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High-frequency deep brain stimulation is used to treat a wide range of brain disorders, like
Parkinson’s disease. The stimulated networks usually share common electrophysiological
signatures, including hyperactivity and/or dysrhythmia. From a clinical perspective, HFS is
expected to alleviate clinical signs without generating adverse effects. Here, we consider
whether the classical open-loop HFS fulfills these criteria and outline current experimental
or theoretical research on the different types of closed-loop DBS that could provide
better clinical outcomes. In the first part of the review, the two routes followed by
HFS-evoked axonal spikes are explored. In one direction, orthodromic spikes functionally
de-afferent the stimulated nucleus from its downstream target networks. In the opposite
direction, antidromic spikes prevent this nucleus from being influenced by its afferent
networks. As a result, the pathological synchronized activity no longer propagates from
the cortical networks to the stimulated nucleus. The overall result can be described as
a reversible functional de-afferentation of the stimulated nucleus from its upstream and
downstream nuclei. In the second part of the review, the latest advances in closed-loop
DBS are considered. Some of the proposed approaches are based on mathematical
models, which emphasize different aspects of the parkinsonian basal ganglia: excessive
synchronization, abnormal firing-rate rhythms, and a deficient thalamo-cortical relay. The
stimulation strategies are classified depending on the control-theory techniques on which
they are based: adaptive and on-demand stimulation schemes, delayed and multi-site
approaches, stimulations based on proportional and/or derivative control actions, optimal
control strategies. Some of these strategies have been validated experimentally, but there
is still a large reservoir of theoretical work that may point to ways of improving practical
treatment.
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INTRODUCTION
Continuous high-frequency deep brain stimulation (open-loop
DBS referred to as HF DBS or HFS) is a widely used ther-
apy, particularly to treat movement disorders such as essential
tremor (Benabid et al., 1991, 1993; Schuurman et al., 2000),
Parkinson’s disease (Benabid et al., 1987, 2009; Limousin et al.,
1998; Krack et al., 2003; Deuschl et al., 2006; Castrioto et al.,
2011), and generalized dystonia (Coubes et al., 2000; Vidailhet
et al., 2007; Isaias et al., 2009). The HF DBS procedure con-
sists in implanting a multi-contact lead, typically in either the
ventral thalamus, the internal segment of the globus pallidus
(GPi) or the subthalamic nucleus (STN), depending on the
pathology (Follett et al., 2010; Moro et al., 2010), and applying
short-duration stimulating pulses (60–400 μs) at a constant high
frequency (approximately 130 Hz). Several parameters, including
mode of stimulation (monopolar vs. bipolar), electrode polarity
(which contact of the quadripolar lead is negative), pulse width
and intensity of stimulation, are determined for each patient by a

highly trained clinician. The aim of this adjustment is to optimize
motor improvement while minimizing any side effects. The initial
programming can take up to 6 months before optimal results are
obtained (Volkmann et al., 2006; Bronstein et al., 2011).

HFS has also been tested in several psychiatric diseases such
as obsessive compulsive disorder (OCD), in several different
anatomical targets (ventral limb of internal capsule VLIC, nucleus
accumbens NAc or limbic STN) (Nuttin et al., 1999; Mallet
et al., 2008), in Gilles de la Tourette syndrome (CM-Pf nucleus
of the thalamus, anteromedial GPi, VLIM/NAc, Vop (Visser-
Vandewalle, 2007) or in refractory depression (subgenual cor-
tex: CG25) (Mayberg et al., 2005; Holtzheimer and Mayberg,
2011). HFS has been extended to other target brain nuclei or
fiber tracts for the treatment of several other pharmaco-resistant
brain pathologies. For the treatment of trigemino dysautonomic
headaches such as refractory cluster headaches, HFS applied in
the region of the posterior hypothalamus (Matharu and Zrinzo,
2010) shows positive preliminary results (Franzini et al., 2003;
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Leone et al., 2006). For obesity, a potential therapeutic role of
HFS in the lateral hypothalamus is being investigated (Quaade
et al., 1974; Halpern et al., 2011; Torres et al., 2011; Melega et al.,
2012). The SANTE trial (Electrical stimulation of the anterior
nucleus of thalamus) for refractory epilepsy (Fisher et al., 2010)
gave promising results. Recently, HFS of the fornix/hypothalamus
in Alzheimer’s disease was used to stimulate the memory circuits
(entorhinal cortex, hippocampus) and is linked to improvements
at 1 year follow-up (Laxton et al., 2010; Smith et al., 2012).

The main sites for HFS are located along the various (motor,
associative, limbic) thalamo-cortical loops and in hypothalamic
regions. These sites have in common the presence of patho-
logical activities (dysrhythmia and/or hyperactivity) as shown
by recordings in patients both at the single neuron level (via
microelectrode probes during surgery) and at the population
level (via implanted DBS leads or imaging studies). There are
examples of pathological activity in rhythmic oscillations and
pairwise synchrony in the ventral thalamus Vim/Vop of patients
suffering from essential tremor (Hanson et al., 2012); augmented
synchrony of neuronal firing, loss of specificity of the recep-
tive fields, and increased firing rates with bursts in the STN
and GPi of Parkinson’s disease (PD) patients (Hutchison et al.,
1998); rhythmic oscillations in the Vop of patients suffering from
Tourette syndrome (Marceglia et al., 2010); high-frequency dis-
charge with bursting in the limbic STN (Welter et al., 2011)
or in the ventral caudate nucleus of patients showing OCD
episodes during surgery (Guehl et al., 2008); increased activation
of regional cerebral blood flow that may be reversed by sev-
eral anti-depressant therapies in the subcallosal cingulate gyrus
(SCG) in patients with depression (Hamani et al., 2012) and in
areas specifically activated in patients experiencing acute clus-
ter headaches but not in other causes of head pain (May et al.,
1998).

This review aims at examining why it has been so difficult
to discern the mechanisms underlying the HFS-mediated clin-
ical improvements. In particular, it underlines the role played
by the combined antidromic and orthodromic effects of HFS
(Part I). At the same time, recent theoretical developments and
empirical findings are surveyed, revealing how DBS can now
be diversified to optimize its benefits especially by exploiting
models and/or measurements on the brain structures involved
(Part II).

PART I: OPEN-LOOP HFS EVOKES AXONAL SPIKES THAT FOLLOW TWO
ROUTES, ANTIDROMIC AND ORTHODROMIC
The hypothesis of the local inhibitory action of HFS
Considerable effort has been directed toward understanding the
mechanisms behind HFS-driven clinical improvement. HFS was
first thought to mediate its clinical benefit by local inhibition of
the stimulated neurons. This hypothesis was raised partly because
the structures targeted for HFS are exactly those previously tar-
geted for a lesion, and show hyperactivity and dysrhythmia. But
similar consequences do not imply similar causes: similar behav-
ioral effects between the lesion of a nucleus, its inhibition by
pharmacological agents or its high-frequency stimulation do not
allow us to conclude that HFS has an inhibitory action (Aziz et al.,
1991; Schuurman et al., 2000). Since intracellular recordings at

the site of stimulation during HFS also produced contradictory
results (Magarinos-Ascone et al., 2002; Garcia et al., 2003; Tai
et al., 2003; Meissner et al., 2005), this question is still under
debate (Table 1). Nevertheless, the effect of HFS on neuronal
activity in structures connected to the stimulated neurons seems
to hold the key.

HFS has distal effects via HFS-evoked axonal spikes
Recordings far from the stimulating site, in the target regions,
where stimulation artifacts are less of a problem, give interest-
ing results. There is a general consensus on the fact that HFS
induces distal effects via propagation of evoked spikes along
axons. Obviously, however, several factors can determine the
nature and strength of this axonal activation.

A first factor may be the frequency of stimulation. If short-
duration (60–400 μs) stimuli applied at 0.1–1 Hz via an extracel-
lular electrode activate axons (Figure 1), would the same stimuli
applied at high frequency (100–130 Hz) also preferentially acti-
vate axons? Holsheimer measured chronaxy and rheobase during
130 Hz stimulation of the ventral intermediate nucleus of the
thalamus (Vim) or internal pallidum (GPi) in the context of
essential tremor or PD tremor, respectively (Holsheimer et al.,
2000). He determined the pulse duration needed to stop tremor
at threshold intensity using the Weiss method. The mean values
were 65 ± 26 μs for Vim and 75 ± 25 μs for GPi. He concluded
that the elements stimulated under the clinical parameters (60 μs,
130 Hz, 2.5–3.0 V) were large-diameter axons whose chronaxies
are between 30 and 300 μs.

Another variable is the distance between the DBS electrode and
neuronal elements. Ranck proposed that high-intensity monopo-
lar cathodic pulses silence proximal neural elements and weakly
activate more distal ones, thus, delineating a shell where neu-
ral elements are clearly activated (Ranck, 1975). (Gustafsson and
Jankowska, 1976) confirmed this hypothesis in cat motoneurons.
They recorded the response of a given motoneuron to a stimu-
lus applied via an extracellular electrode positioned at different
distances from the recorded motoneuron. A response was consid-
ered as direct (not through a network) when the evoked action
potential had a latency shorter than 5 ms. Action potentials were
evoked with the lowest intensity when the stimulating electrode
was close to the axon initial segment, and with a higher intensity
when it was close to the dendritic arbor.

The volume of neuronal tissue stimulated depends on the elec-
trode’s characteristics. Most neurosurgical teams use the same
DBS quadripolar lead with 4 contacts 1.5 mm high and either
0.5 mm or 1.5 mm apart (Model 3389 vs. 3387, Medtronic®,
Minneapolis). Models indicate that a monopolar cathodic stim-
ulation activates axons in a radius of 2.5 mm around the negative
plot (Wu et al., 2001; McIntyre et al., 2004; Hemm et al., 2005).
Coubes’s team recently modeled the volume of tissue stimulated
(homogenous and isotropic model) as a function of the geo-
metrical characteristics of the electrode contacts (Vasques et al.,
2010).

In conclusion, HFS evokes axonal spikes which propa-
gate along axons in orthodromic and antidromic directions.
Orthodromic spikes propagate toward axon terminals, where
they may evoke transmitter release and postsynaptic potentials
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Table 1 | Electrophysiological effects recorded during STN-HFS in control animals (in black) or in animal models of Parkinson’s disease (in blue).

Animal model In vivo/ STN-HFS Recor-ding Type of Effect during HFS References

in vitro duration from recor-ding

EFFECT ON STN NEURONS

Control rat In vitro 2 s STN Excitation (bursts of spikes) and then
inhibition

Magarinos-
Ascone et al.,
2002

Control or 6-OHDA rat
anesthetized

In vivo 10–30 s STN Inhibition Tai et al., 2003

Reserpinized rat In vitro
(ex vivo)

1 h STN intra Imposes a HFS-driven bursting activity Garcia et al.,
2003

MPTP monkey In vivo – STN extra Inhibition and desynchronization Meissner et al.,
2005

EFFECT ON TARGET NEURONS OF THE STN

Control rat
In vitro 30 s SNr intra Orthodromic excitation and inhibition Bosch et al.,

2011

Control rat anesthetized In vivo 30 s SNr extra Orthodromic excitation and inhibition +
antidromic excitation

Maurice et al.,
2003

Cataleptic rat In vivo 30 s SNr extra Orthodromic excitation and inhibition Degos et al.,
2005

MPTP monkey awake In vivo 5 min GPe, GPi extra Orthodromic excitation and inhibition Hashimoto et al.,
2003

Control rat In vitro ±
ptx

10 s SNc Intra and
filed

Activation followed by depression of the
STN-SNc excitatory synaptic transmission

Zheng et al.,
2011

Control rat In vitro ±
bicu

10 min SNc Intra Activation followed by depression of the
STN-SNc excitatory synaptic transmission

Ledonne et al.,
2012

Reserpinized mouse In vitro +
gabazine

5 min GP Intra Activation followed by depression of the
STN-GP excitatory synaptic transmission

Ammari et al.,
2011

MPTP monkey awake In vivo 30 s GPe, GPi extra Removal of the STN synchronous
oscillatory drive

Moran et al.,
2011

EFFECT ON AFFERENT NEURONS OF THE STN

Reserpinized rat In vitro 30 min GP intra Antidromic activation of GP neurons Hammond et al.,
2008

Control and 6-OHDA rat
anesthetized

In vivo 1 s Motor Cortex intra Antidromic activation of layer V/VI
pyramidal neurons

Li et al., 2007

Cataleptic rat freely
moving

In vivo – Motor cortex EEG Short latency activation of M1
(presumably antidromic) and decrease of β

oscillations in M1

Dejean et al.,
2009

Control and 6-OHDA rat
freely moving

In vivo 10–30 s Motor cortex extra Antidromic activation of M1 layer V
neurons and desynchronisation of M1
networks

Li et al., 2012

Experiments are grouped on the basis of the results obtained. The different gray shadings indicate the different groups. Bicuculline (bicu), gabazine, or picrotoxin

(ptx) were sometimes added to the extracellular medium to block GABAA receptor-mediated transmission and to record in isolation STN-SNr or STN-SNc or STN-GP

glutamatergic synaptic transmission.

in target neurons. Antidromic spikes propagate in the reverse
direction toward afferent networks, where they may have com-
plex effects. We will separately analyze the respective effects of
HFS-evoked orthodromic and antidromic axonal spikes.

HFS functionally de-afferents the stimulated nucleus from its
downstream target networks
The fact that extracellularly-applied HFS activates axons inside
or near the stimulated site and generates axonal spikes that
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FIGURE 1 | Chronaxy. Deep-brain high-frequency stimulation is applied
through an extracellular stimulating electrode. Stimulation usually consists
of 60–400 μs pulses applied at a frequency of 100–130 Hz. It activates one
or several neuronal elements close to the stimulating electrode:
somato-dendritic trees, axons, axon terminals. This depends on stimulation
parameters, since each of these elements has a specific chronaxy (Ranck,
1975) which determines whether they are activated by a given stimulation.
A single, short-duration, extracellular stimulating pulse preferentially
activates axons The link between the intensity of stimulation (Y axis) and
the minimal duration of this stimulation (pulse width, X axis) needed to
activate a given element (muscle fiber or neuron, soma or axon of a neuron)
is hyperbolic and described by the Weiss law: I = Rh (Cr/t + 1). When the
current intensity of a pulse is decreased, its duration (pulse width) must be
increased to produce constant effects i.e., activate the given neuronal
element. The asymptote to the X axis defines the rheobase (Rh). It
corresponds to the minimal current intensity needed to activate an element
(muscular or neuronal). If applied at an intensity lower than rheobase, the
stimulus will never activate a given element, whatever its duration (t). The
minimum duration required for a constant electric current of twice the
rheobase to excite tissue is the Chronaxy (Cr).
When I = 2Rh, t = Cr
The concepts of “chronaxie” and “rheobase” were introduced in 1909 by
the French physiologist L. Lapicque. The root word “rheo” means current
and the root word “chron” means time. The chronaxy is used to quantify
the excitability of an element. The element is more excitable when its
chronaxy is short. Chronaxies of the different elements of the nervous
system differ by a factor of 5 to 300. Large myelinated axons of the central
nervous system have a chronaxy of 30–300 μs and around 500 μs for
non-myelinated axons, whereas that of somas and dendrites is around
1–10 ms (Ranck, 1975). In the cat visual cortex, Nowak and Bullier (1998)
found similar results with a chronaxy of around 270 μs for axons of the
subcortical white matter and of 15 ms for somas in the cortex. Therefore, a
stimulating pulse of 60–400 μs duration preferentially activates axons.
Larger axons have a lower threshold of activation because the intracellular
resistance to longitudinal ionic flux is low as a result of the higher
percentage of ions that carry the current per length unit. Therefore, for a
given current applied, the large axons are those most easily depolarized.

orthodromically propagate to axon terminals is attested by the
increased or decreased activity recorded from target neurons of
the stimulated structure in animal models of PD in vivo (6-OHDA
rats, MPTP-treated monkeys) or in patients (Perlmutter et al.,
2002; Anderson et al., 2003; Hashimoto et al., 2003; Maurice et al.,
2003; Bosch et al., 2011; Walker et al., 2011). Since the duration of
stimulation used in these studies is relatively short (ranging from
several milliseconds to minutes) compared with the clinical dura-
tion of stimulation (lifetime), it is impossible to know whether
this excitatory or inhibitory effect is transient (minutes, hours)
or persistent (days). Yet the hypothesis of persistent activation

of target neurons of the STN during STN-HFS (>100 Hz) can-
not be readily reconciled with the classical model of Alexander
(Alexander et al., 1986, 1990), nor with clinical observations such
as the lack of interference of thalamic HF DBS on motor control
(Takahashi et al., 1998; Flament et al., 2002; O Suilleabhain et al.,
2003). In that case, activation of GABAergic output neurons of
the basal ganglia (SNr/GPi) by STN stimulation would aggravate
akinesia by reinforcing the inhibitory tonus on thalamic neurons.

Several studies on STN-HFS (Figure 2A) have proposed that
HFS de-afferents the stimulated nucleus from its target neurons.
Two different de-afferentation mechanisms have been proposed
for a common consequence: the regularization of target neurons
activity. The first mechanism proposed (Hashimoto et al., 2003;
Maurice et al., 2003; Degos et al., 2005; Bosch et al., 2011) is
that STN-HFS (100 μs pulses at 130 Hz during 30 s) imposes a
concomitant synaptic excitation-inhibition on substantia nigra
reticulata (SNr) or globus pallidus (GP) target neurons, which
tightly regulates SNr or GP activity. This arises in the SNr from the
concomitant activation of glutamatergic subthalamo-nigral and
GABAergic pallido-nigral fibers (the latter pass through the rat
and non-human primate STN) (Parent and De Bellefeuille, 1983;
Sato et al., 2000; François et al., 2004) (Figure 2B). This balance
seems to favor excitation in 6-hydroxydopamine-treated rats. At a
higher frequency (180 Hz), STN-HFS no longer evokes significant
inhibitory or excitatory responses.

The second mechanism proposed is that prolonged STN-HFS
depresses glutamatergic synaptic transmission between subthala-
mic terminals and target neurons (Figures 2C–F). Indeed, EPSCs
evoked in SNr neurons by STN stimulation in the continuous
presence of blocker of GABAA receptor-mediated transmission
rapidly decrease in frequency and amplitude during STN-HFS
at 50 Hz in the basal ganglia slice of control mice (Figure 2C).
Accordingly, in rodent brain slices, STN-HFS disrupts synap-
tic excitation onto target SNr or SNc neurons (Zheng et al.,
2011; Ledonne et al., 2012). EPSCs follow the first few stimuli
before their amplitude rapidly declines (Figures 2C,D). STN-HFS
induces a rapid and input-specific suppression of the synap-
tic transmission from STN to SN neurons that is maintained
throughout the stimulation. Finally, in the basal ganglia slice from
reserpinized mice, the spontaneous, large-amplitude, sometimes
recurrent, complex EPSCs evoked by single stimuli in the STN
disappear in GP neurons during STN-HFS applied for several
minutes (100 μs, 100 Hz) and are replaced by very low-amplitude,
regularly-spaced EPSCs at around 20 Hz (Ammari et al., 2011)
(Figure 2E). This reduction of the STN-pallidal synaptic efficacy
is also reported in the awake MPTP-treated monkey with multi-
electrode recordings in the GP during STN-HFS (Moran et al.,
2011).

Similar observations have been obtained in other networks.
In a pioneering imaging study in thalamo-cortical slices using
a voltage-sensitive dye, excitation of cortical neurons by stimu-
lation of the ventrolateral thalamus does not follow HFS above
80 Hz (Urbano et al., 2002). Subcortical fiber stimulation (90 μs,
125 Hz during 30 s) to mimic thalamic HF DBS for tremor (stim-
ulation of VL thalamus fibers projecting to M1), induces an initial
transient, AMPA/NMDA mediated depolarization or inward cur-
rent in primary motor cortex (M1) neurons (layers II/III, V,
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FIGURE 2 | The two hypotheses on the effect of STN HFS-evoked

orthodromic spikes on the activity of substantia nigra and pallidal

neurons. (A) Schematic illustration of the experimental design showing the
stimulation and recording sites. (B) HFS-evoked orthodromic spikes in STN
axons evoke excitatory (left) and inhibitory (right) responses in SNr neurons
recorded in cell-attached (c-a) or whole-cell (w-c) configuration in voltage (top)
or current (bottom) clamp mode. Scale bars: 100 pA top, 5 mV bottom,
400 ms. Adapted from Bosch et al. (2011). (C–E) HFS-evoked orthodromic

spikes in STN axons evoke low amplitude EPSCs in SNr (C), SNc (D), and
GPe (E) neurons. Bottom traces in (C) and (E) are close ups to the top traces
at the beginning (C) left and at the end (C) right, (E) of the stimulation. Scale
bars are 50 pA, 200 and 20 ms in (C), 50 pA and 5 ms in (D) and 50 pA, 200
and 20 ms in (E). (C) from Ammari and Hammond (personal communication),
(D) adapted from Zheng et al. (2011) and (E) adapted from Ammari et al.
(2011). (F) Schematic illustration of the possible mechanisms underlying
HFS-induced depression of synaptic transmission.

and VI) followed by a depression. When the size of the 20th or
100th EPSCs is measured during the HFS train, a marked fail-
ure/depression of transmission is present at frequencies above
50 Hz (Anderson et al., 2003). Imaging of the subcortical white
matter during HF DBS of the subgenual cingulate (for depression)
shows the reduced activation of cortical projection sites (Mayberg
et al., 2005).

The mechanism underlying the decline of synaptic transmis-
sion during HFS includes presynaptic inhibition of glutamate

release via adenosine A1 receptors (Bekar et al., 2008) but not
via metabotropic GABA or glutamate receptors (Zheng et al.,
2011). It also includes axonal transmission failure (Figure 2F),
which halts synaptic transmission, since STN-HFS at 50 and
130 Hz, respectively, strongly diminishes or abrogates afferent
volley responses extracellularly recorded in the SNc (Zheng et al.,
2011). Elevated extracellular K+ due to HFS might in fact impair
action potential conduction (Bellinger et al., 2008; Zheng et al.,
2011).
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In conclusion, STN-HFS evokes axonal spikes that ortho-
dromically propagate and depress glutamatergic synaptic trans-
mission to postsynaptic neurons (Figure 2F, Table 1). As a result,
the pathological electrophysiological activity of glutamatergic
STN neurons no longer propagates to its target neurons. Instead,
HFS injects a continued, low amplitude, postsynaptic noise, thus,
imposing a new resting state in the network. HFS of glutamater-
gic neurons/axons prevents these neurons from influencing the
activity of target neurons. This can be described as a reversible
“functional de-afferentation” of downstream target neurons from
the stimulated nucleus.

Nevertheless, the functional de-afferentation of nuclei down-
stream of the stimulated STN does not explain alone the beneficial
clinical effects of HFS. An optogenetic study (Gradinaru et al.,
2009) using light-sensitive neuronal modulators driven by cell
type-specific promoters showed that increasing or decreasing
activity of glutamatergic excitatory STN neurons is not suffi-
cient to mimic the beneficial effect of STN-HFS in 6-OHDA-
treated rats.

HFS of a nucleus prevents it from being influenced by its afferent
networks
A stimulation applied in a nucleus also evokes axonal spikes that
antidromically propagate along afferent axons and in axons pass-
ing through or near the stimulated site. Antidromic propagation
refers to the propagation of axonal spikes from their point of ini-
tiation close to the stimulating electrode toward somas, i.e., in the
opposite direction to physiological spikes, which propagate in the
orthodromic direction toward axon terminals. Experimenters dif-
ferentiate antidromic from orthodromic responses by the stable

latency of antidromic spikes (there are no synapses between the
stimulating and recording points), their collision with sponta-
neous orthodromic spikes and their ability to follow high fre-
quency stimulation (Figure 3). Antidromic spikes do not reliably
invade somas and activate at best a subset of afferent neurons.
This depends on the diameter and myelination of the stimulated
axons as well as on the geometric ratio between axon and soma
diameters. Antidromic spikes may also propagate in recurrent
axonal collaterals on their way to somas, activating synaptic trans-
mission that impinges onto other projection neurons or local
interneurons. At this point they behave like orthodromic spikes in
a network. The overall result depends on the balance between the
antidromic invasion of somas and the propagation of antidromic
spikes in axonal branches and on how these spikes evoke synaptic
responses in the long term (see Figure 4F).

STN-HFS may have widespread antidromic effects because
numerous fibers are present inside and around the STN (Mathai
et al., 2013). A radius of 2.5 mm around the negative plot, usu-
ally at the dorsal border of the STN, contains cortico-subthalamic
and pallido-thalamic axons of Forel fields (lenticular ansa
and lenticular fasciculus), subthalamo-nigral and subthalamo-
pedunculopontine axons and cortico-spinal axons running in the
internal capsule. STN-HFS evokes antidromic responses in a sub-
set of pallidal and cortical neurons that directly project to the STN
(Kunzle, 1978; Parent and Hazrati, 1995). Antidromic spikes are
clearly recorded in the GP during STN-HFS (Hammond et al.,
2008). If these antidromic spikes also propagate in the complex
network of local GABAergic collaterals that synapse onto other
GP neurons (Sims et al., 2008), this may have strong consequences
on the activity of subpopulations of GP neurons.

FIGURE 3 | Antidromic spikes. The antidromic propagation of a spike
refers to its conduction in a direction opposite from the normal
(orthodromic) direction (away from axon terminals to soma instead of
propagating from the initial segment of the axon, close to the soma,
toward axon terminals). To evoke antidromic spikes, axons are directly
stimulated with a suprathreshold stimulus. Evoked spikes propagate in
both directions (orthodromic and antidromic). This shows that axons do not
have a preferential direction of conduction: the direction of propagation is
given by the synapses, which are unidirectional [from the axon terminal
(presynaptic element) to the postsynaptic element]. Antidromic activation is
often used in a laboratory setting to confirm that a recorded neuron
projects to the structure of interest. During HF DBS, antidromic spikes are
evoked because an extracellular stimulation preferentially activates axons
(axon terminals, passing axons). Criteria for identification of an antidromic
spike are: (i) Stability of latency (because there are no synapses between

the stimulating and recording sites), (ii) Faithful responses to high rates of
stimulation (for the same reason as above), (iii) Collision of the antidromic
spike (1) with an orthodromically traveling spike (2) because they meet
along the same axon and annihilate each other. As antidromically activated
units sometimes do not fire spontaneously, in order to perform a collision
test the action potentials are orthodromically evoked by another stimulation
or by depolarizing the soma with the recording electrode. (a) Three spikes
recorded from the soma (blue recording electrode) in response to three
stimuli (arrows) applied at the axon (red stimulating electrode) (three
superimposed traces). (b) A spontaneous orthodromic spike (2) does not
suppress the evoked spike (1) when it is recorded long before the
stimulation but does so (c, ∗) when it is recorded 10 ms before the
stimulation. These results show that spike 1 is an antidromic spike: it has
a fixed latency (a), it faithfully follows high frequency stimulation (a) and it
collides with spontaneous spikes (c).
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FIGURE 4 | Effect of STN HFS-evoked antidromic spikes on cortical

activity. (A) Schematic illustration of the experimental design showing the
stimulation and recording sites. (B) Antidromic spiking in cortical neurons
evoked by STN-HFS (intracellular recording in the motor cortex). Black bar
indicates the period of STN-HFS. Stimulation artefacts are removed. Right
trace is a close-up of (B) left. Arrow shows a spontaneous spike before
stimulation with subsequent loss of an antidromic spike caused by collision.
Adapted from Li et al. (2007). (C) Evoked potentials in the ipsilateral motor
cortex in response to bipolar stimulation of the dorsal STN. Latencies of the
peaks were 4, 13.7, and 24.5 ms. The short-latency negative-evoked potential
has a peak latency of 4 ms in bilateral frontal and central leads (C3, C4, Cz).
Adapted from Kuriakose et al. (2010). (D) STN-HF DBS induces beta
attenuation in motor cortex. Spectrogram of single cortical ECoG channel
during HF DBS (top) 1.5 mM dorsal to the dorsal border of the STN and

(bottom) within the STN (2.6 mM below dorsal border) from a representative
patient. Black bars indicate the full time that HF DBS is on. The bars marked
“AEs” indicate the period when HF DBS is increased from 0 to 3 V to test for
adverse clinical effects; these segments were not used in analyses. The color
scale indicates the level of log beta power on a decibel scale. Note the power
rebound when STN DBS is turned off. Adapted from Whitmer et al. (2012).
(E) From top to bottom and left to right. Optical HFS (130 Hz, 5-ms pulse
width) reduces amphetamine-induced ipsilateral rotations in 6-OHDA
Thy1::ChR2 mice (P < 0.01, n = five mice) in contrast to optical LFS (20 Hz,
5-ms pulse width, P > 0.05, n = four mice); t-test with m = 0. Sample paths
before, during and after HFS are shown (100 s each, path lengths in cm).
Adapted from Gradinaru et al. (2009). (F) Schematic illustration of the
possible mechanisms underlying the antidromic effects of HFS. Spontaneous
orthodromic spikes are in black and HFS-evoked antidromic spikes in red.

Short-latency antidromic activation of M1 neurons is recorded
during STN-HFS in anaesthetized or freely moving rats in vivo
(S. Li et al., 2007; Dejean et al., 2009) (Figures 4A,B). The fre-
quency of antidromic spikes is higher in dopamine-depleted
state (6-OH DA treated animals) (Chomiak and Hu, 2007). The
absence of dopamine may change the intrinsic membrane prop-
erties of cortical neurons, since the somatic gating of antidromic
spikes depends on membrane potential (Chomiak and Hu, 2007).
Does STN stimulation also antidromically excite motor corti-
cal neurons in patients? This can be studied via the electrode

implanted in the STN and scalp recordings (Cunic et al., 2002;
Strafella et al., 2004; Eusebio et al., 2009; Kuriakose et al., 2010).
STN stimulation evokes cortical potentials at short (1–8 ms),
medium (18–25 ms), and long latencies (more than 50 ms)
(Ashby et al., 2001; MacKinnon et al., 2005; Kuriakose et al.,
2010; Walker et al., 2012). The early cortical response (mean
latency 3 ms) recorded in 80% of the hemispheres tested, and
which is maximal in the frontal cortical regions, follows 100 Hz
stimulation (Ashby et al., 2001; Baker et al., 2002). It is likely to
result from the antidromic activation of the cortico-subthalamic
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pathway, whereas a response at around 23 ms is likely to result
from the orthodromic activation of the basal ganglia-thalamo-
cortical network (Figure 4C).

Kuriakose and Coll (Kuriakose et al., 2010) also tested the
effects of STN stimulation on cortical excitability at interstimulus
intervals (ISIs) corresponding to the short- and medium- latency
responses using trans-magnetic stimulation (TMS) in different
current directions to determine whether the changes occurred
at the cortical or subcortical levels. STN stimulation using con-
tacts that produce clinical benefit increases the excitability of
the ipsilateral motor cortex (MEP amplitude) at specific short
(2–5 ms) and medium (15–25 ms) latencies tested with TMS
in the antero-posterior current direction (activation of cortical
pyramidal neurons and interneurons), but not with TMS in the
lateral-medial direction (direct activation of corticospinal axons,
insensitive to cortical excitability). These sequential increases in
excitability might be due to short-latency antidromic activation
of cortico-subthalamic projections followed by medium-latency
facilitatory basal ganglia-thalamo-cortical interactions following
STN stimulation. However, during STN-HFS, the orthodromic
polysynaptic responses are likely to disappear (see above), leaving
only the antidromic activation of cortical neurons.

Excessive synchronization of neuronal activity in the beta
(8–35 Hz) frequency band is one of the main pathophysio-
logical markers of the Parkinsonian state as observed in the
widespread sensorimotor network in Parkinsonian animals and
in human patients with PD (Brown, 2003; Rosin et al., 2011;
Li et al., 2012; Stein and Bar-Gad, 2013). It is currently a mat-
ter of debate whether beta hypersynchrony is attenuated dur-
ing STN-HFS (Rossi et al., 2008; Eusebio et al., 2011, 2012;
Whitmer et al., 2012), and to what extent. To answer that ques-
tion, (Whitmer et al., 2012) positioned subdural cortical surface
electrodes over the cortical region from which the hyperdirect
cortico-subthalamic pathway originates (using diffusion tensor
imaging) and stimulated the STN or its dorsal region. STN-HFS
attenuates in a voltage-dependent manner the spectral power in
the 5–35 Hz band in the ipsilateral motor cortex (Figure 4D). It
also attenuates the coherent oscillations between specific regions
of the motor cortex and the STN.

To assess the possibility that antidromic activation plays a sig-
nificant role in the beneficial effects of HFS, transgenic mice that
express light-activated cation channels in afferent fibers to the
STN (and not in STN cell bodies) were engineered (Gradinaru
et al., 2009). Driving STN afferent fibers with optical HFS robustly
and reversibly ameliorates rotational behavior and head position
bias in rats made hemiparkinsonian by injection of 6-OHDA uni-
laterally in the medial forebrain bundle. In contrast, optical low
frequency stimulation (LFS, 20 Hz) worsens motor symptoms
by increasing ipsilateral rotational behavior. These data strongly
suggest that STN HFS ameliorates PD motor symptoms via its
antidromic action on M1 network (Figure 4E). Along the same
lines, STN-HFS (125 Hz) in freely moving hemiparkinsonian rats
evoked antidromic spikes in the ipsilateral (lesioned side) M1
cortex, at frequency that was positively correlated to the thera-
peutic effect of STN-HFS. Even though their frequency was much
lower than the frequency of HFS, antidromic spikes reversed the
bursting pattern of ipsilateral M1 cortical neurons (Q. Li et al.,
2012).

In conclusion, STN-HFS evokes axonal spikes that antidromi-
cally propagate, collide with spontaneous orthodromic spikes and
prevent them from influencing the activity of the stimulated
nucleus (Figure 4F, Table 1). In the case of the antidromic acti-
vation of cortico-subthalamic fibers, antidromic spikes can also
excite some cortical interneurons via axon collaterals and depress
the activity of pyramidal neurons (Figure 4F). As a result, the
pathological synchronized activity no longer propagates from the
cortical networks to the stimulated nucleus. This can be described
as a reversible “functional de-afferentation” of the stimulated
nucleus from its upstream afferent nuclei.

PART II: LATEST ADVANCES IN DBS AND PERSPECTIVES: CAN
CLOSED-LOOP STIMULATION LESSEN THE DRAWBACKS OF HFS?
Having outlined current understanding of the mechanisms of
action of HFS, we now focus on the intrinsic limitations of HFS.
We review recent attempts to ameliorate its outcome, especially
by exploiting models of the neuronal structures involved and
real-time measurements of their activity (closed-loop DBS).

Even excluding problems linked to misplacement of the lead
or suboptimal settings of the stimulation parameters, HFS as
currently used still has limitations. HFS may be without effect
on some PD symptoms or even worsen them, may cause dis-
abling side effects or may become less efficient with time (tol-
erance/habituation phenomenon) (Hariz et al., 1999). Indeed,
STN-HFS does not significantly improve the axial symptoms or
cognition impairment that appear with progression of the dis-
ease (Castrioto et al., 2011; Rodriguez-Oroz et al., 2012). Whether
or not there is any degree of long-term cognitive deterioration
clearly ascribable to STN-HFS has not been clearly established
yet (Klostermann et al., 2008; Witt et al., 2008; Sáez-Zea et al.,
2012). Speech impairment after STN-HFS, however, is common,
because of the lack of sustained and global improvement and
the worsening of persisting dysarthria (Krack et al., 2003; Pinto
et al., 2005; Tripoliti et al., 2011). Similarly, gait and/or balance
may significantly deteriorate after Vim-HFS applied for essential
tremor (Hwynn et al., 2011). The tolerance effect [habituation
of tremor suppression) that appears when setting Vim-HFS for
essential or PD tremor also points to important issues regarding
the pattern of stimulation (Kumar et al., 2003; Papavassiliou et al.,
2004; Barbe et al., 2011). The monomorph continuous pattern
of stimulation uselessly increases battery consumption, which
strongly impacts the overall cost of the therapy because of the
need for periodic internal pulse generator (IPG) replacements.
Moreover, the surgical procedure for IPG replacement, though
routinely performed, puts the patient at risk of complications,
especially of infections. In the end, the trial-and-error selec-
tion of the present DBS parameters for each patient is effective
because HFS almost immediately impacts PD motor symptoms.
However, other therapies utilizing DBS technology may not allow
such tuning (for instance, the beneficial effects of stimulation
can take weeks to appear in dystonia or obsessive-compulsive
disorders). It seems inappropriate to apply the same pattern
of stimulation regardless of the state of wakefulness, regardless
of whether the patient is at rest or active, lying still or walk-
ing, speaking or being silent. Nevertheless, the monomorph type
of stimulation has now been offered to patients for over 25
years.
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All these limitations are strongly linked to the disproportional
signal amplitude and the open-loop nature of the stimulation
signal. It therefore, appears to be worth testing other types or
modes of delivering the stimulation, to improve the outcome of
HFS. The next two sections present recent theoretical or exper-
imental advances in that direction. We distinguish two families
of advanced DBS: those that rely on a mathematical model
of the dynamics involved, and those that do not. Most of the
approaches presented below exploit measurements on cerebral
activity (closed-loop stimulation). We start by classifying the lat-
est advances in closed-loop DBS in terms of the nature of the
mathematical model they rely on (if any), and then detail the
strategy they employ to optimize the treatment.

The role of computational models in advanced DBS strategies
Mathematical models recently used to develop closed-loop DBS
strategies can be classified into five categories: approaches that
require no prior knowledge of the dynamics involved, models
describing the phase evolution of the neuronal cells, strategies
derived from the Rubin and Terman model, models focusing on
the firing rates of the neuronal populations involved and a cate-
gory covering all other models. Below, we briefly describe these
categories before listing the main DBS strategies derived from
each of them. A more detailed perspective on the different mod-
eling approaches can be found in a recent survey (Rubin et al.,
2012).

Working without a mathematical model. This heuristic approach
usually results from medical considerations and is validated or
invalidated by in vivo or in vitro experimental trials. Simplicity
is the main reason for relying on non-computational models to
generate the stimulation signal. As underlined in Part I, the brain
dynamics involved in PD are complex and not yet well under-
stood: the absence of a mathematical model therefore, reduces the
uncertainty related to modeling assumptions. It may also involve
fewer computational resources, thus, limiting the complexity of
the embedded stimulation device, enhancing its reliability and
lowering energy consumption.

Several approaches not relying on brain dynamics model have
been reported in the literature. Closed-loop, multi-electrode array
stimulation of neurons in culture reduces coherent bursting activ-
ity (Wagenaar et al., 2005). In vivo, in MPTP-treated monkeys, a
train of stimuli applied in the GPi each time a spike is detected
in the reference structure (primary motor cortex M1) successfully
suppresses clinical symptoms (Rosin et al., 2011). Non-invasive
closed-loop transcranial alternating current stimulation delivered
over the motor cortex at tremor frequency has also been shown to
reduce peripheral tremor in PD patients (Brittain et al., 2013).

Phase models and synchronization. These closed-loop DBS
approaches focus on the phase dynamics of the neurons of inter-
est. They typically consider periodically spiking neurons. The
evolution of their rhythm thus, results from their interaction
with other neurons. From a mathematical viewpoint, the dynam-
ics of such neurons is characterized by an attractive limit cycle.
The shape of the limit cycle can be quite complicated for phys-
iological models, thus, hampering the mathematical tractability,

in particular for large interconnected populations. The instanta-
neous state of each neuron along this limit cycle is represented
by a phase that evolves with time [see (Ermentrout and Terman,
2010; Izhikevich, 2010) for an introduction to the dynamics of
periodically spiking neurons and their synchronization proper-
ties]. This phase thus, constitutes a simple abstraction of the
neuron rhythm, and is well suited to synchronization anal-
ysis, which probably explains its success in DBS approaches.
When the neuron limit cycle can be likened to a circle, the
dynamics governing the phase boils down to the Kuramoto
oscillator (Figure 5), which is well documented in the Physics
community.

Several works propose innovative closed-loop DBS signals
based on this simplified model of phase dynamics. The objec-
tives of each of these contributions can roughly be classified into
three categories: the approaches aiming at a desynchronization of
the neuronal population (Hauptmann et al., 2005b; Rosenblum
et al., 2006; Pyragas et al., 2007; Tukhlina et al., 2007; Danzl et al.,
2009; Pfister and Tass, 2010; Franci et al., 2011; Lysyansky et al.,
2011), those imposing inhibition (Lysyansky et al., 2011; Franci
et al., 2012), and those imposing a prescribed (non-pathological)
spatiotemporal pattern on the neuronal population (Liu et al.,
2011). Most of these studies are of a theoretical nature and still
need experimental validation. A notable exception is (Tass et al.,
2012), which provides experimental evidence that phase desyn-
chronization yields not only acute but also long-lasting motor
improvements in MPTP monkeys.

The model of Rubin and Terman. Rubin and Terman introduced
a computational model that reproduces some of the phenomena
observed in PD and under the effect of HFS (Rubin and Terman,
2004) (Figure 6). In this model, the GPe receives afferent con-
nections from the striatum and the output of the interconnected
STN/GPe loop impacts on thalamo-cortical loop activity via the
GPi. A fundamental ingredient of their work is a single-neuron
model (Terman et al., 2002) that reproduces the behavior of STN,
GPe, GPi or thalamo-cortical neurons (different parameters are
used for each type of neuron). Then, in each of these regions,
several neurons are simulated and interconnected to each other
by a synaptic connection model. The whole network can then be
simulated in different scenarios (healthy, Parkinsonian and under
STN-DBS). In each of these situations, the results obtained from
the simulations are coherent with the observations made in the
corresponding clinical cases.

Simulations show that during HFS, the rhythmic firing of GPi
neurons is replaced by a tonic firing that has a lower impact
on the activity of thalamo-cortical relay neurons. This impact is
studied using a phase-plane analysis of the dynamics of thalamo-
cortical cells. Of course, the question is whether the conclusions
of such simulations remain true if the number of neurons,
their parameters, or the network interconnections are changed
(Pascual et al., 2006). Nevertheless, this theoretical work inspired
several authors to develop a suitable control objective for closed-
loop DBS including the optimization of the DBS waveform (Feng
et al., 2007) and the development of a controllability analysis for
a given spatiotemporal pattern of GPi neurons (Liu et al., 2010,
2011).
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FIGURE 5 | Kuramato oscillator. Periodically spiking neurons are
characterized by the existence of an attractive limit cycle in their phase
portrait. A classical way to reduce the complexity of analyzing their rhythm is
to focus on their instantaneous position along this limit-cycle. Using
phase-response curves, this abstraction enables the neuron’s dynamics to be
reduced to a single scalar variable, referred to as its phase.

Phase models: For periodically spiking neurons whose limit cycle results from
a Hopf bifurcation, the limit cycle can be abstracted to a periodic circle. A
normal form of the resulting dynamics is known as the Andronov-Hopf
oscillator, which is ruled by the complex equation:

żi (t) =
(
jωi + 1 − |zi (t)|2

)
zi (t) +

N∑
i = 1

κij (zi (t) − zi (t)) ,

where ωi denotes the natural frequency of the i-th oscillator and κij are
interconnection gains between the N oscillators. When the neuronal
interconnection keeps the module of z(t) constant, the dynamics of the
resulting phase θi takes an even simpler form, known as the Kuramoto
oscillator (Kuramoto, 1984):

θ̇i (t) = ωi +
N∑

i = 1

κij sin
(
θj (t) − θi (t)

)

Such phase dynamics have been extensively used in the literature to predict
synchrony onset in a neuronal population and to derive closed-loop
stimulation strategies (Pyragas et al., 2007; Tukhlina et al., 2007;
Omel chenko et al., 2008; Franci et al., 2011, 2012).

Firing-rate models. Some studies focus on analyzing the mech-
anisms underlying pathological oscillations (Gillies et al., 2002;
Leblois et al., 2006; Nevado Holgado et al., 2010; Pavlides et al.,
2012; Pasillas-Lépine, 2013). They are based on firing-rate models
that quantify the state of excitation of different basal ganglia pop-
ulations, using the formalism introduced by Wilson and Cowan
(1972). These models are composed of a small number of ordi-
nary differential equations, for which a stability analysis can be
carried out. Interconnection strength and delays may compro-
mise the stability of the network, thus, generating pathological
oscillations. There have only been preliminary theoretical studies
of the possibility that these models can be exploited for closed-
loop DBS purposes (Grant and Lowery, 2013; Pasillas-Lepine
et al., 2013). Even though we are not aware of any experimentally-
validated closed-loop DBS schemes based on such models, this

setting seems well suited to an approach using tools from control
theory.

Stochastic models. Neuronal activity is modeled by different types
of stochastic process in order to mimic regular, irregular, random
and bursting thalamic neurons. Models are exploited to optimize
the performance of DBS (Basu et al., 2010; Santaniello et al., 2011;
Wilson et al., 2011).

Different strategies for closed-loop DBS
In addition to any models they may rely on, advanced DBS strate-
gies may be classified according to the strategy they follow in order
to counteract motor symptoms. We next review the prominent
strategies that have been followed so far. Table 2 summarizes this
comparative analysis.
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FIGURE 6 | Model of Rubin and Terman. This scheme represents the
synaptic interconnections, both within the basal ganglia and between their
afferent and efferent anatomical structures. This type of circuit
representation has generated several basal ganglia models, both at the
microscopic and at the mesoscopic scales. Microscopic models: Neural
activity is described at the level of each neuron. Following the approach of
Hodgkin and Huxley (1952), the dynamics of the membrane voltage Vi (t)
associated with the i-th neuron is described by a conductance model

Cm
dVi (t)

dt
= gκn4

i (t)
(
EK − Vi (t)

) + gNam3
i (t)hi (t)(ENa − Vi (t))

+ gL(EL − Vi (t)) +
n∑

j = 1

κij I
Syn
ij (t) + IExt

i (t)

where the variables ni (t), mi (t), and hi (t) describe the opening-closing
dynamics of different ion channels. In the work (Rubin and Terman, 2004),
the parameters that appear in such conductance models are identified for
the thalamus, the STN, the GPe, and the GPi. With these parameters in
hand, the influence of (open-loop) DBS on model behavior can be analyzed.
The conclusion of Rubin and Terman is that the effect of DBS on the
STN/GPe/GPi network restores a normal interaction between the cortex
and the thalamus, by breaking the pathological patterns generated by the
STN/GPe interconnection. Mesoscopic models: Neural activity is described
at the level of small neural populations; for example, the region of the
sub-thalamic nucleus that is activated by a particular type of movement.
Following the approach of Wilson and Cowan (1972), the activity of the i-th
population is characterized by its firing rate ri (t), which satisfies the equation

τi
dri (t)

dt
= −ri (t) + Fi

⎛
⎝∑

j ∈ E

κij rj (t − δij ) −
∑
j ∈ E

κij rj (t − δij ) + IExt
i (t)

⎞
⎠

where E and I are the set of excitatory and inhibitory populations,
respectively. The sigmoid function Fi , called the activation function,
characterizes the degree of excitation of the i-th population as a function of
the inputs that it receives from all the other populations. (Nevado Holgado
et al., 2010) used this equation to derive a model of the STN/GPe network,
with E = {Ctx, STN} and I = {Str, GPe}. In this model, the interconnection
delays δij play a central role in the mechanism that generates pathological
beta-band oscillations.

Adaptive and on-demand stimulation. This class of DBS
strategies involves automatic tuning of HFS parameters, based
on physiological measurements (adaptive DBS), or detection
of a pathological situation and activation of the HFS sig-
nal in consequence (on-demand DBS). The electrophysiolog-
ical measurements used to adapt or trigger the stimulation
are typically local field potential (LFP) recordings, but can
also be single-cell recordings (Rosin et al., 2011) or surface
recordings (Graupe et al., 2010). The parameters automati-
cally tuned by these approaches are the frequency, amplitude

and cyclic ratio of HFS (Leondopulos, 2007; Santaniello et al.,
2011).

The DBS signal can be elaborated based on LFP measurements,
after signal processing to reduce noise and remove stimulation
artifacts has been performed (Marceglia et al., 2007). A train
of stimuli applied in the GPi, 80 ms after the detection of a
spike within the primary motor cortex M1 of MPTP primates,
efficiently reduces the GPi spike-rate as well as pathological oscil-
lations (Rosin et al., 2011). It also allows stimulation at a much
lower frequency (30 Hz instead of 130 Hz). In other cases, LFP
recordings from the electrode used for HFS automatically tune
HFS parameters using stochastic processes based on experimental
data to model regular, irregular, random and bursting thalamus
neurons (Santaniello et al., 2011). The automatic adaptation of
the stimulation parameters is guided by the objective that the
stimulated population follows a prescribed (healthy) reference
LFP. In Little et al. (2013), LFP measurements in the STN are
made from the stimulation electrode itself. The trigger mecha-
nism that initiates stimulation pulses is tuned to detect changes
in beta power that occur on a short time scale (<1 s), raising the
possibility that fluctuations in beta power, rather than its average
amplitude, are of greatest importance in PD pathophysiology.

All these strategies lead to improvements, both from the phys-
iological and from the energetic point of view. On-demand DBS
is beneficial in terms of energy consumption, since the stimu-
lation signal is applied only when needed. Adaptive DBS is also
more parsimonious than traditional HFS because the amplitude
of the applied signal is usually smaller. From a medical point
of view, both on-demand and adaptive strategies are likely to
be more physiologically respectful, because the parameters are
tuned to improve efficiency, and/or because the stimulation sig-
nal is applied less often than for classical HFS. Nonetheless, these
strategies continue to exploit the square-shaped, monomorph
DBS signals that have proven efficient since the invention of DBS,
and do not allow more physiologically-inspired signal shapes
to be used. They thus, limit the potential benefit offered by
closed-loop DBS.

Delayed and multi-site stimulation. A second family of DBS
approaches consists in providing a stimulation signal delayed
in time. In most studies, this strategy is coupled with multi-
site stimulation using several stimulation electrodes. The aim of
the delay is to alter synchronization by a superposition of sinu-
soidal signals that are out of phase and cancel each other out at
the measurement location. The measurement (LFP recording) is
taken from the stimulated population or from its afferent or effer-
ent structures (Hauptmann et al., 2005a). Several protocols are
explored and performances are compared to each other and to
standard HFS via numerical simulations. The authors assume that
the pathological synchronization is produced by glutamatergic
synaptic interactions between STN neurons. Subsequent studies
in this direction emphasize either the multi-site (Omel chenko
et al., 2008; Lysyansky et al., 2011) or the delay aspects of the
problem (Rosenblum et al., 2006; Batista et al., 2010). Multisite
stimulation efficiency finds its roots in the synaptic plasticity of
the stimulated neuronal population (Pfister and Tass, 2010). This
should provide more long-lasting motor symptom reduction, as
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Table 2 | Summarized comparison of closed-loop DBS strategies according to nature of approach, underlying mathematical model (if any), any

experimental validation yielded, and overall type of tools (mathematics or simulations) used.

Approach Model Experimental

validation

Analysis tools References

ADAPTIVE AND ON-DEMAND

On-demand – MPTP primates – Rosin et al., 2011

On-demand – PD patients – Graupe et al., 2010

On-demand – PD patients – Marceglia et al., 2007

On-demand – PD patients – Little et al., 2013

Adaptive Conductance-based – Artificial neural
networks

Leondopulos, 2007

Adaptive Conductance-based – Simulations Santaniello et al., 2011

Adaptive Rubin and Terman – Optimization Feng and Fei, 2002

DELAYED AND MULTI-SITE

Delayed and multi-site Conductance-based MPTP primates in
Tass et al. (2012)

Systems theory in
Pfister and Tass
(2010)

Hauptmann et al., 2005b

Delayed and multi-site Phase dynamics – Systems theory Omel chenko et al., 2008

Multi-site Phase dynamics – Simulations Lysyansky et al., 2011

Delayed Phase dynamics – Systems theory Rosenblum and Pikovsky, 2004

PROPORTIONAL, DERIVATIVE, AND INTEGRAL FEEDBACK

Proportional and/or multi-site – Culture of cortical
neurons

– Wagenaar et al., 2005

Proportional, PID Phase dynamics – Systems theory Pyragas et al., 2007; Zheng
et al., 2011

Nonlinear PID Rulkov model – Systems theory Tukhlina et al., 2007

Filtered proportional Hindmarsh-Rose – Simulations Luo et al., 2009

Proportional Phase dynamics – Systems theory Franci et al., 2011

Filtered proportional Firing rates dynamics – Systems theory Pasillas-Lepine et al., 2013

OPTIMAL CONTROL

Optimization Rubin and Terman – Optimization Feng and Fei, 2002

Optimal control Conductance-based – Phase response curve Danzl et al., 2009

experimentally shown in MPTP monkeys (Tass et al., 2012). From
an experimental point of view, the multi-electrode approach
explored with success in Wagenaar et al. (2005) can also be
included in this category of control methods.

Stimulation based on proportional, integral and derivative con-
trol policies. This class of closed-loop DBS exploits real-time
LFP measurements to elaborate the stimulation signal using
tools from control engineering (Figure 7). The stimulation sig-
nal is proportional to the recorded LFP or additionally involves
dynamic features (such as the LFP integral or derivative). In
cultured neurons showing synchronized bursting activity, when
the number of available electrodes is limited, the best results
are obtained by closed-loop, proportional, firing-rate control
(Wagenaar et al., 2005).

The desynchronizing properties of proportional feedback are
also clearly shown using a phase model (Pyragas et al., 2007).
They explore two approaches. The first (more theoretical) ana-
lyzes the effects of stimulating with a proportional-derivative
mean-field feedback, which desynchronizes with an approxima-
tion of the system’s low order dynamics (first modes of the
Fourrier series). The second (based on numerical simulations)

considers a more sophisticated model, namely a set of van
der Pol oscillators. In this second approach, an integral term
is added to the proportional-derivative feedback. Other stud-
ies rely on phase models. The mean-field feedback is applied
using a particular resonant filter (Tukhlina et al., 2007; Luo
et al., 2009) or a purely proportional feedback (without deriva-
tive terms) is analyzed with a finite-dimensional model, using
an approach based on Lyapunov functions (Franci et al.,
2011, 2012). The model of Rubin and Terman is exploited in
Leondopulos (2007), Liu et al. (2011). Recent theoretical work
(Pasillas-Lepine et al., 2013) suggests that a DBS signal propor-
tional to the recorded STN firing rate is enough to counteract
the STN-GPe pacemaker effect in beta oscillations generation,
despite possible inherent delays in measurement or stimula-
tion. All these approaches give convincing theoretical results
(Figure 8). However, the gap between theoretical analysis and
the real neurophysiology of the basal ganglia remains to be
explored.

Optimal control strategies. This area of control theory aims at
finding a control law for a given system in order to fulfill a certain
optimality criterion defined by a cost function involving the state
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of the system, the control signal or any other relevant variable.
The optimal control policy is designed with the aim of minimiz-
ing the selected cost function. Optimal control is a very tempting
strategy for DBS. The option of including the stimulation signal

FIGURE 7 | Illustration of a strategy of closed-loop DBS relying on the

measurement y of the mean-field of the targeted neuronal population.

Stimulation input u is dynamically established based on measurement y,
and takes the form u = G(s)y, where G(s) denotes a filter that can either be
proportional (G(s) = K ) such as in Wagenaar et al. (2005); Leondopulos
(2007); Franci et al. (2011, 2012); Liu et al. (2011), include integral or
derivative terms such as in Pyragas et al. (2007), or rely on more involved
filtering such as in Tukhlina et al. (2007).

in the cost function can lead to improvements in terms of energy
consumption. The formulation of the control objective as being
to minimize a cost function conveniently fits most DBS con-
trol objectives (neuronal de-synchronization, inhibition, and beta
band oscillation reduction).

The work of Feng et al. (2007) provides a strong basis for
the development of optimal control policies for closed-loop
DBS. It proposes an optimization procedure to identify effi-
cient DBS waveforms. The proposed cost function accounts for
neuronal response correlation (or any measure of pathologi-
cal criticality), as well as the intensity of the stimulation sig-
nal. This cost function is minimized via a genetic algorithm.
Even though the selected optimal DBS waveform is then applied
in open loop, the proposed cost function is likely to lead to
closed-loop developments in the future, by relying on an on-line
optimization.

Another approach that exploits optimal control to develop
closed-loop DBS strategies is presented in Danzl et al. (2009).
The authors propose a strategy to control the spike timing of a
neuron by relying on a phase model. The control input is opti-
mal in terms of input energy, and guarantees a charge balance
over a stimulation period. It can be used either to impose a
prescribed firing pattern or to desynchronize a neuronal pop-
ulation. No such DBS strategies have yet been experimentally
validated.

FIGURE 8 | Possible behaviors of a network of phase oscillators. Top left:

Phase-locking (all phase differences tend to a constant value). Top right: Full
desynchronization (all phases drift away from one another). Bottom left:

Inhibition (all phases tend to a constant value, no oscillations persist).
Bottom right: Practical phase-locking (phase differences do not tend to a
constant value, but instantaneous frequencies remain close to each other).

Frontiers in Systems Neuroscience www.frontiersin.org December 2013 | Volume 7 | Article 112 | 13

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Carron et al. Toward new types of DBS

CONCLUSION
DBS has now been used for more than 25 years to treat movement
disorders. In recent years, its indications have been extended to
other clinical areas such as psychiatric diseases, pain or epilepsy.
DBS has been empirically performed with a view to inhibiting an
overactive or dysrythmic focus, but without a clear understand-
ing of its mechanisms of action. Here we present data showing
that DBS exerts distal effects via ortho- and antidromic stimula-
tion of axons, in particular myelinated axons, running close to the
stimulated site. The resulting effect is the reduction of abnormal
patterns in the afferent and target networks of the stimulated site.

In functional neurosurgery, there is a tendency to ascribe
the clinical failures or suboptimal results of DBS to misplace-
ment or suboptimal location of the active contacts of the lead.
But better clinical outcomes have also been obtained by exper-
imentally changing the stimulation pattern. Apart from recent
developments allowing the so-called interleaving mode to be
used, with the application of two concomitant different settings of
stimulation, current electronic devices only allow a monomorph
square-shaped continuous stimulation to be delivered, regardless
of the underlying neuronal activity. Such an invariant stimula-
tion pattern can lead to tolerance and habituation, and thus,
loss of DBS efficacy. DBS, whose availability remains limited to
a small number of centers in developed countries, is still an
expensive therapy. It is bound to be challenged in the future by
lesion procedures, which can now be performed non-invasively.
Demonstrating DBS superiority over alternative methods may
well entail altering the way of delivering the stimulation, with
likely subsequent improvements.

Both adaptive and on-demand strategies seem very promis-
ing to cost-effectively desynchronize oscillatory pathological pat-
terns as well as delayed multi-site stimulation, though this latter
approach requires, by definition, the insertion of several leads and
thus, a slightly increased associated surgical risk. These differ-
ent strategies will have to be evaluated and compared in order
to determine the optimal strategy for each specific indication.
Theoretical advances through the proportional or dynamic elab-
oration of DBS signals based on LFP measurements and optimal
control strategies are encouraging, but will still require experi-
mental validation.

All the above data plead for a more refined electronic system,
incorporating multiple programs of stimulations and feedback
information from the target. Open-loop DBS with a square-
shaped monomorph pattern should now be regarded as too
crude and outdated. There is little doubt that future attempts at
closed-loop strategies for DBS will prove helpful and beneficial to
patients. Additionally, such strategies will enable us to gather vast
quantities of data, shedding light on how DBS works as well as on
how certain brain areas function and dysfunction.
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