R-periodic, it can be written as the Fourier series

h(x) =
∑
ξ∈R∗

h̃ξe
iξ·x.
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Having this in mind, with respect to R, T ∗ can be seen as the support

of slowly varying fields. In particular, among R-periodic functions, only

constants have their wavenumber contained in T ∗, i.e., T ∗ ∩R∗ = {0}.
Finally, call a Bloch wave, of wavenumber k and amplitude h̃k(x), a

function hk(x) of the form

hk(x) = h̃k(x)eik·x,

where h̃k(x) is R-periodic.

2.2. Constitutive and motion equations

Letting u(x, t) be the displacement vector for a point x ∈ Ω at instant t,

the strain field ε and velocity field v are derived according to

ε = ∇⊗su, v = u̇,

where ∇ is the space gradient operator,⊗ denotes the tensor product, the

superscripted “s” indicates symmetrization and a superscripted dot symbolizes

differentiation with respect to time. The stress tensor σ and momentum

density p are then given by the local constitutive equations of Ω:

σ = C : ε, p = ρv,

with C and ρ being the elastic stiffness tensor and the scalar mass density,

respectively, and the colon (:) standing for double contraction.

The motion equation of Ω reads

∇ · σ + f = ṗ

where (∇·) is the divergence operator and f is a field of externally applied

body forces. We shall mostly work with harmonic fields of frequency ω.
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Therefore, all time derivatives can be substituted by iω-multiplications and

time dependency can be dropped henceforth. The motion equation of Ω

becomes the Helmholtz equation

∇ · [C(x) : (∇⊗su(x))] + f(x) = −ω2ρ(x)u(x) (2.1)

where we have displayed x-dependencies and omitted ω-dependencies.

In this work, the homogenization of Ω amounts to finding the motion equa-

tion, hereafter called “effective motion equation”, of a homogeneous medium

substituting the initial inhomogeneous one, under an energy equivalency

constraint to be specified.

2.3. Bloch-wave expansions

The superposition principle makes it possible to work with elementary,

such as plane-wave, body forces instead of arbitrary ones f(x). It is however

more convenient, for reasons that will become clear, to work with Bloch-wave

body forces. Then, let fk(x) be an element of the Bloch-wave expansion of

f(x) such that

f(x) =
∫
T ∗
fk(x) ddk ≡

∫
T ∗
f̃k(x)eik·x ddk, (2.2)

where f̃k(x) is R-periodic and the symbol ≡ stands for equality by definition.

For a given k ∈ T ∗, the motion equation for a Bloch-wave body force

takes the form

∇ · [C(x) : (∇⊗suk(x))] + f̃k(x)eik·x = −ω2ρ(x)uk(x).

We now assume that C and ρ are R-periodic so that the solution uk(x) can

be written as

uk(x) = ũk(x)eik·x
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with an R-periodic amplitude ũk(x) (Gazalet et al., 2013). In other words,

to the expansion (2.2), there corresponds a similar Bloch-wave expansion of

the solution to (2.1):

u(x) =
∫
T ∗
uk(x) ddk =

∫
T ∗
ũk(x)eik·x ddk, (2.3)

with uk(x) being the displacement field over Ω subjected to fk(x). In contrast,

except for a homogeneous body, there are no similar results for plane waves.

Given the Bloch-wave form of uk, and simplifying the phase factor eik·x,

the motion equation becomes, in terms of ũk(x) and f̃k(x),

(∇ + ik) · {C(x) : [(∇ + ik)⊗sũk(x)]}+ f̃k(x) = −ω2ρ(x)ũk(x). (2.4)

Last, the x-dependencies of Bloch amplitudes for displacements and body

forces were explicitly annotated. In what follows, all fields are understood to

be x-dependent unless otherwise stated.

2.4. External work

Define the virtual work of external body forces f associated with a virtual

displacement field u by ∫
Ω
f · u∗

where a superscripted ∗ denotes complex conjugation. Also, introduce the

averaging operator 〈〉 by

〈h〉 = 1
|T |

∫
T
h(x) ddx

for all R-periodic functions h. Note that 〈〉 is independent of the choice of

T and is ill-defined for non-R-periodic functions. Plancherel’s identity for
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Fourier transform and Parseval’s identity for Fourier series deliver then a

similar identity for Bloch-wave expansions:
∫

Ω
f · u∗ = (2π)d

∫
T ∗

〈
f̃k · ũ∗k

〉
ddk = (2π)d

|T |
∫
T ∗

∫
T
f̃k(x) · ũ∗k(x) ddx ddk.

(2.5)

Consequently, in defining the energetically equivalent effective behavior, we

can work with fields of a single Bloch wavenumber k ∈ T ∗ and then apply

the superposition principle even though work is quadratic and not linear.

3. A general theory

In this section, the energy equivalency principle (EEP), the corner stone

of the present approach, is first postulated, given a simple form and exploited

to define the effective displacement field. A formal derivation of the effective

motion equation is then presented. The effective constitutive behavior is

nonlocal in both space and time which raises questions about its uniqueness

(Fietz and Shvets, 2010; Willis, 2011). In order to avoid this difficulty, we

will be interested only in the effective motion equation which is unique.

Nonetheless, we will derive expressions for the generalized stress, momentum,

velocity and strain measures which are, in particular, needed for determining

an effective constitutive law.

3.1. Energy equivalency

In classical static or quasi-static homogenization, an energy equivalency

relation, known as Hill-Mandel lemma, is proven for a family of boundary

conditions prescribed on a representative volume element as macroscopic

loadings. Once the boundary conditions have been specified, Hill-Mandel
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lemma can be used to define, by duality, the macroscopic stress in a strain-

based approach or the macroscopic strain in a stress-based approach. In the

present formulation, admissible body forces applied globally to Ω instead of

boundary conditions are taken to be macroscopic loading. Then, an EEP is

postulated so as to dualize body forces and displacements. This duality will

allow us to define the macroscopic displacement field, called D, in terms of

the microscopic one u, once admissible body forces have been imposed.

Let F be the space of Bloch amplitudes f̃k, involved in (2.2), of admissible

body forces. The elements of F are seen as external loadings likely to be

applied to Ω. Note that they will remain the same after the scale transition.

The space F acts as a parameter of the approach to be elaborated and needs

to be chosen adequately. Next, let F ∗, the space dual to F , be the space of

Bloch amplitudes D̃k of admissible effective displacement fields. For a given

microscopic displacement field u, the corresponding effective (or macroscopic)

displacement field is defined as the unique admissible displacement such that∫
Ω
f ·D∗ =

∫
Ω
f · u∗ (3.1)

for all admissible virtual body forces f (i.e., f̃k ∈ F , for all k ∈ T ∗).

Physically, the EEP (3.1) can be interpreted as requiring that the effective

displacement fieldD associated to a given microscopic field u be such that the

work done by every admissible virtual body force f in the course ofD is equal

to the one done by f in the course of u. Geometrically, the EEP (3.1) simply

means thatD is the projection of u onto the space of admissible displacements

(figure 1). On the basis of the EEP (3.1), a generalized Hill-Mandel lemma

will be proven in subsection 3.4.

Using the Bloch decomposition (2.5), the EEP (3.1) can be equivalently
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written in terms of Bloch amplitudes as

∀k ∈ T ∗, ∀f̃k ∈ F ,
〈
f̃k · D̃∗k

〉
=
〈
f̃k · ũ∗k

〉
. (3.2)

f̃k

ũk

D̃k

F ↔ F ∗

Figure 1: The effective displacement field D associated to a given microscopic one u

is geometrically interpreted as the projection of the latter onto the space of admissible

displacements. Spaces F and F ∗ are isomorphic and, here, are taken to be equal up to a

change in units.

3.2. Effective displacement field

Bearing in mind the EEP (3.1), choosing the space F of admissible body

forces becomes a key step toward elaborating a generalized theory. The choice

of F depends ultimately on the degree of accuracy with which D is required

to approximate u. The bigger F is, the closer D is to u. When all body

forces are considered as admissible, the relation (3.1) implies D = u and the
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effective medium is trivially the original one. In what follows, we study the

rather general case of practical importance where F is finite-dimensional and

show how D derives from (3.1) correspondingly.

3.2.1. Admissible body forces

Given N linearly independent, k- and ω-independent, R-periodic vector

fields φi with i = 1 . . . N , a Bloch-wave body force field fk is admissible if

and only if it has an R-periodic Bloch amplitude f̃k of the form

f̃k(x) =
N∑
i=1

f̃ ikφi(x), (3.3)

where the f̃ ik are constants. The space F is therefore of dimension N .

With no loss of generality, let the subset (φi)i=1...d, where d is the dimension

of Ω, be formed of constant vectors and constitute a basis for E . We call F̃k
the constant component of f̃k and write

f̃k(x) =
d∑
i=1

f̃ ikφi +
N∑

i=d+1
f̃ ikφi(x) ≡ F̃k + f̃αkφα(x). (3.4)

Above and from now on, the repeated Greek indices are understood to be

summed over from d+ 1 to N whereas the Latin ones run from 1 to N unless

otherwise specified. Integrating with respect to k over T ∗, we obtain the

generic form of admissible body forces:

f(x) = F (x) + fα(x)φα(x).

Of most importance is the fact that fields F and fα have their supports

contained in T ∗. As such, they have wavelengths at least twice as large as

the characteristic length of a unit cell. Consequently, the DOFs F and fα of

admissible body forces are said to be “macroscopic”. These DOFs are carried
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by R-periodic shape functions, the φα, describing the ways in which f can

vary on the microscale. For example, taking N = d, we have f(x) = F (x)

implying that body forces are not allowed to vary on the microscale. As

another example, setting N = d + 1 and φd+1(x) = ρ(x)e, where e is a

vertically oriented vector, we have f(x) = F (x) + fd+1(x)ρ(x)e so that the

admissible variations of body forces on the microscale are gravitational.

3.2.2. Effective displacement field by the EEP

From now on, we assume that the φα form an orthonormal basis of F so

that

∀i, j ∈ {1, . . . N},
〈
φi · φ∗j

〉
= δij,

where δij is the Kronecker delta. For β ∈ {1, . . . d}, φβ being constant entails

∀α ∈ {d+ 1, . . . N}, 〈φα〉 = 0,

meaning that being orthogonal to a constant is equivalent to having a zero

average.

Injecting (3.4) in the expression of the virtual work, we obtain

〈
f̃k · ũ∗k

〉
=
〈
F̃k · ũ∗k

〉
+
〈
f̃αkφα · ũ∗k

〉
(by orthogonality)

= F̃k · 〈ũk〉∗ + f̃αk 〈φ∗α · ũk〉∗ (by constancy)

= F̃k · Ũ ∗k + f̃αk ũ
α∗
k (by definition (3.5))

=
〈
F̃k · Ũ ∗k

〉
+
〈
f̃αkφα ·

(
ũβkφβ

)∗〉
(by orthogonality)

=
〈
f̃k ·

(
Ũk + ũβkφβ

)∗〉
, (by orthogonality)

with

Ũk ≡ 〈ũk〉 , ũβk ≡
〈
φ∗β · ũk

〉
. (3.5)
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Then, it follows from (3.2) that

D̃k(x) = Ũk + ũβkφβ(x).

Finally, summing over T ∗, it comes that

D(x) = U(x) + uβ(x)φβ(x).

The above expression of the effective displacement field results from the EEP

combined with a particular choice of admissible body forces. It contains

the classical translational displacement vector U and additional generalized

“displacements” uβ carried by the shape functions φβ. Once more, the shape

functions define the way in which D varies on the microscale whereas the

slowly varying DOFs U and uβ describe how D varies on the macroscale.

Willis (2011) proposed a homogenization theory in which shape functions

are taken to be φi(x) = w(x)ei, for i ∈ {1, ...d}, where w(x) is a fixed

R-periodic function and the ei form a basis for E . Taking w ≡ 1 yields the

unweighted theory of 1997 (Willis, 1997) and amounts to taking f = F and

D = U . Here, we combine both the weighted and unweighted Willis theories

and use even more general shape functions. As a consequence, D is a better

approximation of u than U as will be seen in more detail.

3.2.3. Effective displacement field through error minimization

First of all, rewriting (3.2) in the equivalent form

∀f̃k ∈ F ,
〈
f̃k · (ũk − D̃k)∗

〉
= 0,

it is clear that ũk − D̃k is orthogonal to F and D̃k acts as the orthogonal

projection of ũk onto F ∗ (figure 1). Using the Pythagorean theorem, it is
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easy to see that for any R-periodic field h ∈ F ∗,

〈(ũk − h) · (ũk − h)∗〉 =
〈
(ũk − D̃k) · (ũk − D̃k)∗

〉
+
〈
(D̃k − h) · (D̃k − h)∗

〉
≥
〈
(ũk − D̃k) · (ũk − D̃k)∗

〉
.

Thus,

D̃k = arg min
h∈F ∗

〈(ũk − h) · (ũk − h)∗〉 . (3.6)

This show that the effective displacement Bloch amplitude is the best ad-

missible approximation to the microscopic one. Consequently, the effective

displacement field D, associated to a microscopic displacement field u, can

be seen as the best admissible approximation to u. Note that this global

optimal argument definition (where the support is Ω) is different from the

local one introduced elswhere (Forest and Sab, 1998; Forest, 2006) (where the

support is a representative volume element) despite an apparent resemblance.

The preceding definition of the effective displacement field concretizes the

intuition that the richer the DOFs of the generalized substitution medium

are, the closer D is to u:

if F1 ⊂ F2 then min
h∈F ∗

2
〈(ũk − h) · (ũk − h)∗〉 ≤ min

h∈F ∗
1
〈(ũk − h) · (ũk − h)∗〉 .

In this sense, the generalized substitution medium to be obtained by our

theory is more realistic than the Willis substitution medium in the above

minimal error sense, at the cost of an additional kinematical complexity (see

figure 2).

A remark is now in order. We have used a scalar product on the space

of body forces twice up till now: once to identify F and F ∗ and once to

orthonormalize the set of shape functions. This scalar product is not unique

and can be modified by adding a weighting function such as mass density
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D̃

ũ

ũ

D̃

Ũ

ũ

D̃

Ũ

Figure 2: Plots of the real parts of the microscopic (ũ), Willis (Ũ), and generalized (D̃)

Bloch displacement amplitudes over one period for 3 eigenmodes: (k = 0, ω = ω1(0)) (top),

(k = π/2a, ω = ω2(π/2a)) (middle), (k = 0, ω = ω2(0)) (bottom). Two shape functions

have been used: a constant and a sine wave. Details are given in section 4.

for instance. Note that such choice has influence neither on the definition of

the DOFs uα, nor on the effective motion equation to be found. It simply

changes the above quadratic error function and determines the mapping

(ui)i=1...N 7→D.
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3.2.4. Effective displacement field under infinite scale separation

It is of interest to examine what D becomes under the hypothesis of

infinite scale separation, namely, when k→ 0 and ω → 0. It is known that

in this case, to the lowest order, the displacement field depends only on the

“slow variable” (refer to Boutin and Auriault, 1993, for instance). In terms of

Bloch amplitudes, this means that ũk is constant. Consequently,

Ũk = 〈ũk〉 = ũk,

ũαk = 〈φ∗α · ũk〉 = 〈φ∗α〉 · ũk = 0.

Therefore, the translational DOF U is the only non-null component of D,

to the lowest order. The use of a generalized kinematics is hence justified

only under weak scale separation or for high frequencies when microscopic

deformation modes become significant. Otherwise, it is enough to keep track

of U exclusively as in the unweighted Willis theory. As a matter of fact, it

has been observed that a periodic medium was “homogenizable” in the Willis

sense over the acoustic and the first optical branches only (Srivastava and

Nemat-Nasser, 2014; Nassar et al., 2015b). For higher frequencies, one needs

to use non-uniform shape functions.

3.3. Effective motion equation

Having specified body forces, the motion equation (2.4) becomes

(∇+ik)·{C(x) : [(∇ + ik)⊗sũk(x)]}+F̃k+fαk (x)φα(x) = −ω2ρ(x)ũk(x),

which needs to be solved over Ω. Since ũk is R-periodic, it is enough to solve

the above equation over a unit cell T under periodic boundary conditions.
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Let gk be the corresponding periodic second order Green operator. Then,

ũk(y) = 1
T

∫
T
gk(y,x) · f̃k(x) ddx

=
( 1
T

∫
T
gk(y,x) ddx

)
· F̃k +

( 1
T

∫
T
gk(y,x) · φα ddx

)
f̃αk (3.7)

which, combined with (3.5), delivers the following expressions for the compo-

nents of the macroscopic displacement field:

Ũk = 〈〈gk(y,x)〉〉 · F̃k + 〈〈gk(y,x) · φα(x)〉〉 f̃αk ,

ũβk =
〈〈
φ∗β(y) · gk(y,x)

〉〉
· F̃k +

〈〈
φ∗β(y) · gk(y,x) · φα(x)

〉〉
f̃αk ,

(3.8)

where 〈〈〉〉 means averaging with respect to both x and y.

The Green operator of the effective medium Gk is given by the last two

equalities which can be written concisely as

ũjk = Gji
k f̃

i
k,

where no distinction is made between the classical and generalized DOFs

(recall that Ũk = ∑d
j=1 ũ

j
kφj). Inverting the preceding equation delivers the

effective motion equation in Fourier domain:

Zij
k ũ

j
k = f̃ ik, (3.9)

where Zk, the inverse of Gk, is called the effective impedance. It depends

implicitly on the frequency ω. By summing over k ∈ T ∗ and over ω, we

obtain the effective motion equation in x and t as

Zij(x, t) ∗ uj(x, t) = f i(x, t),

where Z(x, t) is an integro-differential operator and ∗ denotes convolution
product with respect to space and time. The effective motion equation is
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hence nonlocal in both space and time and involves long wavelengths (k ∈ T ∗)
only. This generalizes equation (3.28) derived by Willis (1997) for periodic

media.

3.4. Internal work

As mentioned earlier, it is not essential for achieving the main purpose of

the present work to derive an explicit expression for the underlying effective

constitutive law which is not unique as in the theory of Willis. However,

it is of interest to specify the macroscopic stress, momentum, strain and

velocity measures that an effective constitutive law involves. In addition,

these generalized macroscopic measures will be shown to be related to their

microscopic counterparts through an extended Hill-Mandel relation.

3.4.1. Generalized stress and momentum measures

Said measures are taken to be the ones involved in the effective motion

equation written as a conservation law equivalent to (3.9). Starting with the

microscopic motion equation

(∇ + ik) · σ̃k + F̃k + f̃αkφα = iωp̃k, (3.10)

where σ̃k and p̃k are the Bloch amplitudes of stress and momentum, we take

its volume average over a unit cell to obtain, with the help of the divergence

theorem,

ik · Σ̃k + F̃k = iωP̃k. (3.11)

This is the first effective motion equation involving the classical macroscopic

stress and momentum measures:

Σ̃k ≡ 〈σ̃k〉 , P̃k ≡ 〈p̃k〉 .
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Further, projecting equation (3.10) onto the space spanned by the other shape

functions φβ gives rise to

ik ·
〈
φβ∗ · σ̃k

〉
−
〈(

∇⊗sφβ∗
)

: σ̃k
〉

+ f̃βk = iω
〈
φβ∗ · p̃k

〉
,

where, for simplicity, we have assumed the continuity of φβ so that the

boundary term vanishes. The generalized stress and momentum measures

can be identified as

σ̃βk ≡
〈
φβ∗ · σ̃k

〉
, s̃βk ≡ −

〈(
∇⊗sφβ∗

)
: σ̃k

〉
, p̃βk ≡

〈
φβ∗ · p̃k

〉
.

The additional motion equation becomes then simply

s̃βk + ik · σ̃βk + f̃βk = iωp̃βk. (3.12)

Note that equations (3.11) and (3.12) on one hand, and (3.9) on the other,

are related to one another through a non-unique effective constitutive law

whose characterization is beyond the purpose of the present work (see the

discussion by Willis, 2011, 2012).

In summary, the motion equations in the space domain are given by

∇ ·Σ + F = iωP ,

sβ + ∇ · σβ + fβ = iωpβ.
(3.13)

These equations are a micromechanical version of the “equations of equilibrium”

phenomenologically derived by Germain (1973).

3.4.2. Generalized strain and velocity measures

Said measures are obtained by duality. The virtual work theorem combined

with the EEP yields

〈σ̃k : ε̃∗k − p̃k · ṽ∗k〉 =
〈
f̃k · ũ∗k

〉
= F̃k · Ũ ∗k + f̃αk ũ

α∗
k ,
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where ε̃k and ṽk are the Bloch amplitudes of the strain and velocity fields,

respectively, given by

ε̃k = (∇ + ik)⊗sũk, ṽk = iωũk.

Substituting body forces by the corresponding stress and momentum measures

according to (3.12) delivers

〈σ̃k : ε̃∗k − p̃k · ṽ∗k〉 = Σ̃k : (ik⊗sŨk)∗ − P̃k · (iωŨk)∗

+ σ̃αk · (ikũαk)∗ − p̃αk(iωũαk)∗ − s̃αkũα∗k .

Summing over k, and using Placherel’s identity, we obtain a generalized

version of the Hill-Mandel lemma:
∫

Ω
{σ : ε∗ − p · v∗}

=
∫

Ω
{Σ : (∇⊗sU)∗ − P · (iωU)∗ + σα · (∇uα)∗ − pα(iωuα)∗ − sαuα∗} .

(3.14)

This result is valid for all virtual couples (σ,p) equilibrated by an admissible

body force field and for all couples (ε,v) derived from an arbitrary displace-

ment field u. From the above relation, we identify the classical macroscopic

measures of strain and velocity as ∇⊗sU and iωU while the generalized ones

are ∇uα, uα and iωuα.

Finally, the constructed macroscopic fields meet the most fundamental

requirements for them to be interpreted as stresses, momenta, strains and ve-

locities since they rigorously satisfy local balance and compatibility equations.

Nonetheless, how to physically interpret and measure these quantities in a

precise way ultimately depends on the chosen set of shape functions. More

details are given in subsection 4.4 regarding this aspect.
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4. An application: high-frequency behavior through low-frequency

asymptotics

At this point, we have generalized Willis theory by using enriched kine-

matics to improve the quality of approximation of a microscopic displacement

u by a macroscopic one D. The cost is however the increasing complexity of

the resulting effective motion equation. A numerical procedure dedicated to

the implementation of Willis’ theory or our previous one is quite heavy, the

effective behavior being nonlocal in both space and time with infinite radii of

influence in general.

Taylor asymptotic expansions provide an efficient way to approximate

the nonlocal behavior with a local one under appropriate assumptions on k

and ω. LW-LF expansions have the main advantage of only requiring the

solution of static problems but present the disadvantage of being limited

to the LF behavior. The purpose of this section is to show explicitly how

generalizing Willis theory makes it possible to extend the validity domain of

LW-LF expansions to high-frequency behavior over a simple 1D example.

4.1. Setting

Consider the periodically inhomogeneous string whose unit cell is depicted

in figure 3, and define the shape function

φ(x) =
√

2 sin (πx/a)

which describes the rapidly oscillating body force

f = F + qφ
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and will carry the new DOF χ. The macroscopic displacement D then reads

D = U + χφ

with

U = 〈u〉 , χ = 〈φu〉 .

c1,ρ1 c2,ρ2

x=−a x=0 x=+a

Figure 3: Unit cell.

4.2. LW-LF effective motion equation

The microscopic motion equation reads

(∇+ ik){C[(∇+ ik)ũk]}+ F̃k + q̃kφ = −ω2ρũk.

Instead of calculating the effective impedance Z for arbitrary k and ω, we

are interested here in a LW-LF Taylor expansion of Z, as k → 0 and ω → 0,

which is straightforward to obtain by solving a hierarchy of static motion

equations. The hierarchy is obtained by injecting an expansion of uk, in

powers of k and ω, into the above equation. This procedure is well described

in the literature (Boutin and Auriault, 1993; Smyshlyaev and Cherednichenko,

2000; Andrianov et al., 2008) and is skipped here. Calling ci and ρi the

stiffness and mass density of phase i for i ∈ {1, 2}, and a the half-length of a
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unit cell, the approximate effective impedance Z, truncated at order 2 in k

and ω, is given by

ZUU = 2 c1c2

c1 + c2
k2 − ρ1 + ρ2

2 ω2,

ZχU = ZUχ = 4
√

2
π

c1c2(c1 − c2)
(c1 + c2)2 k2 +

√
2
π

(ρ1 − ρ2)ω2,

Zχχ = 2π2

a2
c1c2

c1 + c2

− 2
π2

[(π2 − 6)ρ2 + 2ρ1]c2
1 + 4(ρ1 + ρ2)c1c2 + [(π2 − 6)ρ1 + 2ρ2]c2

2
(c1 + c2)2 ω2

− 2
π2
c1c2[(3π2 − 8)c2

1 + 2(3π2 + 8)c1c2 + (3π2 − 8)c2
2]

(c1 + c2)3 k2,

with the approximate effective motion equation being

ZUU
k Ũk + ZUχ

k χ̃k = F̃k,

ZχU
k Ũk + Zχχ

k χ̃k = q̃k.

In the real domain, the above equation takes the form

− 2 c1c2

c1 + c2
U ′′ + ρ1 + ρ2

2 Ü − 4
√

2
π

c1c2(c1 − c2)
(c1 + c2)2 χ′′ −

√
2
π

(ρ1 − ρ2)χ̈ = F,

− 4
√

2
π

c1c2(c1 − c2)
(c1 + c2)2 U ′′ −

√
2
π

(ρ1 − ρ2)Ü + 2π2

a2
c1c2

c1 + c2
χ

+ 2
π2

[(π2 − 6)ρ2 + 2ρ1]c2
1 + 4(ρ1 + ρ2)c1c2 + [(π2 − 6)ρ1 + 2ρ2]c2

2
(c1 + c2)2 χ̈

+ 2
π2
c1c2[(3π2 − 8)c2

1 + 2(3π2 + 8)c1c2 + (3π2 − 8)c2
2]

(c1 + c2)3 χ′′ = fw,

where a superscripted dot denotes ∂/∂t and the prime symbol means ∂/∂x.
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4.3. Exact and approximate dispersion curves

The expression of the exact dispersion curve is known and was derived

elsewhere (Andrianov et al., 2008). It reads:

cos(2ka) =
(√c1ρ1 +√c2ρ2)2

4√c1ρ1c2ρ2
cos

[
ω(
√
ρ1/c1 +

√
ρ2/c2)a

]

−(√c1ρ1 −√c2ρ2)2

4√c1ρ1c2ρ2
cos

[
ω(
√
ρ1/c1 −

√
ρ2/c2)a

]
.

(4.1)

The approximate dispersion curve is derived from the approximate effective

impedance according to

ZUUZχχ − ZχUZUχ = 0.

The first two branches of the exact and approximate dispersion curves are

drawn in figure 4 for the following arbitrary numerical values of the string

parameters

c1 = 1, c2 = 100, ρ1 = 1, ρ2 = 5, a = 1.

The plots are properly normalized so that units become irrelevant for our

purposes. On figure 4, with respect to the classical quasistatic approximation

(ω(0)
1 ), enriching the kinematics allows for capturing the first optical branch

and grants a larger validity domain for LF asymptotic expansions. The

approximate dispersion branches of order 4 are more precise and almost indis-

tinguishable from the exact ones. The corresponding approximate dispersion

relation was numerically found and is not given here. However, we presented

the resulting dispersion branches so as to get a glimpse of the convergence

rate of the asymptotic scheme. Note that simultaneously capturing additional

optical branches requires including richer body forces.
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2ka
π

ω/ωo

ω
(2)
2

ω
(4)
2

ω2

ω
(0)
1

ω
(4)
1

ω1
ω

(2)
1

1

Figure 4: Exact dispersion curve (two branches (ω1,2), in black) compared to its classical

quasistatic approximation of order 0 (one branch (ω(0)
1 ), in green), to its second-order

approximation by the present theory (two branches (ω(2)
1,2), in blue) and to its fourth-order

approximation by the present theory (two branches (ω(4)
1,2), in red).

Why is it possible that LF Taylor expansions lead to a correct estimate

of some optical modes? Physically speaking, for high frequencies, inertial

forces become important and shift the energy carried by displacements toward

shorter wavelengths. Correspondingly, including rapidly oscillating body

forces have two benefits. First, they simulate the effects of inertial forces.

Second, and most importantly, they oblige the macroscopic displacement field

to include some short-wavelength components, necessary for approximating

the high-frequency behavior. Mathematically speaking, including additional
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DOFs delays the appearance of some singularities and extends the convergence

domain of the LF Taylor expansions (see Nassar et al., 2015a).

4.4. On the choice of shape functions

The above method and results are by no means universal. Depending on

the underlying microstructure and on the targeted frequency range, adequate

shape functions can be chosen. Regarding how to appropriately choose shape

functions, the following comments are in order:

1. In our 1D example, the sinusoidal shape function was chosen based on

considerations similar to the ones arising in Bragg’s reflection where

the first term added to the coherent wave is another Fourier component

of the exact scattered (microscopic in our terminology) field (see, e.g.,

Quéré, 1988).

2. In some situations, by inspecting the phases connectedness and contrasts,

an asymptotic analysis allows constructing shape functions as particular

quasistatic first-order solutions (see, e.g., Auriault and Bonnet, 1985).

3. It can also be proven that including the nth periodic optical oscillation

mode as a shape function guarantees that the nth optical dispersion

branch is correctly approximated at k = 0. In fact, this amounts to

combining the classical quasistatic homogenization theory with the

high-frequency homogenization theory suggested by Daya et al. (2002)

and by Craster et al. (2010) and co-workers.

5. Concluding remarks

Through incorporating new kinematical DOFs, the present work has pro-

posed an elastodynamic homogenization theory generalizing the one of Willis
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in the case of periodic media and reducing the error committed during the

upscaling process, especially at high frequencies. In order to illustrate the po-

tential of the presented theory, it has been shown that the LW-LF asymptotic

expansion of the effective motion equation is capable of simultaneously cap-

turing the acoustic and the first optical branch of the microscopic dispersion

curve for a simple 1D medium.

Two problems remain open. The first concerns the effective elastodynamic

constitutive law produced by the generalized theory proposed. In this paper, to

avoid the difficulty related to its non-uniqueness, the effective motion equation

has been directly treated and exploited. However, in numerous situations,

it is useful and important to explicitly know the effective elastodynamic

constitutive law. The second problem regards the optimal choice of shape

functions for which guiding criteria exist but remain incomplete.
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