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Abstract

We consider a call center with two classes of impatient customers: premium and regular

classes. Modeling our call center as a multiclass GI/GI/s +M queue, we focus on developing

scheduling policies that satisfy a target ratio constraint on the abandonment probabilities of

premium customers to regular ones. The problem is inspired by a real call center application in

which we want to reach some predefined preference between customer classes for any workload

condition. The motivation for this constraint comes from the difficulty of predicting in a quite

satisfying way the workload. In such a case, the traditional routing problem formulation with

differentiated service levels for different customer classes would be useless. For this new prob-

lem formulation, we propose two families of online scheduling policies: queue joining and call

selection policies. The principle of our policies is that we adjust their routing rules by dynami-

cally changing their parameters. We then evaluate the performance of these policies through a

numerical study. The policies are characterized by simplicity and ease of implementation.

keywords: call centers, queueing systems, abandonments, online scheduling policies

1 Introduction

A call center, or in general a contact center, is defined as a service system in which customer repre-

sentatives (agents or servers) serve customers (callers), over telephone, fax, email, etc. Managing a

call center is a diverse challenge due to many complex factors related to uncertain and time-varying

demand for service. In this paper we focus on a real-time problem, namely customer routing and

agent scheduling.

The routing problem is a control problem which has received a lot of attention as a call center

application. We consider here a V-model according to the canonical designs presented in Garnett

and Mandelbaum (2001). We assume that all agents are flexible enough to answer all requirements
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of service. However, we divide customers into two different classes according to their importance,

premium and regular customers. In addition, we assume that customers can abandon. It is natural

in practice that a waiting customer is willing to wait for only a limited time, and will hang up within

that time. Introducing abandonments in theoretical models is valuable, as ignoring abandonments

leads to overstaffing and pessimistic estimations of queueing delays, see Duder and Rosenwein

(2001). Garnett et al. (2002) show that models with and without abandonment tend to perform

differently, even if the abandonment rate is low. Models including abandonments are therefore

more realistic and will yield more accurate managerial insights.

Given a staffing level, our purpose is to develop control schemes for arrival calls and idle agents,

subject to satisfying a constraint related to the probabilities of being lost (probability to abandon).

We notice that the abandonment probability is one of the major indicators used in practice. Another

widely used indicator is the 80/20 rule where we stipulate that at least 80% of the customers should

wait less than 20 seconds. Our objective is to meet a target ratio constraint between the achieved

abandonment probabilities of the two customer classes. This problem formulation was inspired by

a real call center problem. The reason behind it is to translate a desired fairness between customer

classes. In our call center case, the abandonment of any class of customers is equivalent to a loss

of goodwill. Both classes are indeed valuable for the company with a particular preference to the

premium class. Having nearly no abandonments of the premium class and a lot of abandonments of

the regular one is not desirable. The call center would instead prefer to have more abandonments

of premium calls and fewer abandonments of regular ones. This is captured through a ratio of the

abandonment probabilities. The ratio would be typically between 0 and 1. A low value of this ratio

would translate to a strict preference of the company to premium calls. A ratio close to 1 would

however translate an equal preference between the two classes. A value in between would translate

a certain degree of preference.

In practice, managers traditionally handle this problem by separately setting for each customer

class a constraint on the probability to abandon. The drawback of such a formulation is that it

is too much dependent on some predicted workload. Once the actual workload deviates from the

predicted one, we are no longer able to meet the predefined performance constraints, and we could

well reach an undesired preference between customer classes. Indeed we often use static strict

priority rules, such as a static strict non-preemptive priority for one class over the other. So if the

workload is underestimated, most of the capacity of the system will be dedicated to premium calls.

We may then satisfy the performance constraint of premium calls, while having a heavily penalized

one for regular calls. However if the workload is overestimated, the performance of premium calls

will be very high and that of regular ones will not profit that much from the overcapacity.
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Several studies, notably Jongbloed and Koole (2001) and Avramidis et al. (2004), have shown

that the arrival process and the workload are hard to predict in call centers. A new formulation

of the routing problem using a target ratio constraint between the service levels of the two classes

would, as a consequence, be a better alternative. It allows to better control the different situations

which may occur (under- or overestimation of the workload). Satisfying the constraint ratio enables

to share as desired the capacity of the system between the two classes. In addition, this new

formulation generalizes the traditional one where we have a target abandonment probability for

each class.

We use online policies in order to reach our objective. An online policy is a discipline that is

continuously updated as customers arrive and are processed. The main advantage of our control

policies is that they require no information about the arrival processes in advance, i.e., the method

is data-driven. If fluctuations in workload occur, the capacity allocated between the two classes is

changed. The parameters of the policies are automatically adopted in such a way that the target

on the service levels is met.

We focus on developing simple and useful online routing policies that are based on priority

schemes. The provision of differentiated service levels often relies on the use of different priorities

between customers. Schrage and Miller (1966) showed that scheduling policies similar to those in

multiclass priority queues allow to achieve high performance measures, often nearly as good as those

under optimal policies. We derive various schemes for online assignment of customers to queues, as

well as for selection to service of waiting customers. The policies we propose are characterized to

be workconserving (non-idling), which is natural for large service systems such as call centers. A

policy is defined to be non-idling if there can be no idling servers when there are waiting customers.

In our opinion, the restriction does not decrease the usefulness of the analysis because, in practice,

Automatic Call Distributors (ACDs) do not often support idling policies, such as thresholds or

reservations policies. Under a threshold policy, customers are selected for service by following some

predefined rules that are based on the system state. Under a reservation policy, some servers are

only allocated to a given type of customers. This kind of policies would force one or more servers

to be idle while there are waiting customers.

This paper has three major contributions. The first contribution is the introduction of a new

class of call routing policies which are robust to changes in the workload. The second is the

analysis of the effect of scheduling policies on various performance measures which contributes to

the literature on multiclass queueing systems. The third contribution is to propose simple and

efficient scheduling policies that satisfy the target ratio constraint. This is especially important

because it is known that in practice a non-intuitive solution with a complex structure would never
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be used. The analysis yields quantitative insights, as well as useful principles and guidelines for

the control problem.

The rest of the paper is organized as follows. In Section 2 we review the literature related to our

work. In Section 3 we present the problem under consideration. Sections 3.1 and 3.2 are devoted

to formulate the call center model and to define the notations, respectively. Section 3.3 concretely

formulates the control problem. Section 3.4 gives some structural results that will help us later in

the understanding of the behavior of the scheduling policies. In Section 4 we develop two families

of online scheduling policies that allow to satisfy the target ratio constraint. The family of queue

joining policies is addressed in Section 4.1, and the family of call selection policies is addressed in

Section 4.2. In Section 5 we present and discuss simulation experiments of the proposed policies.

The paper ends with some concluding remarks and highlight some directions for future research.

2 Literature Review

There is an extensive and growing literature on call centers, and in general on contact centers. We

refer the reader to Akşin et al. (2007) for a survey of the recent literature on call center operations

management. The literature related to this paper spans mainly two areas. The first deals with

queueing systems with impatient customers. The second deals with the control of queueing systems

in general, and the control of the V-model in particular.

In the following, we highlight some of the literature with regard to the first area. Queueing

models incorporating impatient customers have received a lot of attention in the literature. To

underline the importance of the abandonment modeling in the call center field, the authors in

Mandelbaum and Zeltyn (2008) give some numerical examples that point out the effect of aban-

donment on performance measures. Brown et al. (2005) conduct an empirical study to characterize

the distribution of abandonment times. The literature on queueing models with abandonments

focuses especially on performance evaluation. We refer the reader to Ancker and Gafarian (1962),

Garnett et al. (2002), and references therein for simple models assuming exponential abandonment

times. Koole (2004) develops an algorithm for calculating tail probabilities of Cox distributions.

This can be useful to compute many performance measures in a queueing system with abandon-

ments. In Garnett et al. (2002), the authors study the subject of Markovian abandonments. They

suggest an asymptotic analysis of their model under the heavy-traffic regime. Their main result

is a relation between the number of agents, the offered load and system performance measures,

such as the probability of delay and the probability to abandon. This can be seen as an extension

of the results of Halfin and Whitt (1981) by adding abandonments. Whitt (2004) establishes the

Efficiency-Driven many-server heavy-traffic limits for a Markovian queue with abandonments and
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limited waiting line. Other papers assumed abandonments to follow a general distribution. Whitt

(2006) uses fluid models to approximate the steady state performance measures of queueing mod-

els with generally distributed interarrival, service and abandonment times. Other studies include

those by Baccelli and Hebuterne (1981), Brandt and Brandt (2002), Ward and Glynn (2003), Whitt

(2005), Avramidis et al. (2010), and references therein.

Let us now focus on the second area of literature close to our work, i.e., the control of queueing

systems. Scheduling policies have been studied in great depth within the context of queueing

systems. A scheduling policy, or a discipline of service, prescribes the order in which customers

are served. Randolph (1991) classifies scheduling policies into those using online schedule rules and

those using static schedule rules. Each of the above classes of policies can be further classified into

two major classes: agent scheduling and customer routing, see Garnett and Mandelbaum (2001) for

more details. In the following, we present results about scheduling policies under the framework of

V-models. Pekoz (2002) addresses the analysis of a multiserver non-preemptive priority queue with

exponentially distributed interarrival and service times. She finds and evaluates the performance

of an asymptotically optimal policy that minimizes the expected queueing delay for high priority

customers. Guérin (1998) presents a model without waiting queues. The model contains a multi-

server station, which receives low and high priority arrivals. He develops an admission policy for the

low priority customers such that the fraction of blocked high priority customers is bounded and he

analyzes the system under that policy. In the context of call centers, Gurvich et al. (2008) consider

a large-scale system under the V-design and characterize asymptotically optimal scheduling and

staffing schemes (as system load grows to infinity). The optimal scheduling and staffing schemes

minimize the staffing costs subject to satisfying quality of service constraints for the different

customer classes. Maglaras and Zeevi (2005) consider profit maximization for a loss system two-

class V-model with pricing, sizing, and admission control. Milner and Olsen (2008) explore the

role that service level constraints in outsourcing contracts play in settings where the contractor

firm has both contractual and non-contractual customers. Another paper that consider a similar

idea of contract and noncontract customers is Bhulai and Koole (2003). For a detailed survey of

relevant papers considering the optimal control of the V-model, we refer the reader to Gurvich

(2004). We finally refer the reader to Gurvich and Whitt (2008) and Dai and Tezcan (2008) for

recent references on online policies developed within an economic context.

3 Framework

In this section, we first describe the basic model of our call center. Second, we define the various

performance measures we are interested in. We then formulate the problem for which we want
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to propose the scheduling policies. Finally, we develop some structural results about the relation

between the performance measures under consideration and various scheduling policies.

3.1 Model Description

We model our call center as a queueing system with two customer classes: a premium customer

class A, and a regular one B. The model consists of two infinite queues, say queues 1 and 2, and

a set of s parallel, identical servers representing the set of agents. All agents are able to answer all

customer classes. The call center is operated in such a way that at any time, any customer can be

addressed by any agent. Upon arrival, a customer is addressed by one of the available agents, if

any. If not, the call joins one of the queues.

We consider two families of scheduling policies: queue joining and customer selection families.

We will describe in details the proposed policies among the two families in Section 4. In what

follows we describe their functioning in general. A policy belonging to the first family of queue

joining policies determines the rule of assigning customers upon arrival to one of the queues. Upon

arrival, a customer of any class can be sent to any queue. That is, each time an arrival A or B

enters the system, an individual decision is made as a function of the system state: assign this

new arrival to queue 1 or 2. In other words, we want to specify here that there is no an a priori

fixed rule of assigning for example all customers A to queue 1 and all customers B to queue 2. So

queue 1 or 2 may contain a mix of the two customer types. Finally note for this first family that

customers waiting in queue 1 have a non-preemptive strict priority over those in queue 2.

A policy belonging to the second family of customer selection policies determines at each service

completion which waiting customer class should start service. For this family, there is no fixed

priority between the two queues. Upon arrival, all customers A are sent to queue 1 and all customers

B are sent to queue 2. At each service completion, the server who has just become idle will choose

to serve one of the queues, or equivalently one of the customer classes. This decision is not static

and is dynamically made as a function of the system state. In other words, if it happens at some

times that we would like to improve the performance of class A, so an idle server would tend to

choose to serve customers waiting in queue 1 (customers A). The opposite is done if it happens

during other times that we would like to improve the performance of class B.

For both families of policies, customers waiting in a given queue, are served in the order of their

arrivals, i.e., under FCFS. Also, the priority rule between the queues is non-preemptive because it

is not common in call centers to interrupt the service of a customer and serve another one with a

higher priority.

Interarrival times and service times are assumed to be i.i.d. and follow a general distribution.
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In certain cases, we shall consider the exponential distribution for successive service times. The

mean service time rates of customer classes A and B are µA and µB, respectively. In addition,

we let the customers be impatient. After entering the queue, a customer waits a random length

of time for service to begin. If service has not begun by this time she will abandon (leaves the

queue). Patience times of classes A and B are assumed to be i.i.d. and exponentially distributed

with rates γA and γB, respectively. Assuming identical distribution of patience within each class,

independently from their position in the queue, seems to be a plausible assumption for call centers,

see Gans et al. (2003). Indeed, the tele-queueing experience in call centers is fundamentally different

from that of a physical queue, in the sense that customers do not see others waiting and need not

be aware of their “progress” (position in the queue) if the call center does not provide information

about queueing delays. We impose the Markovian assumption on patience times in this paper.

This is mainly to preserve tractability in our models. Though not all empirical studies from real

call centers suggest that patience times are exponential (see for example Brown et al. (2005)),

considering this assumption allows us at least to capture the uncertainty in patience times and

helps us as a consequence to gain useful insights.

The system is workconserving, i.e., an agent is never forced to be idle while customers are

waiting. Finally, retrials are ignored, and abandonments are not allowed once a customer starts her

service. We also do not allow jockeying between separate queues. Following similar arguments, the

behavior of this call center can be viewed as a modification of a GI/GI/s +M queueing system.

The symbol M after the + indicates the Markovian assumption for times before abandonments.

Note that owing to abandonments, the system is unconditionally stable. One proof which

also holds for a more general model is as follows. Consider an arbitrary GI/GI/s + GI queueing

model (with general patience times) and let us prove that it is stable, i.e., the stochastic process

representing the number of customers in system has a limiting distribution as time goes to infinity.

The number of customers in this GI/GI/s + GI model can be upper bounded by the number of

busy servers in an associated GI/GI/∞ infinite server model. The service times in the associated

GI/GI/∞ model have the same statistical distribution as that of the summation of service and

patience times in the original GI/GI/s+GI model. The idea of the upper bound comes from the

fact that the waiting time of a queued customer in the GI/GI/s+GI model is upper bounded by

her patience threshold. So her sojourn time in system is upper bounded by her patience threshold

plus her service time. The infinite-server model is known to be stable. We refer the reader to

Whitt (1982) for a discussion and further references. This finishes the proof of the stability of the

GI/GI/s+GI model, and in particular our GI/GI/s+M model.
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3.2 Notations

We denote by m the class of a customer, m ∈ {A, B}. We assume that at time zero the system

starts empty. For a particular sample path, let nm(t) be the number of class m arrivals during the

time interval [0, t], t > 0. Consider now a scheduling policy π and let amπ (t) be the number of class

m customers that abandon the queue, and bmπ (t) the number of those that are receiving service and

those that have been already served in [0, t]. We consider for each class m, the fraction of customers

that abandon. We also consider this performance for all customer classes (an arbitrary customer).

The fraction of class m customers that abandon during [0, t] is defined by Pm
π (t) = amπ (t)

nm(t) . The

fraction of abandonments during [0, t] for all classes is defined by Pπ(t) =
aAπ (t)+aBπ (t)
nA
π (t)+nB

π (t)
.

In the long run, the fraction of abandonments (probability to abandon) of class m customers,

say Pm
π , and that of all classes, say Pπ, are given by Pm

π = lim
t→∞

Pm
π (t) and Pπ = lim

t→∞
Pπ(t). Recall

that due to abandonments the system is stable so that the latter limits do exist (see the end of

Section 3.1). We are now ready to define our main performance measure which we denote by cπ.

It is the ratio of the probability to abandon of class A over that of class B, i.e.,

cπ =
PA

π

PB
π

. (1)

Similarly we define the expected waiting time in queue of class m customers and that of all

customer classes. Note that we only define these quantities for the customers who enter service.

Under a given scheduling policy π, let wm
q,π(i, t) be the waiting time in queue of the ith class m

customer who enters service, 0 ≤ i ≤ bmπ (t). As in the usual way, the expected waiting time in the

queue, say Wm
q,π(t), during [0, t] of class m customers is defined by Wm

q,π(t) =

bmπ (t)∑
i=1

wm
q,π(i, t)

bmπ (t)
. and

that of all customer classes, say Wq,π(t), by Wq,π(t) =

bAπ (t)∑
i=1

wA
q,π(i, t) +

bBπ (t)∑
i=1

wB
q,π(i, t)

bAπ (t) + bBπ (t)
. In the long

run, the expected waiting time in the queue of served class m customers, say Wm
q,π, and the overall

expected waiting time in queue of all served customers, say Wq,π, are given by Wm
q,π = lim

t→∞
Wm

q,π(t),

and Wq,π = lim
t→∞

Wq,π(t).

We also define the squared difference of waiting times of served class m customers and that of all

classes, in the transient regime as well as in the long run. The squared difference of the waiting time

of served customers of classm, say V m
π (t), during [0, t] is given by V m

π (t) =

bmπ (t)∑
i=1

(
wm
q,π(i, t)−Wm

q,π(t)
)2

bmπ (t)
As for the squared difference of the waiting time in queue of all served customers within [0, t], it
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is defined by Vπ(t) =

∑
m∈{A,B}

bmπ (t)∑
i=1

(
wm
q,π(i, t)−Wq,π(t)

)2
∑

m∈{A,B}

bmπ (t)
In the long run, the squared difference of

class m served customers, say V m
π , and the overall squared difference of all served customers, say

Vπ, are given by V m
π = lim

t→∞
V m
π (t), and Vπ = lim

t→∞
Vπ(t). In the numerical experiments shown later,

we will consider the standard deviation defined as the square root of V m
π and denoted by σm

π , and

that of Vπ denoted by σπ.

3.3 Problem Formulation

In this section we motivate and formulate our objective with regard to the scheduling policies

we aim to develop. Due to the highly uncertain environment of call centers, it is usually hard

to estimate the workload within a relative accuracy. We often end up in practice with either an

underestimated, or an overestimated workload. Next, the common practice in call centers is to

develop routing policies that aim to reach different service level constraints for different customer

classes. In this paper we focus on service levels in terms of the abandonment probabilities. Having

these statements in hand, one may obviously raise the following issue. In case of a fixed number of

agents, the abandonment probability of each customer class will be affected by the forecasting error

and will thereafter deviate from the predefined one. Furthermore, the actual service level deviations

can be very different between the customer classes (for example when using strict priority scheduling

policies). This behavior is undesirable for a call center manager because one would lose some given

fairness between customer classes. For any work condition, a manager would like to reach a desired

fairness between customer classes.

Based on this motivation, we formulate the following problem. We assume that scheduling

has already taken place, such that the number of available agents is known. We aim to develop

scheduling policies that satisfy a target ratio constraint, say c∗, of the abandonment probabilities

between of the two customer classes. In mathematical terms, we look, if at all possible, for π ∈ Π

subject to

cπ = c∗, (2)

where Π denotes the class of workconserving non-preemptive scheduling policies.

The target ratio c∗ translates a desired preference between the two customer classes that we

want to reach for any actual workload. As we will see later by means of Theorem 2, the c∗ target

formulation generalizes the traditional formulation where we have a service level constraint for

each class. If the workload is quite correctly estimated, having a target ratio of abandonment
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probabilities is equivalent to having a target abandonment probability for each class. In addition

if the workload is incorrectly estimated (under- or overestimated), the capacity of the system is

shared over customer classes in a way that allows to preserve (if possible) the predefined preference

between customer classes. Specifically, we are interested in policies which are easy to implement

in practice and which require as little information as possible about the arrival process and the

capacity of service.

The expected waiting times of customer classes are not included in the problem formulation.

The drawback of minimizing the waiting times of the served customers is that it could result

in policies that are very similar to LCFS (per customer class), which is considered to be unfair.

Further, we do not consider neither the abandonment probability, nor the expected waiting time

in queue of an arbitrary customer. When considering workconserving policies, these quantities are

unchanged for identical distributions of service times. They are furthermore not much sensitive

when the distributions do differ. We will discuss these statements in the next sections in detail.

Non-workconserving policies are ignored because they would make the routing problem even more

complicated. Moreover, this kind of policies is not often seen in practice.

3.4 Structural Results

In this section we investigate the impact of scheduling policies on various performance measures.

These results would be helpful in the understanding of the behavior of the policies we will develop

and in assessing their efficiency.

Consider first queueing systems with infinitely patient customers, that is, a customer never

leaves the queue. It is well known (see for example Gross and Harris (1998)) that the expected

remaining workload in the queue is independent of the queueing discipline, assuming that the

remaining total service or work required is order-of-service independent during any busy period. In

other words, no service needs are created or destroyed within the system, implying: no abandonment

in the middle of a service, no preemption when service times are not exponentially distributed, no

forced idleness of servers, and so on. The proof can easily be done by comparing the diagrams of

the cumulative work for two different queueing disciplines during the busy period, elsewhere both

systems behave identically due to the workconserving property.

By means of Theorem 1, we motivate why workconserving policies are considered in this paper.

Theorem 1 concerns a GI/GI/s+M system, which has i.i.d. and generally distributed interarrival

and service times, s servers, and exponentially distributed patience times. The proofs of all results

from this section are given in Section 1 of the supplementary material Jouini et al. (2010).

Theorem 1 Consider a non-preemptive GI/GI/s + M queue and consider policies that do not
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depend on service time realizations. Then there is a workconserving policy that minimizes the

abandonment probability, P.

The memoryless condition of patience times in Theorem 1 is a necessary and sufficient condition

when preemption is not allowed. Suppose that the abandonment occurs always during the beginning

of the customer waiting, such under the decreasing failure rate distributions for example, then it

can be optimal to wait for a new arrival and serve it before it abandons instead of serving a

customer who has waited already for some time. In what follows, we derive some results related to

workconserving policies. In Theorems 2 and 3, we investigate the conservation of the abandonment

probability and the expected waiting time in the queue with respect to the scheduling policies,

respectively. Some consequences are derived in Corollaries 1 and 2.

Theorem 2 Consider a GI/GI/s + M queue. Patience times are assumed to be i.i.d. and ex-

ponentially distributed. Then the abandonment probability P is unchanged for all workconserving

non-preemptive scheduling policies that are not allowed to depend on the service time realizations.

Note that the result in Theorem 2 does not hold if service times depend on the order of service,

or if we allow preemption when service times are not exponentially distributed, or if patience times

are not identically and exponentially distributed. In the case of exponential service times, proving

that P is unchanged for all workconserving policies with or without preemption can be obtained

using Lemma 2 in Jouini and Dallery (2007). In the latter, the authors have proved this result for

a GI/M/s/K +M queue with a limited waiting space.

In Theorem 3, we focus on the waiting time in the queue with respect to workconserving non-

preemptive scheduling policies. We again consider a GI/GI/s + M queue, and focus on three

different definitions of the expected waiting time. Let Wq be the expected waiting time in queue of

served customers. Let W ab
q be that of abandoning ones, i.e., the expected sojourn time in the queue

before leaving the system without being served. Finally, we define W tot
q as the expected overall

waiting time in the queue for all customers, i.e., served as well as abandoning customers. In Theorem

3, we prove an intuitive result for the conservation of W tot
q . In addition, we give the scheduling

policies that minimize and maximize Wq and W ab
q . Although the abandonment probability as

shown in Theorem 2 does not vary for any workconserving non-preemptive scheduling policy, Wq

and W ab
q do vary.

Theorem 3 Consider a GI/GI/s + M queue. Patience times are assumed to be i.i.d. and ex-

ponentially distributed. When considering the class of workconserving non-preemptive scheduling

policies, the following holds
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1. W tot
q does not depend on the scheduling policy.

2. Wq and W ab
q depend on the scheduling policy.

3. The upper (lower) bound of Wq is achieved under the FCFS (LCFS) discipline of service.

4. The upper (lower) bound of W ab
q is achieved under the LCFS (FCFS) discipline of service.

Note that although the first moment W tot
q does not depend on the discipline of service, the

second moment of the overall waiting time, and thus the full distribution, does depend on the

discipline of service. As shown in Theorem 3, the maximum of the expected waiting time for served

customers, Wq, is achieved under FCFS discipline. However we conjecture based on a well-known

property from the literature (see for example Gross and Harris (1998)) that the minimum of its

variance is also achieved under the FCFS policy. In practice, if the value of Wq under the FCFS

policy is almost equal to the value of other policies, a call center manager usually prefers the FCFS

policy because of its fairness. We refer the reader to Avi-Itzhak and Levy (2004) for more details

on the fairness property in queueing systems.

The result in Theorem 3 is still valid when considering also preemptive scheduling policies.

However, service times have to be exponentially distributed. We finally comment that the second

statement in Theorem 3 is still valid for generally distributed service times.

Corollary 1 Consider a GI/GI/s+M queue with two customers classes A and B. Service times

as well as patience times are identically distributed for both customer classes. Then the overall

abandonment probability P and the overall expected waiting time W tot
q are constant for any work-

conserving non-preemptive scheduling policy.

In the case of a two-class queue, we denote by πA and πB the policies that give strict non-

preemptive priority to class A and class B customers, respectively.

Corollary 2 Consider a GI/GI/s+M queue with two of customers classes A and B. Service and

patience times are identically distributed for both customer classes. Then, for any workconserving

non-preemptive policy π the ratio of the abandonment probabilities cπ satisfies the following relation

cπA ≤ cπ ≤ cπB , (3)

where cπA and cπB are the ratios in the long run under πA and πB, respectively.

Note that values of cπ outside the interval [cπA , cπB ] may be achieved through non-workconserving

policies, such as thresholds or reservations policies. These policies are indeed useful to discriminate
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between customer classes. Under such policies, the lower bound for the abandonment probability

PA (PB) is equal to the value achieved under the policy that gives strict preemptive priority to

class A (B) customers. Obviously, the upper bound for PA or PB is 1. It is reached for a given

class by simply refusing to serve customers of that class.

With the waiting time being defined as the waiting time of all customers (including both served

and abandoned customers), we next give Theorem 4 which only holds for Markovian patience

times. Note also that this theorem holds even for GI/GI/s + M queues that are working under

non-workconserving policies.

Theorem 4 Consider a GI/GI/s +M queue, with two customer classes A and B, and working

under a given scheduling policy π. Service and patience times are identically distributed for both

customer classes. Let cπ be the long run ratio of the abandonment probabilities. Then the long run

ratio of the expected waiting times is also cπ.

4 Online Scheduling Policies

The call center we consider allows for flexible scheduling through dynamically sequencing the order

of service, hereafter referred to as online scheduling. With the current technology, this is also doable

for most call centers. However, an interesting and challenging problem is to design scheduling

policies that are structurally simple and easy to implement.

In this section we develop online scheduling policies that allow, if at all possible, to the target

ratio constraint c∗. We consider techniques that do not anticipate the future and that are based

on the history of the system, i.e., the achieved ratio c at the moment of the decision. These can

be classified as online updating methods and online routing. Without loss of generality, we only

consider objective ratios satisfying c∗ < 1. The case c∗ = 1 boils down to the FCFS discipline of

service. The reason is that our model working under FCFS (within each class and for both classes)

is simply equivalent to a single class queue working under FCFS. The case c∗ > 1 is not relevant

for our analysis because class A denotes the premium calls. Furthermore, even if we would like to

investigate that case, it suffices to apply the analysis for the case c∗ < 1 by exchanging class A by

class B and vice versa.

We propose online scheduling policies that belong to two different families. The first is the

family of queue joining policies and is presented in Section 4.1. The second is the family of call

selection policies and is presented in Section 4.2.
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4.1 Queue Joining Policies

We propose three queue joining scheduling policies, denoted by π1, π2 and π3. Upon a customer

arrival, a policy determines a rule for the queue assignment. We assume that customers in queue

1 have a non-preemptive priority over customers in queue 2. Customers of a class can be sent to

any queue. We recall that our policies do not anticipate on future events. They just react to the

realization of the ratio that is determined by the history of the process. A comparison analysis of

these policies is thereafter addressed in Section 5, using simulation experiments.

Scheduling Policy π1: The scheduling policy π1 starts identically to a strict priority policy that

gives the higher priority to class A customers. After the epoch at which the first class B customer

finishes her service, we apply the following assignment rule for any new arrival (denoted by the kth

arrival). Let dk be the epoch of that arrival. Let PA
k (PB

k ) be the achieved service level until dk

for class A (B). Let ck be the achieved ratio starting until dk, ck = PA
k /P

B
k . If ck < c∗, then we

give high priority to class B, i.e., if the new arrival is class A, it is routed to queue 2, otherwise, it

is routed to queue 1. However if ck ≥ c∗, we give high priority to class A, i.e., if the new arrival is

class A, it is routed to queue 1, and if it is class B, it is routed to queue 2. An illustration of π1 is

shown on Figure 1.

Scheduling Policy π2: The scheduling policy π2 starts identically to π1 until the epoch at which

the first customer B finishes service. Following the same notations as in the last paragraph, let a

new arrival enter the system. Under π2, a customer A is always routed to queue 1. However, the

assignment rule of class B customers is as follows. If ck < c∗, a new class B arrival is routed to

queue 1, otherwise if ck ≥ c∗, it is routed to queue 2. An illustration of π2 is shown on Figure 2.

Scheduling Policy π3: The scheduling policy π3 starts identically to policies π1 and π2 until the

first customer B finishes service. Following again the same notations as before, let a new arrival

enter the system. Under π3, a customer B is always routed to queue 2. However, the assignment

rule of customers of class A is as follows. If ck ≥ c∗, then a new class A arrival is routed to queue

1, otherwise if ck < c∗, it is routed to queue 2. An illustration of π3 is shown on Figure 3.

The scheduling policy π1 can be immediately obtained intuitively. It allows the achieved ratio

to be updated upon each arrival such that it converges in the long run to the objective. The idea

behind π2 is that we keep always customers of class A in the high priority queue, however when

it is necessary, we assign customers of class B to this queue to improve their service level (which

deteriorates the service level of customers of class A). Such a rule allows to increase the transient

ratio and keep it close to the objective. As a consequence, the ratio converges in the long run to

the desired value. Policy π3 can be viewed as another variant. It sometimes allows to penalize

class A customers by assigning them to the low priority queue, which again allows to increase the
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Figure 3: Scheduling policy π3

transient ratio.

In Conjecture 1, we consider an M/GI/s + M queue (Markovian interarrival times) and we

conjecture some properties related to the achieved ratios.

Conjecture 1 Using the above notations, the following holds.

1. π1 reaches c∗ if and only if cπA ≤ c∗ ≤ cπB .

2. π2 reaches c∗ if and only if cπA ≤ c∗ ≤ 1.

3. π3 reaches c∗ if and only if cπA ≤ c∗ ≤ 1.

In what follows, we give an intuitive explanation of why we expect this conjecture to hold.

Let us consider the first statement of Conjecture 1 and let us take our basic model working under

the scheduling policy π1. Because we are considering workconserving non-preemptive policies, the

lower and upper bounds of the achievable ratios are cπA and cπB , respectively. It is clear that if

we apply policy πA (strict priority to class A) starting at time zero, we will reach the ratio cπA in

the long run. We will also reach cπA in the long run if we apply πA starting at any time t > 0.

The reason is related to the fact that the number of customers in system, at the epochs of service

completions, is a renewal process (Poisson process of arrivals and i.i.d. service times). The above

remark is also valid for policy πB (strict priority to class B) and the upper bound cπB . These are

the two extremes. Consider now c∗ ranging between cπA and cπB . At time t > 0, if it happens that

the achieved ratio is strictly lower than c∗, then giving priority to customers of class B (which is

possible under π1) allows necessarily to go beyond c∗ after a given duration of time. Continuing

in doing this, the ratio will converge to cπB . In the other case, if it happens at time t that the

achieved ratio is strictly greater than c∗, then giving priority to customers of class A (which is

possible under π1) allows necessarily to go below c∗ after a given duration of time. Continuing in
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doing this, the ratio converges to cπA . So, π1 makes the achieved ratio fluctuating below and above

c∗. Continuing applying these manipulations, we conjecture that the ratio of the abandonment

probabilities will converge to c∗. This has been confirmed by simulation experiments.

Consider now the second statement. Let cFCFS be the achieved ratio under the FCFS policy.

With the same explanation as above, we can see that any ratio ranging from cπA to cFCFS can be

reached by π2. On the one hand, The lower bound for PA is achieved when we give strict priority

to class A. In addition at the same time, the upper bound for PB is reached. Thus, the minimum

possible achievable target ratio corresponds to policy cπA . On the other hand, the lower bound for

PB is achieved by assigning all class B arrivals to queue 1, which also allows to achieve the upper

bound for PA. This corresponds to the FCFS policy for arrivals of all classes. Hence, the achieved

ratio could not be worse than that under the FCFS policy, cFCFS = 1. Finally, we note that the

explanation of the third statement is similar to that of the second one. This finishes the discussion

about Conjecture 1.

One may construct several auxiliary policies similar to the ones above. For example, instead

of changing the priority rule at each new arrival epoch, we only change it at the arrival epoch of

the customer who finds all servers busy and both queues empty. Then, we continue that rule until

the end of the current busy period. With regard to reaching the target ratio, the latter class of

policies has the same properties as those of π1, π2 and π3. One drawback could be that they are

less reactive to correct the transient ratio. A further possibility is to construct similar policies by

changing the priority rule cyclically; at a given arrival and based on the transient ratio, we decide

for the priority rule and we apply it for a given fixed number of arrivals. Once the cycle finishes,

we determine the priority rule at the epoch of the arrival that follows the cycle. Again, we keep

that rule for the same given fixed number of new arrivals, and so on.

4.2 Call Selection Policies

In the following we focus on a dual family of policies, namely the family of call selection policies.

We assign all class A (class B) customers to queue 1 (queue 2). On the contrary to the previous

class of policies, we do not implement a fixed priority discipline between the queues. Customers

waiting in the queues are selected by using so-called waiting time factors, as described in Lu and

Squillante (2004). These selections occur after each service completion of an agent, when both

queues are non-empty. The choice about the next customer to serve depends on the waiting time

factors, of which exactly one is associated with each queue. When selecting a customer for service,

the first customer in each queue is considered. From these two customers, we serve the customer

for which the product of its waiting time and the waiting time factor is the highest. The waiting
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time factors are only queue-dependent.

This family of policies has appealing properties: it takes the actual waiting times of the cus-

tomers into account, is fair with respect to the order of service within each class, and the reactivity

of the policy is expected to be high. Note that setting both waiting time factors equal results in a

policy that serves customers from the two classes within in a FCFS order, and by taking one factor

equal to 0, one of the classes has full priority over the other, independent of the waiting times.

Let us denote the waiting time factors by αA and αB for queues 1 (waiting class A customers)

and 2 (waiting class B customers), respectively. The waiting time factors are dynamically adjusted

by a method having parameter β, with β ∈ [0, 1]. At each epoch of a service completion, say t,

one of the waiting time factors is set to β, while the other one is set to 1. Thus, there are two

possibilities at t, namely (αA(t), αB(t)) ∈ {(1, β), (β, 1)}. At time t, the abandonment probabilities

of the two classes, PA(t) and PB(t), are computed by considering the historical events. Then, we

can formulate the proposed policy as

(αA(t), αB(t))←

{
(1, β) if PA(t) ≥ c∗PB(t)

(β, 1) if PA(t) < c∗PB(t)
. (4)

We do not claim that this is the best way to update the waiting time factors. This would

require a more thorough analysis which out of the scope of this paper. An immediate advantage

of the current method is a high response in fluctuating transient scenarios. More comments about

this policy are given in Section 5. In the same way as that in the explanation of Conjecture 1, we

conjecture here that waiting time factors as in Equation (4) reach any objective between the two

limiting cases where one of the two classes has full priority, namely cπA and cπB . In addition, we

conjecture that for each feasible objective c∗, there exists βc∗ ∈ [0, 1] so that choosing any value

in [0, βc∗ ] and assigning it to the parameter β allows to reach c∗. Any value beyond βc∗ could not

allow to reach c∗. Just think of what happens near the boundary β = 0. In this case, swapping

the factors αA(t) and αB(t) will give each time the full priority to one of the classes such that the

transient ratio fluctuates around c∗. When β increases, swapping the waiting time factors does no

longer necessarily guarantee that the right class gets the priority so that the transient ratio moves

in the right way. In the limit case when β approaches 1, swapping will not allow to force the priority

for one given class. So, the objective c∗ can no longer be reached (c(t) will converge to 1 which

corresponds to FCFS).

Alternatively, another method for updating the waiting time factors is to keep αA fixed over

time and to update αB dynamically. Under the assumption that αA is fixed, it is straightforward

to decrease αB when PA is high, and increase αB otherwise. A difficulty is to develop a method
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that updates αB in a simple but effective way, without many control parameters. We investigated

several possibilities by means of numerical experiments. As a result, we decided to decrease the

parameter αB by multiplication by η and increase it by division by η, with 0 < η ≤ 1. The factor

αB was updated after each event of service completion.

5 Simulation Experiments

The nature of the scheduling policies we are considering in this paper (online policies) makes

a tractable analysis too complicated. Both analytical and numerical methods are hard to be

derived. We thereafter resort to simulation experiments in order to prove the efficiency of the

proposed policies and gain useful guidelines. We consider numerical examples of Markovian systems:

exponential interarrival, service and patience times. Note that in practice, service times of premium

calls are likely to be the largest because the call center would pay more attention to them by giving

more personalized answers, µA < µB. For patience times, premium customers should be in most

call center cases more patient than regular customers because the formers know that they will

experience a good quality of answer after their waiting, γA < γB.

We consider 6 systems, denoted by System 1, . . ., System 6. Systems parameters are chosen

such that we get realistic scenarios. In all systems the number of servers is s = 50. The service

rates are µA = 0.15 and µB = 0.25. The abandonment rates are γA = 0.3 and γB = 0.35. From

one system to another, we vary the total arrival rate so as we get different “service utilizations”,

λA+λB
sµ . We choose, λA = λB = 5, 6, 7, 9, 11, and 13, respectively. The “service utilization” is

increasing starting from 100% in System 1 until 260% in System 6. On purpose we choose highly

loaded systems in order to see the effect of abandonment. We consider balanced cases for the

arrival processes in order to avoid including further aspects that may complicate the understanding

of the simulation results. Recall that abandonments make our systems unconditionally stable. The

simulations are done for the target ratios c∗ = 0.5, 0.7 and 0.9. We determined for each system the

interval [cπA , cπB ], and we checked that the values c∗ = 0.5, 0.7 and 0.9 are ranging in all of these

intervals. We notice for the balanced examples (λA = λB) considered here we have cπA = 1
cπB

.

For queue joining policies, we present the performance measures under policies π1, π2 and π3,

as well as those under policy πA (high priority for class A customers). For call selection policies,

we give the performance measures for β equal to 0, 1/4, 1/2, 3/4, and 1.

5.1 Experiments for the Queue Joining Policies

The simulation results for c∗ = 0.7 are presented in Tables 1–6. In Tables 13–18 and 19–24 in

Section 2 of the supplementary material Jouini et al. (2010), the results are presented for c∗ = 0.5

and 0.9, respectively. The rows, corresponding to the quantity c, are to indicate the achieved long
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run ratio under each scheduling policy.

πA π1 π2 π3

c 0.203 0.700 0.700 0.700
PA 3.915% 8.462% 8.483% 8.434%
PB 19.249% 12.089% 12.119% 12.048%
P 11.583% 10.276% 10.302% 10.240%
WA 0.128 0.254 0.273 0.270
WB 0.487 0.297 0.314 0.324
W 0.292 0.275 0.293 0.296
σA 0.187 0.484 0.373 0.383
σB 0.754 0.567 0.483 0.467
σ 0.557 0.527 0.431 0.427

Table 1: λA = λB = 5, c∗ = 0.7

πA π1 π2 π3

c 0.160 0.700 0.700 0.700
PA 7.479% 19.233% 19.160% 19.191%
PB 46.803% 27.476% 27.372% 27.415%
P 27.137% 23.355% 23.267% 23.302%
WA 0.249 0.585 0.667 0.658
WB 1.440 0.690 0.759 0.819
W 0.684 0.635 0.711 0.734
σA 0.253 0.827 0.522 0.565
σB 1.286 0.980 0.705 0.681
σ 0.986 0.904 0.617 0.628

Table 2: λA = λB = 6, c∗ = 0.7

πA π1 π2 π3

c 0.155 0.700 0.700 0.700
PA 10.851% 28.507% 28.502% 28.523%
PB 70.096% 40.725% 40.717% 40.748%
P 40.488% 34.613% 34.609% 34.635%
WA 0.365 0.864 1.062 1.040
WB 2.724 0.968 1.190 1.340
W 0.958 0.911 1.120 1.176
σA 0.327 1.142 0.602 0.696
σB 1.750 1.396 0.799 0.815
σ 1.377 1.264 0.701 0.767

Table 3: λA = λB = 7, c∗ = 0.7

πA π1 π2 π3

c 0.219 0.700 0.700 0.700
PA 20.473% 41.288% 41.273% 41.262%
PB 93.598% 58.982% 58.961% 58.946%
P 57.039% 50.134% 50.113% 50.104%
WA 0.723 1.227 1.691 1.633
WB 5.500 0.924 1.926 2.139
W 1.079 1.102 1.788 1.841
σA 0.509 1.536 0.740 0.889
σB 2.628 1.803 0.840 0.957
σ 1.526 1.658 0.791 0.951

Table 4: λA = λB = 9, c∗ = 0.7

We see from the experiments that the target ratio is always met by policies π1, π2 and π3,

which agrees with Conjecture 1. For each system, the value of the ratio under policy πA represents

a lower bound for the achievable ratio under any workconserving non-preemptive scheduling policy.

We can not do better when considering that class of policies.

πA π1 π2 π3

c 0.325 0.700 0.700 0.700
PA 32.236% 49.436% 49.430% 49.444%
PB 99.237% 70.623% 70.616% 70.635%
P 65.751% 60.029% 60.025% 60.038%
WA 1.237 1.581 2.161 2.119
WB 7.652 0.591 2.582 2.680
W 1.309 1.217 2.316 2.325
σA 0.624 1.543 0.864 0.933
σB 3.343 1.274 0.749 0.816
σ 0.981 1.526 0.849 0.932

Table 5: λA = λB = 11, c∗ = 0.7

πA π1 π2 π3

c 0.426 0.700 0.700 0.700
PA 42.588% 55.095% 55.074% 55.084%
PB 99.949% 78.702% 78.754% 78.695%
P 71.284% 66.897% 66.912% 66.888%
WA 1.784 1.974 2.542 2.534
WB 8.563 0.519 3.134 3.153
W 1.791 1.506 2.732 2.733
σA 0.659 1.365 0.918 0.932
σB 4.263 0.608 0.623 0.633
σ 0.701 1.358 0.880 0.895

Table 6: λA = λB = 13, c∗ = 0.7

We further analyze in this section the expected and the standard deviation of the waiting time

in queue of each class of served customers. A rigorous proof of our claims is out of the scope of this

paper. We only give some general ideas and intuitive explanations to support the claims we derive.

We especially focus on the standard deviation of the waiting time. It has often been argued that a

system with reasonable and predictable waiting times may be more desirable than a system with a

lower expected waiting time but a higher variance, see Lu and Squillante (2004) for more details.
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For class A customers, starting from the lower value, most experiments show that the standard

deviation values are ordered according to policies πA, π2, π3 and π1. The reason is basically related

to the well-known property in queueing theory which claims that the FCFS discipline minimizes

waiting time variance (time in queue and in system) when the queueing discipline is service time

independent. We refer the reader to Randolph (1991) for a more extensive discussion. The best

we can do for customers of class A under a workconserving non-preemptive policy is not to give at

any time the priority to customers of class B. Such a situation allows the realizations of class A

waiting times to be minimized. This is the case for policy πA. Next, since the discipline of service

within queue 1 is FCFS, πA should lead to the lower variance. With regard to the order of service

of customers of class A, policy π1 deviates more than π2 and π3 from the FCFS discipline. This

tells us that π1 has the highest variance. When comparing policies π2 and π3, one may see that

on the contrary of policy π3, policy π2 respects the FCFS order for customers of class A, which

indicates a lower variance than under policy π3. The experiments for class A show also that the

expected waiting times in queue are ordered according to policies πA, π1, π3 and π2. The order π1

then π3 then π2 is expected because of the general property that FCFS maximizes the expected

waiting time of served customers. Policy πA is the best for the expected waiting time of served

customers. An explanation would be related to the small values of waiting times achieved under

that policy.

For class B customers, starting from the lower value, we conclude from the majority of the

experiments that the standard deviation values are structured for policies π3, π2, π1 and πA.

When comparing policies π1, π2 and π3, the explanation is identical to that conducted for the

first comment. As for policy πA, the only explanation we have is related to the waiting time

values. The larger waiting times of class B customers are achieved under policy πA because of their

lower priority. This might explain why that policy has the highest variance for waiting times of

class B customers, because generally higher values have also higher variance. In addition to that,

uncertainty in interarrival, abandonment and service times, allows to have a non-zero probability

that some customers of class B enter service without waiting or within only a short delay. This

makes their waiting times variance to be the highest. From the experiments, we also see for class

B that the expected waiting times in queue of served customers are ordered according to policies

π1, π2, π3 and πA. One may explain these results through the same arguments used above.

We notice that we only gave some directions to compare the policies with regard to the expected

value and standard deviation of waiting times. For instance, the comparison should lie in the values

of λA and λB, also in the target ratio constraint c∗. A target ratio close to 1 would make our policies

work in a similar manner than that of the FCFS discipline, whereas an objective far from 1 (being
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under or beyond) would make the policies similar to the strict priority policy. Based on the analysis

here, we can not distinguish a best policy. However, one may recommend policy π2. First, it reaches

the objective ratio. Second, it gives (in most cases) the lowest variance of waiting times of customers

A. Third, it allows to have a “good” variance for customers B, as well as for all customers.

5.2 Experiments for the Call Selection Policies

The simulation results are presented in Table 7–12 below for c∗ = 0.7. In Tables 25–30 and 31–36

of the supplementary material Jouini et al. (2010), the results are presented for c∗ = 0.5 and 0.9,

respectively. The rows (corresponding to the quantity c) display the achieved long run ratio under

different values of β. The rest of this section is devoted to discuss the simulation results.

β 0 0.25 0.5 0.75 1.0

c 0.699 0.700 0.700 0.720 0.875
PA 0.084 0.085 0.084 0.086 0.093
PB 0.121 0.121 0.120 0.119 0.107
P 0.102 0.103 0.102 0.102 0.100
WA 0.258 0.270 0.272 0.278 0.301
WB 0.303 0.322 0.325 0.325 0.294
W 0.280 0.295 0.298 0.301 0.298
σA 0.463 0.398 0.366 0.358 0.398
σB 0.547 0.489 0.458 0.440 0.392
σ 0.506 0.446 0.415 0.401 0.395

Table 7: λA = λB = 5, c∗ = 0.7

β 0 0.25 0.5 0.75 1.0

c 0.700 0.700 0.700 0.720 0.882
PA 0.192 0.192 0.192 0.194 0.213
PB 0.274 0.274 0.274 0.269 0.241
P 0.233 0.233 0.233 0.232 0.227
WA 0.606 0.652 0.667 0.683 0.751
WB 0.719 0.804 0.833 0.829 0.736
W 0.660 0.724 0.746 0.752 0.744
σA 0.763 0.595 0.508 0.479 0.537
σB 0.921 0.744 0.660 0.611 0.533
σ 0.843 0.674 0.591 0.551 0.535

Table 8: λA = λB = 6, c∗ = 0.7

β 0 0.25 0.5 0.75 1.0

c 0.700 0.700 0.700 0.727 0.888
PA 0.285 0.285 0.285 0.290 0.316
PB 0.407 0.408 0.407 0.399 0.356
P 0.346 0.346 0.346 0.345 0.336
WA 0.921 1.028 1.065 1.103 1.214
WB 1.057 1.313 1.385 1.377 1.197
W 0.983 1.157 1.210 1.228 1.206
σA 1.036 0.738 0.574 0.512 0.574
σB 1.292 0.958 0.765 0.665 0.572
σ 1.161 0.857 0.686 0.603 0.573

Table 9: λA = λB = 7, c∗ = 0.7

β 0 0.25 0.5 0.75 1.0

c 0.700 0.700 0.700 0.750 0.900
PA 0.412 0.413 0.413 0.426 0.460
PB 0.589 0.590 0.590 0.568 0.511
P 0.501 0.501 0.501 0.497 0.486
WA 1.351 1.614 1.709 1.809 2.003
WB 1.126 2.135 2.382 2.313 1.986
W 1.258 1.828 1.986 2.025 1.995
σA 1.420 0.957 0.643 0.526 0.582
σB 1.718 1.417 0.946 0.686 0.581
σ 1.553 1.196 0.849 0.650 0.582

Table 10: λA = λB = 9, c∗ = 0.7

β 0 0.25 0.5 0.75 1.0

c 0.700 0.700 0.700 0.772 0.910
PA 0.494 0.495 0.494 0.517 0.553
PB 0.706 0.707 0.706 0.669 0.608
P 0.600 0.601 0.600 0.593 0.581
WA 1.692 2.062 2.201 2.381 2.635
WB 0.769 2.733 3.275 3.075 2.617
W 1.353 2.309 2.596 2.663 2.627
σA 1.501 1.084 0.668 0.531 0.583
σB 1.336 1.889 1.126 0.694 0.582
σ 1.510 1.469 1.008 0.692 0.582

Table 11: λA = λB = 11, c∗ = 0.7

β 0 0.25 0.5 0.75 1.0

c 0.700 0.700 0.700 0.791 0.918
PA 0.550 0.551 0.551 0.582 0.618
PB 0.786 0.787 0.787 0.736 0.674
P 0.668 0.669 0.669 0.659 0.646
WA 2.007 2.423 2.601 2.863 3.157
WB 0.571 3.193 4.149 3.713 3.141
W 1.545 2.671 3.099 3.192 3.150
σA 1.361 1.125 0.651 0.539 0.583
σB 0.703 2.324 1.267 0.703 0.581
σ 1.36611 1.651 1.152 0.735 0.582

Table 12: λA = λB = 13, c∗ = 0.7

From the experiments, we obviously see that all quantities increase when the workload increases.

If β is high, for example 3/4 or 1, then the ratio c∗ is not reached. The reason is that the weights

of the waiting times are almost equal, such that the discipline of service of the customers waiting
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in the two queues is close to a FCFS policy. Such high values of β do not allow to sufficiently

discriminate one class of customers to the detriment of the other. Both classes have almost equal

priority of service. In addition, the parameter βc∗ (introduced in Section 4.2) is increasing in c∗.

The explanation is as follows. As c∗ increases, giving the priority to one class over the other one

is less and less needed. This allows βc∗ to be higher. In the limit case (for c∗ = 1), βc∗ reaches its

upper bound (βc∗ = 1).

We see also from the experiments that the overall expected waiting time of the served customers

increases as β increases. The reason pertains to the fact that as β increases, the scheduling policy

approaches the FCFS policy. As shown in Theorem 3, the FCFS policy maximizes the expected

waiting time in queue of served customers. Meanwhile, the expected waiting time of the abandoned

customers decreases. Finally, the variance of the waiting times (for all classes) is decreasing in β.

One intuitive explanation is due to the known property of the FCFS policy, which minimizes the

waiting times variance. As β increases, the behavior of our policy approaches that of the FCFS

policy, and as a consequence, the overall variance decreases. In the limit case (β = 0), we have an

alternation for service selection which is the most distant from the FCFS policy. Not surprisingly,

its corresponding variances are the highest.

It is also interesting to observe that βc∗ is independent of the workload. One intuitive expla-

nation would be related to the balanced cases we consider here, λA = λB = λ. In such cases,

increasing λ will increase the number of arrivals of both classes by the same factor. For a given

objective ratio c∗, choosing one β in the same interval [0, βc∗ ] allows thereafter to increase the

number of abandonments of both classes by the same factor, which allows to reach c∗. The reason

is that we keep unchanged the way we are giving priorities to customer classes. If we choose β

beyond βc∗ , we have no longer the sufficient flexibility to discriminate customer classes so as we

increase the abandonments of both classes in the same way as the arrivals.

5.3 Comparison

In what follows we address the comparison of the two families of policies: queue joining and call

selection policies. We use the simulations results to draw the basic conclusions.

Not surprisingly the expected waiting times of the served customers are shorter for the queue

joining policies. This conclusion is valid for each class of customers and for all classes. The reason

has to do with the order in which customers are scheduled for service. Under the call selection

policies, customers of each class are served in the order of their arrival. This makes the waiting times

larger under that type of policies (see Theorem 3). As a consequence, the expected waiting time

of all served customers is also the highest under the call selection policies. The second conclusion
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is that the variances (equivalently the standard deviations) of the waiting times are lower for the

call selection policies. The explanation is identical to the previous one and is again pertaining to

the order of service of customers.

One may also compare both types of policies from the reactivity perspective. We mean by

reactivity, the speed of a given policy to make the transient ratio c(t) close to the objective.

Although both types of policies allow to satisfy the target ratio constraint in the long run, we

comment that they have different reactivities. The call selection policies are more reactive. One

intuitive explanation is as follows. When for example the transient ratio is lower than the objective,

both policies give high priority to class B in order to increase this transient ratio. A queue joining

policy as π2 will assign a new customer B to the queue with higher priority, however it may happen

that there are type A waiting customers in that queue ahead of the customer B of interest. In such

a case, the transient ratio would thereafter still decrease. It would increase once we finish to serve

the type A customers waiting in the highest priority queue. This case does not occur under the

call selection policies. Depending on the circumstances, the latter policies immediately allow to

increase or decrease the transient ratio, by scheduling one given class for service to the detriment

of the other class.

The reactivity of the call selection policy strongly depends on the value of β. It is maximized

for β = 0 such that customers of the class that allows to push the transient ratio to c∗ is served

first. For higher values of β the waiting times of the customers are more taken into account such

that customers that have waited longer than others would have a higher priority for service. This

can yield actions that are sometimes not optimal with respect to the ratio constraint. By means of

the waiting time factors, a trade-off is made between serving the customer with the longest waiting

time and serving the customer that improves the transient ratio of abandonment probabilities.

Sometimes the optimal actions of both objectives will be the same but not in all cases.

6 Conclusions

We focused on a fundamental real-time problem of call centers management. We considered a

two-class call center and developed online scheduling policies subject to satisfying a target ratio

constraint of the abandonment probabilities of the two customer classes. This new formulation of

the control problem is robust with respect to the system workload. Furthermore, it generalizes

the traditional formulation where we have a target abandonment probability for each class. The

policies are argued to be relevant in practice; they are efficient, easy to understand for managers,

predictable and easy to implement.

First, we gave some structural results in order to better understand the impact of different
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scheduling policies on the performance measures of interest. Second, we proposed several online

scheduling policies allowing to meet the considered constraint. Third, we conducted a simulation

study in order to compare the proposed policies with regard to several performance measures such

as the expected and the variance of the waiting time in queue of served customers.

In this paper, we focused the analysis on a given period of the day. In future research we would

like to focus on intervals of a day. Then it would be interesting to find a method that translates

the whole day objective into a set of objectives per period of the day. It would be also interesting

to extend the analysis to more than two customer classes and agents with different skill sets.
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