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ABSTRACT

In this communication, a fast reconstruction algorithm is
proposed for fluorescence blind structured illumination mi-
croscopy (SIM) under the sample positivity constraint. This
new algorithm is by far simpler and faster than existing solu-
tions, paving the way to 3D and real-time 2D reconstruction.

Index Terms— Super-resolution, fluorescence microscopy,
speckle imaging, near-black object model, proximal splitting.

1. INTRODUCTION

Classical wide-field fluorescence microscopy aims at imaging
the fluorescence density ρ emitted from a marked biological
sample. In the linear regime, the recorded intensity is related
to ρ via a simple convolution model [9]. If one proceeds to
M distinct acquisitions, the dataset {ym}Mm=1 is given by

ym = h⊗ (ρ× Im) + εm m = 1 · · ·M (1)

where ⊗ is the convolution operator, h is the point-spread
function (PSF), Im is the m-th illumination intensity pattern,
and εm is a perturbation term accounting for (electronic)
noise in the detection and model errors. The final resolu-
tion of the microscope is ultimately limited by the optical
transfer function (OTF) whose cutoff frequency is fixed by
the emitted wavelength and by the numerical aperture of
the microscope objective. However, if any frequency com-
ponent above this limit cannot be measured with uniform
illuminations, structured illuminations can be used to shift
high-frequency components of the object into the OTF sup-
port [11]. Such a strategy results in the standard structured

illumination microscopy (SIM) that resorts to harmonic illu-
mination patterns to achieve super-resolution reconstruction.
Because SIM uses the illumination patterns as references,
strong artifacts are induced if the patterns are not known with
sufficient accuracy [14, 2]. From a practical viewpoint, such
a condition is very stringent and restricts standard SIM to thin
samples or to samples with small refraction indices [14].

The Blind-SIM strategy [14] has been proposed to tackle
this problem, the principle being to retrieve the sample flu-
orescence density without the knowledge of the illumination
patterns, thereby extending the potential of SIM. In addition,
this strategy promotes the use of speckle illumination patterns
instead of harmonic illumination patterns, the latter standard
case being much more difficult to generate. From the method-
ological viewpoint, Blind-SIM relies on the simultaneous re-
construction of the fluorescence density and of the illumina-
tion patterns. More precisely, in [14], joint reconstruction
is achieved through the iterative resolution of a constrained
least-squares problem based on conjugate gradient iterations.
However, the computational time of such a scheme (as re-
ported in [14, Supplementary material]) clearly restricts the
applicability of the resulting joint blind-SIM strategy. In this
paper, the implementation issues of joint Blind-SIM are revis-
ited and drastically simplified: a much improved implementa-
tion is proposed, with an execution time decreased by several
orders of magnitude. Moreover, it can be highly parallelized,
opening the way to real-time reconstructions.

A few other contributions advocated the use of speckle
patterns for super-resolved imaging in fluorescent [13, 15] or
photo-acoustic [4] microscopy. Because these strategies are
derived from the statistical modeling of the speckle, the re-
sulting super-resolution strongly rests on the random nature
of the illumination patterns [12]. In contrast, this communica-
tion stresses that the super-resolution mechanism behind joint
blind-SIM relies on a sparsity and positivity constraint en-
forced by the illumination pattern. As a result, super-resolved
reconstructions can be obtained with a wide range of illu-
minations patterns (even with deterministic illuminations) as
soon as they cancel-out “ frequently” the object.

2. BLIND-SIM PROBLEM REFORMULATION

In the sequel, we focus on a discretized formulation of the ob-
servation model (1). Solving the two-dimensional (2D) joint
Blind-SIM reconstruction problem is equivalent to finding
a joint solution (ρ̂, {Îm}

M
m=1) to the following constrained



minimisation problem [14]:

min
ρ,{Im}

∑M

m=1 ‖ym −Hdiag(ρ) Im‖
2 (2a)

subject to
∑

m Im = M × I0 (2b)

and ρn ≥ 0, Im;n ≥ 0, ∀m,n (2c)

with H ∈ RN×N the 2D convolution matrix built from the
discretized PSF. We also denote ρ = vect(ρn) ∈ RN the
discretized fluorescence density, ym = vect(ym;n) ∈ RN the
m-th recorded image, and Im = vect(Im;n) ∈ RN the m-th
illumination with spatial mean I0 = vect(I0;n) ∈ RN . Note
that (2) is a biquadratic problem, which was tackled in [14]
by a rather complex iterative scheme. However, problem (2)
has a very specific structure that can benefit from a specific
optimization strategy, which is explained hereafter.

2.1. A reformulation of the joint blind-SIM strategy

Let us first consider problem (2) without the equality con-
straint (2b). It then becomes equivalent to M quadratic min-
imisation problems

minqm
‖ym −Hqm‖

2 (3a)

subject to qm ≥ 0 (3b)

with qm := vect(ρn × Im;n). Each minimisation problem
(3) can be solved in a simple and efficient way (see Sec. 3),
hence providing a set of global minimizers {q̂m}Mm=1. Al-
though the latter set corresponds to an infinite number of so-
lutions (ρ̂, {Îm}Mm=1), the equality constraint in (2b) defines
a unique solution such that diag(ρ̂)× Îm = q̂m for all m:

ρ̂ = diag(I0)
−1 q (4a)

∀m Îm = diag(ρ̂)−1 q̂m (4b)

where

q := 1
M

∑
m q̂m = diag(ρ̂) 1

M

∑
mÎm = diag(ρ̂) I0.

Moreover, the following implications hold:

I0;n > 0, and q̂m;n > 0,

=⇒ Îm,n ≥ 0 and ρ̂n ≥ 0 ∀n,m.

Because we are dealing with intensity patterns, the condition
I0 ≥ 0 is always met, hence ensuring the positivity of both
the density and the illumination estimates. We also note that a
solution defined by (4) exists as long as I0;n 6= 0 and ρ̂n 6= 0,
∀n. The first condition is met if the sample is illuminated ev-
erywhere, which is an obvious minimal requirement. For any
pixel sample such that ρ̂n = 0, the corresponding illumina-
tion Îm;n is not defined; this is not a problem as long as the
fluorescence density ρ is the only quantity of interest.

2.2. Toward a penalized joint blind-SIM strategy

Whereas the mechanism that conveys super-resolution with
known structured illuminations is well understood (see [10]
for instance), the super-resolution capacity of joint blind-SIM
has not been characterized yet. It can be made clear, however,
that the positivity constraint (2c) plays a central role in this
regard. Let H+ be the pseudo-inverse of H [8, Sec. 5.5.4].
Then, any solution to the problem (2a)-(2b) [i.e., without pos-
itivity constraints] reads

ρ̂ = diag(I0)
−1(H+y + q⊥) (5a)

Îm = diag(ρ̂)−1(H+ym + q⊥
m), (5b)

with y = 1
M

∑
m ym, and q⊥ = 1

M

∑
mq⊥

m where q⊥
m is

an arbitrary element of the kernel of H , i.e. with arbitrary fre-
quency components above the OTF cutoff frequency. Hence,
the formulation (2a)-(2b) has no capacity to discriminate the
correct high frequency components, which means that it has
no super-resolution capacity. Under the positivity constraint
(2c), we thus expect that the super-resolution capacity of joint
blind-SIM depends on the fact that each illumination pattern
Im activates the positivity constraint on qm in a frequent man-
ner. Such adequate illumination patterns can be easily gener-
ated as speckle images, as proposed by [14]. In contrast, stan-
dard SIM rests upon the amplitude modulation of the object,
i.e., it only needs broad-band spectra illumination patterns.

Let us stress that each problem (3) is convex quadratic,
and thus admits only global solutions, which in turn provide
global solutions to problem (2), when recombined according
to (4a)-(4b). On the other hand, problems (3) may not admit
unique solutions, since ‖ym −Hqm‖

2 is not strictly convex
in qm. A simple way to enforce unicity is to slightly mod-
ify (3) by adding a strictly convex penalization term. We are
thus led to solving

minqm≥0

∑M

m=1 ‖ym −Hqm‖
2 + ϕ(qm). (6)

Another advantage of such an approach is that ϕ can be cho-
sen so that robustness to the noise is granted and/or some
expected features in the solution are enforced. In particular,
the analysis conveyed above suggests that favoring sparsity
in each qm is suited since speckle or periodic illumination
patterns tend to frequently cancel or nearly cancel the com-
ponents qm;n within the product image qm. For such illumi-
nations, the Near-Black Object introduced in Donoho’s sem-
inal paper [6] is an appropriate modeling and, following this
line, we found that the standard separable ℓ1 penalty provides
super-resolved reconstructions

ϕ(qm;α, β) := β||qm||
2 + α

∑
n |qm;n|, (7)

with α ≥ 0 and β > 0 some hyper-parameters. With prop-
erly tuned (α, β), our penalized joint Blind-SIM strategy is
expected to bring super-resolution if “adequate” illumination
patterns are used, i.e., they need to locally cancel out the im-
aged sample and their average I0 has to be known.
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m
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Fig. 1. Right lower quadrant of the (100 × 100 pixels) true
fluorescence pattern (a), positive deconvolution of the aver-
aged speckle patterns (b), and penalized joint blind-SIM re-
constructions with M = 9 periodic (c) and M = 200 speckle
patterns (d). The graduations are in λ. The dashed (resp.
solid) lines in (a) corresponds to the spatial frequencies trans-
mitted by the OTF support (resp. twice the OTF support).

2.3. Numerical illustration

For illustrative purposes, the numerical blind-SIM experi-
ment presented in [14] is now considered. The ground-truth
consists in the 2D ’star-like’ fluorescence pattern depicted
in Fig. 1(a). The M collected images are simulated follow-
ing (1) with the PSF h given by the Airy pattern that reads in
polar (r, θ) coordinates

h(r, θ) =

(
J1(r k0 NA)

k0 r

)2
k20
π

(8)

where J1 is the first order Bessel function of the first kind, NA
is the objective numerical aperture set to 1.49, and k0 = 2π/λ
is the free-space wavenumber with λ the fluorescence emis-
sion and the excitation wavelength. The image sampling step
for all the simulations is set to λ/12. The illumination set
{Im}

M
m=1 consists either in M = 9 periodic patterns with

spatial frequency equal to 2.4/λ, or in M = 200 speckle pat-

terns with spatial correlation given by (8). Finally, the col-
lected images are corrupted with Gaussian noise. The stan-
dard deviation for a single acquisition was chosen so that the
total SNR is 40 dB for both the periodic and speckle exper-
iments. The subproblem hyperparameters were empirically
set to (α = 0.3, β = 10−4) for both the periodic and the
speckle illuminations. The reconstructions of Fig. 1(c)-(d)
clearly show a super-resolution effect similar to the one ob-
tained in [14]. In particular, this simulation corroborates the
empirical statement that M ≈ 10 harmonic illuminations and
M ≈ 200 speckle illuminations produce almost equivalent

super-resolved reconstructions. Obviously, imaging with ran-
dom speckle patterns remains an attractive strategy since it is
achieved with a very simple experimental setup, see [14] for
details. The blind-SIM reconstructions shown in Fig. 1 were
produced with 1000 iterations of the algorithm proposed in
Sec. 3; the total computation time for the processing of the
(M = 200) speckle and (M = 9) harmonic patterns is 360
and 17 seconds with a standard Matlab implementation on a
regular computer. On the other hand, let us remark that our
strategy requires an explicit tuning of the parameters α and
β, whereas the constrained conjugate gradient approach pro-
posed in [14] is regularized through the number of iterates.
Since adequate values of α and β will depend mostly on ex-
perimental parameters (PSF, noise and signal levels, number
of views), a simple calibration step seems possible.

3. A NEW OPTIMIZATION STRATEGY

We now consider the algorithmic issues involved in the con-
strained optimization problem (6)-(7). For the sake of sim-
plicity, the subscript m in ym and qm are dropped, however,
the reader should keep in mind that the algorithm presented
in the next section only aims at solving one of the M sub-
problems involved in the final joint Blind-SIM reconstruction.
At first, let us note that our minimization problem (6)-(7) is
an instance of the more general statement

minq∈RN [f(q) := g(q) + h(q)] (9)

where g and h are closed-convex functions that may not share
the same regularity assumptions: g is supposed to be a smooth
function with a L-Lipschitz continuous gradient ∇g, but h
needs not to be smooth. Our penalized joint Blind-SIM prob-
lem hence takes the form of (9) with

g(q) = ||y −Hq||2 + β||q||2 (10a)

h(q) = α
∑

nφ(qn) (10b)

where φ : R→ R ∪ {+∞} is such that

φ(u) :=

{
u if u > 0.
+∞ elsewhere. (10c)

Constrained non-smooth optimization problems (9) can be
solved by a dedicated proximal iteration. For that purpose,
FISTA [3] is recognized as a fast and numerically efficient al-
ternative: let q(0) be a feasible initial-guess and ω(0) = q(0),
the FISTA update reads

q(k+1) ←− P
(
ω(k) − γ∇g(ω(k))

)
(11a)

ω(k+1) ←− q(k+1) + k−1
k+2

(
q(k+1) − q(k)

)
(11b)

with γ > 0 and P the proximity operator (or Moreau enve-

lope) of the function γh that is easily found from (10b-c)

P(ω) = vect (max{ωn − γα, 0}) . (12)
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Fig. 2. [Top] Harmonic joint blind-SIM reconstruction of the
fluorescence pattern achieved by the minimization of the cri-
terion (6) with 10, 50 or 1000 FISTA (abc) or PPDS (def)
iterations. [Bottom] Criterion value (log-log scale) as a func-
tion of the PPDS (plain) or FISTA (dot) iteration number. All
these simulations were performed with (α = 0.3, β = 10−4).

Global convergence of (11) is granted provided that the step-
size is such that 0 < γ < 1/L with L = 2 (λmax(H

tH) + β)
where λmax(A) denotes the highest eigenvalue of the matrix
A. The decreasing rate achieved by f(q(k)) is O(1/k2),
which is a substantial gain compared to the O(1/k) rate of
the standard proximal iteration [3]. For our specific problem,
however, the convergence speed of FISTA is too low. Figure 2
gives an illustration of this issue: FISTA requires almost one
thousand iterations to converge. This is precisely the moti-
vation for the introduction of the preconditioned primal-dual

splitting (PPDS), a new algorithm that rests on the very ver-
satile splitting technique proposed in [5]. Due to space lim-
its, however, the comprehensive presentation of this iterative
strategy is not detailed. Let (τ, ρ, σ) be a triplet of positive
values, the PPDS iteration consists in a primal-dual update

that reads

q(k+1) ←− q(k) − ρτBζ(k) (13a)

ω(k+1) ←− ω(k) + ρ[P⋆(δ
(k))− ω(k)] (13b)

with ζ(k) := ∇g(q(k))+ω(k) and where the preconditioning

matrix B is chosen from the Geman and Yang semi-quadratic

construction [7], [1, Eq. (6)]

B :=
(
2HtH + 2β I/a

)−1
(14)

with a > 0 a free parameter. In the dual update (13b), we
noted δ(k) := ω(k) + σ(q(k) − 2τBζ(k)) and

P⋆(ω) = vect (min {ωn, α}) . (15)

The convergence of the sequence defined by (13) is granted
if some conditions are met for the parameters (ρ, τ, σ, a).
Within the convergence domain ensured by [5, Theorem 5.1],
the practical tuning of these parameters is somewhat tricky as
it may dramatically impair the convergence speed. An auto-

matic and efficient tuning strategy ensuring convergence has
been devised; the PPDS reconstructions shown in Figure 2
were obtained with this tuning. The interest of the proposed
strategy is that the iteration (13) can be easily implemented at
a low computational cost. Indeed, since ∇g is a linear func-
tion, the primal step (13a) can be transposed in the Fourier
domain, and it is easy to show that the computational burden
of the PPDS iteration is dominated by only one FFT/iFFT
pair. In other words, for our problem (10), FISTA and PPDS
share the same complexity per iteration.

4. CONCLUSION

The reformulation presented in Sec. 2 unveiled some of the
super resolution properties of the joint reconstruction problem
introduced in [14]. We feel however that this joint blind-SIM
approach deserves further investigations, both from the the-
oretical and the experimental viewpoints. In particular, one
expected difficulty arising in the processing of real data sets
is the strong background induced in the focal plane by the
out-of-focus light. This phenomenon prevents the local ex-
tinction of the excitation intensity, hence destroying the ex-
pected super-resolution in joint blind-SIM. The modeling of
this background with a very smooth function is possible [16]
and will be considered. A different approach would be to
solve the reconstruction problem in its 3D structure, which
is numerically challenging, but remains a mandatory step to
achieve 3D reconstructions. Finally, the PPDS strategy intro-
duced in this communication is a promising optimization tool
that will be tested with other applications. In particular, the
deconvolution under a positivity constraint for the standard
SIM problem should be considered shortly.
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