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Abstract

In this paper, we consider two basic multi-class call center models, with and without reneg-

ing. Customer classes have different priorities. The content of different types of calls is assumed

to be similar allowing their service times to be identical. We study the problem of announcing

delays to customers upon their arrival. For the simplest model without reneging, we give a

method to estimate virtual delays that is used within the announcement step. For the second

model, we first build the call center model incorporating reneging. The model takes into account

the change in customer behavior that may occur when delay information is communicated to

them. In particular, it is assumed that customer reneging is replaced by balking that depends

on the state of the system in this case. We develop a method based on Markov chains in order to

estimate virtual delays of new arrivals for this model. Finally, some practical issues concerning

delay announcement are discussed.

Keywords call centers, predicting delays, announcing delays, impatient customers, Markov

chains, multiserver queues.

1 Introduction

Recent developments in technology and the business environment have dramatically increased

the need for improved service systems. Well designed service systems allow to reduce costs and to
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promote user satisfaction. The service sector is gaining prominence both in terms of the number of

researchers and practitioners working in it, and its contribution to the gross domestic product, see

Artiba (5). This paper deals with a well known type of service system, namely call centers. Call

centers are used to provide services in many areas and industries: emergency centers, information

centers, help-desks, tele-marketing and more. A telephone service enables customers to obtain a

fast response, with a minimal effort. Providing services via call centers, instead of a face-to-face

service, usually translates into lower operational costs to the service provider. The call center

industry has been steadily growing and it has been observed worldwide. Estimations indicate that

around 70% of all customer transactions occur in call centers, see Nakibly (22). Today, all Fortune

500 companies have at least one call center. They employ an average of 4,500 agents across their

sites. More than $300 billion is spent annually on call centers around the world, see McKinsey

Quarterly (11).

The continued growth of call centers has brought with it a rich and interesting set of questions for

both practitioners and academic researchers. This paper is motivated by a large French call center.

As in many other organizations, the call center of our company constitutes the main point of contact

with customers. Such centers have limited resources and face highly unpredictable demand that

often result in long waits for customers. To improve customer satisfaction and alleviate congestion,

call centers have recently started experimenting by informing arriving customers about anticipated

delays, see Armony and Maglaras (3).

Information regarding anticipated delays is of a special importance in service systems with

invisible queues, as in call centers. In such systems, the uncertainty involved in waiting is higher

than that in visible queues, and it does not decrease over time. Customers have no means to estimate

queue lengths or progress rate. So, feelings of frustration and anxiety increase during the wait. We

expect that delay information would avoid such situations, and make the waiting experience more

acceptable. Zakay (30) stipulates that waiting information may distract customers’ attention from

the passage of time. Hence, they may perceive the length of the wait as short.

The goal of this paper is to study announcing delays under different call centers situations. We

consider two different multi-class call centers models, with and without abandonments. Since we are

dealing with stochastic systems, there is no possible way to predict exact waiting times. The best

one can do is to estimate their distribution. The service provider should then decide what the exact

information that will be provided to customers is. For example, he may decide to provide the mean
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of the estimated waiting time or any percentile of its distribution function. However, we should be

careful: On the one hand, informing of a short waiting time, which is likely to underestimate the

actual waiting, might reduce the reliability of the service provider in the eyes of the customers. On

the other hand, informing of a long waiting time, might result in longer perceived waiting times

and in a decrease in satisfaction.

For each call center configuration, we develop a method to estimate virtual delays of new ar-

rivals. Since the goal is to provide information which is relevant to a specific type of customer at a

specific time, we focus on estimating the waiting time given the system state at the time of estima-

tion. This is different from estimating the overall performance of the system, such as the average

waiting time of all customers, which is usually done assuming steady state. The models under

consideration in this paper are formulated to be relevant in practice. The two major distinguishing

features are priorities and the possibility for customers to be impatient. Priority mechanisms are a

useful scheduling method that allows different customer types to receive differentiated performance

levels. They are in addition known for their ease of implementation in practice. As for reneging,

incorporating it in modeling is of great value in order to be as close as possible to reality. Waiting

customers in call centers may naturally hang up once they feel that the time they spend in queue

is too long, see Mandelbaum and Zeltyn (21).

The main contribution of this paper is the construction of a multi-class call center model with

impatient customers that incorporates delay information. We propose a model in which the original

behavior of customers (reneging) is substituted by balking upon arrival. To fully characterize the

new model, we compute for each type of customer the balking probabilities and derive closed form

expressions for the moments of their distribution of virtual delays. We note that the analysis here

may be viewed as an extension of the work of Whitt (28). In the latter, the author addressed a

similar problem for a call center model with a single class of impatient customers.

Here is how the rest of the paper is organized. In Section 2, we review some literature close to

our work. In Section 3, we consider a multi-class call center model with infinitely patient customers.

In Sections 3.1 and 3.2, we describe the model and develop a method for estimating virtual delays,

respectively. This development would be used within the announcement step. We then move on

and let customers renege while waiting in queue. In Section 4.1, we first describe the original model

of the call center without delay information. In Section 4.2, we next focus on building the call center

model assuming that it provides delay information to customers. In Section 4.3, we again develop
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a method to derive virtual delays for each type of customer. In Section 5, some practical issues are

discussed. In Section 5.1, we question the need of announcing delays when queues are empty upon

the arrival of a new customer. In Section 5.2, we present a useful approximation of virtual delays

in order to simplify the implementation of the announcement of delays. We conclude the paper in

Section 6, where we highlight some directions for future research.

2 Literature Review

The continued growth of both importance and complexity of modern call centers has led to an

extensive and growing literature. Due to the uncertainty governing the call center environment

(customer and agent behaviors), the literature has typically addressed its issues using stochastic

models, and in particular queueing models. Important related surveys are the paper of Koole and

Mandelbaum (19) and its extended version Gans et al. (9) where the authors survey the literature

dealing with the operations management of call centers.

The literature related to our work spans three main areas. The first is concerned with the analy-

sis of multiserver systems motivated by call centers. The second deals with reneging phenomena.

The third area is related to the problem of predicting and announcing delay information.

Let us focus on the first area, i.e., call center modeling. Call centers may be broadly classified

into two contexts: multi-skill call centers and full-flexible call centers. A multi-skill call center

handles several types of calls, and agents have different skills. The typical example, see Gans et al.

(9), is an international call center where incoming calls are in different languages. Related studies

include those by Akşin and Karaesmen (1), Chevalier and Tabordon (8), and references therein.

Our concern in this paper is full-flexible call centers. In such a setting assistance to customers

can be provided by any agent. This is a plausible assumption for many real cases, especially for

unilingual call centers where the complete flexibility is not as difficult as in multilingual call centers.

Furthermore, we assume for the models under consideration that all agents are statistically identical.

In other words, they can answer all questions coming from customers with the same efficiency, both

quantitatively and qualitatively, even in case of different types of customers. Our motivation is

related to the nature of the call center we are considering here, and which is the case for many

other call centers applications. The difference between customer types is only qualitative, i.e., it

is not related to the statistical behavior of customers but to their importance for the company.

Full-flexible call centers were extensively studied in the literature. We refer the reader to Gans et
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al. (9), Jouini et al. (16), and references therein.

We now consider the second area of literature related to this paper, i.e., reneging phenomena.

Queueing models incorporating impatient customers have received a lot of attention in the liter-

ature. They are an important feature in a wide variety of situations that may be encountered

in manufacturing systems of perishable goods, telecommunication systems, call centers, etc. To

underline the importance of abandonment modeling in the call center field, Gans et al. (9) and

Mandelbaum and Zeltyn (21) give some numerical examples that point out the effect of aban-

donments on performance. The literature on queueing models with reneging focus especially on

performance evaluation. We refer the reader to Ancker and Gafarian (2), Garnett et al. (10),

and references therein for simple models assuming exponential reneging times. Garnett et al. (10)

studies the subject of Markovian abandonments. They suggest an asymptotic analysis of their

model under the heavy-traffic regime. Their main result is to characterize the relation between the

number of agents, the offered load and system performance such as the probability of delay and

the probability to abandon. Zohar et al. (31) investigates the relation between customer reneging

and the experience of waiting in queue. Other papers have allowed reneging to follow a general

distribution. Related studies include Baccelli and Hebuterne (6), Brandt and Brandt (7), Ward

and Glynn (27), and references therein.

In what follows, we mention some literature related to the third area, namely predicting and

announcing delays to customers. Predicting virtual delays in Markovian models, as under con-

sideration in this paper, deals in particular with the transient analysis of birth-death processes.

Several papers have been proposed for the study of the transient behavior of queues using birth-

death processes, but in general, analytical solutions are extremely difficult to obtain. A number

of interesting results are derived in Whitt (29). We also refer the reader to Jouini and Dallery

(14), and Nakibly (22) for further results in various queueing situations. The next natural step

afterwards is the announcement of predicted delays. We mention the relevant work of Whitt (28)

where the author studies the effect of announcing delays on the performance of a single class call

center. An extension of the latter work is addressed by Jouini et al. (15). Other close references

include those by Armony et al. (4), Guo and Zipkin (12), and references therein. We also refer

the reader to Vosz and Witt (25), and Kaminsky and Kaya (17) for work dealing with quoting

customer lead times in the context of supply chains. In such studies, we should not ignore possible

reactions by customers. Indeed, the announcement of delays would have a significant influence on
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customers. The literature on customers influenced by delay information begins with Naor (23).

An overview of customer psychology in waiting situations, including the impact of uncertainty, can

be found in Maister (20). Taylor (24) showed that delays affect customers’ service evaluations in

an experiment involving airline flights. Hui and Tse (13) conducted a survey on the relationship

between information and customer satisfaction.

3 Infinitely Patient Customers

In this section, we consider a call center model where customers are infinitely patient. The

model is described in Section 3.1. Then in Section 3.2, we assume that the service provider gives

delay information to customers upon arrival, and develop a method for estimating virtual delays.

The latter would be used within the announcement step.

3.1 Model Description and Notation

Consider the queueing model of a call center with two classes of customers; valuable customers

type A, and less valuable ones type B. The model consists of two infinite priority queues type A

and B, and a set of s parallel, identical servers representing the set of agents. The call center is

operated in such a way that at any time, any call can be addressed by any agent. So upon arrival,

a call is addressed by one of the available agents, if any. If not, the call must join one of the

queues. The scheduling policy of service assigns customers A (B) to queue A (B). Customers in

queue A have priority over customers in queue B in the sense that agents are providing assistance

to customers belonging to queue A first. The priority rule is non-preemptive, which simply means

that an agent currently serving a customer pulled from queue B, while a new arrival joins queue A,

will complete this service before turning to the queue A customer. Within each queue, customers

are served in FCFS manner.

Arrival processes of type A and B customers follow a Poisson process with rates λA and λB,

respectively. Let λT be the total arrival rate, λT = λA + λB. Successive service times are assumed

to be i.i.d., and follow a common exponential distribution with rate µ for both types of customers.

Then, the server utilization ρ (proportion of time each server is busy) is ρ = λT /sµ. The condition

for stability is ρ < 1, that is to say that the mean total arrival rate must be less than the mean

maximal service rate of the system. The resulting model, referred to as Model 1, is shown in Figure

1.
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Figure 1: Call center model without reneging, Model 1

There are two reasons for considering common distributions for service times. The first one

relates to the types of call centers that motivate our analysis. We are considering call centers where

customers are segmented into different groups based on their value to the firm. This segmentation

can be based on lifetime value or profitability. The call center then provides different levels of service

to these groups. This type of service level differentiation is widely used in financial service and

telecommunication call centers. In the presence of this type of segmentation, the difference between

customer types is not related to the statistical behavior of customers but to their importance for

the company, which we capture through priorities. In concrete terms, we assume for our models

that customer queries do not differ from one type of customer to another. The second reason is due

to the complexity of the analysis when assuming different behaviors in the statistical sense. Our

main purpose in this paper is to investigate simple but at the same time interesting models that

allow us to better understand the system behavior and obtain practical guidelines.

In Section 3.2, we tackle the analysis of our call center by adding delay information. From the

quantitative side, announcing delays would not affect our original model (Model 1), since customers

are infinitely patient anyway. So, informing customers about their anticipated delays or not, leads

to the same quantitative performance measures. However, announcing delays would ameliorate

the waiting experience of customers by reducing uncertainty, and improve as a consequence their

satisfaction.

3.2 Predicting and Announcing Virtual Delays

Consider a new arrival call. There are two possibilities: either at least one server is idle, or all

servers are busy. In the former case, the customer enters service immediately without having to

wait. So, the service provider does not announce any information to the customer. In the second

case, he has to wait in queue for service to begin. In the following we give the distribution of the

waiting time of a new arrival. This analysis will be used by the service provider afterwards, in
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order to inform customers about their delays.

As it is the case in most modern call centers, we assume that the technology allows us to know

the system state at each new arrival epoch. The system state at each new arrival epoch is defined

by the number of customers in system. If the latter is larger than or equal to the number of servers

s, then all servers are busy and the new arrival has to wait in queue. Let nA be the number of

type A customers in queue A seen by the new arrival, and nB that of customers B in queue B,

nA, nB ≥ 0. Finally, let nT be the total number of customers in queues seen by our new customer,

nT = nA + nB.

In what follows, we compute the mean and variance of the state-dependent waiting time dis-

tribution of each new customer type. At the epoch of each arrival, we assume that all servers are

busy and nT = nA + nB ≥ 0 customers are waiting in queues. We separate the study depending

on whether the call of interest is of type A or B. Type A customers observe a regular queue

without priority, so estimation of their waiting time is easy to obtain. It is not the case for type B

customers, because their waiting time is affected by future type A arrivals.

3.2.1 Virtual Delays for type A customers

Because of the strict priority, the waiting time of a new type A arrival does not depend on the

number of type B customers waiting in queue. Also, it does not depend on future type A arrivals

because queue A is working under the FCFS basis. Given nA customers waiting in queue A, the

call of interest has to wait until all nA customers ahead of him enter service, plus the time it

takes up to a service completion (of a customer in service). A service completion is exponentially

distributed with mean 1/sµ (s servers in parallel), and it is independent of the previous history

because of the memoryless property. Hence, the waiting time of our customer is the sum of nA + 1

i.i.d. exponential random variables each with mean 1/sµ, which has an Erlang distribution. Let us

define XA
nA

as the conditional random variable measuring the waiting time of our customer, given

the queue state nA. The mean, E(XA
nA

), and variance, V ar(XA
nA

), of XA
nA

are thereafter given by

E(XA
nA

) =
nA + 1

sµ
and V ar(XA

nA
) =

nA + 1
(sµ)2

. (1)
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We can also calculate the full probability distribution function (PDF) of XA
nA

. The Erlang PDF is

available in closed form, see for example Kleinrock, page 72 (18). Consider the ratio

σ(XA)
E(XA)

=
1√

nA + 1
, (2)

which is independent of µ and s. We deduce that the waiting time distribution (conditional on all

servers being busy) is highly concentrated about its mean, for large values of nA. Note that the

analysis above (for customers A) is still valid for the GI/M/s queue. We only need to know the

current state information.

3.2.2 Virtual Delays for type B customers

We focus on the waiting time distribution of a type B arrival who finds nA type A customers and

nB type B customers waiting in queues. Before entering service, this customer has to wait for the

queue to become empty of nT = nA + nB customers and of all future type A customers who arrive

in between. Since all customers are statistically identical and the system is workconserving, we

should observe that the waiting time of our customer does not depend on the order of service of

the customers ahead of him. Hence, the duration of interest can be divided into two parts: The

first is the busy period opened by the customer in service. The second part is the sum of nA + nB

busy periods, each one opened by one of the customer in queue. The busy period is the one of

an M/M/s queue with a Poisson arrival rate of λA. It is defined as the time from an arrival of

a customer to the system with only one idle server until the first time one of the servers becomes

idle.

Let us define XB
nT

as the conditional random variable measuring the waiting time of our cus-

tomer, given queue state nT . Knowing that the remaining service time of one customer is indepen-

dent from the already finished work (exponential service times), then the distribution of the busy

period opened by the customer in service is identically distributed as the busy period opened by

one of the customers from the queue. Finally, the new type B customer has to wait for nA +nB +1

i.i.d. busy periods of an M/M/s queue with arrival rate λA. The probability density function

(pdf) of the busy period of an M/M/1 queue can be found for example in Kleinrock, page 218 (18).

Then, with a little thought it should be clear that the busy period pdf of interest here is obtained

by only substituting the capacity of service µ (in the case of an M/M/1 queue) by sµ (in the case

of an M/M/s queue). To get a closed-form expression of the XB
nT

pdf, the mathematics becomes
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complicated (nT + 1-fold convolution of the busy period pdf). Fortunately, the mean of XB
nT

is

fairly simple to obtain, by summing the busy periods means up to nT + 1. The same approach

is still valid for the variance computation of XB
nT

using in addition the independence between the

random variables of the busy periods durations. To get the first two moments of the busy period,

we simply evaluate, respectively, the negative derivative and the positive second derivative at zero

of its PDF Laplace transform in the time t. The mean, E(XB
nT

), and variance σ(XB
nT

), of XB
nT

are

given by

E(XB
nT

) =
nT + 1
sµ− λA

and V ar(XB
nT

) = (nT + 1)
sµ + λA

(sµ− λA)3
. (3)

Equation (4) shows the ratio of the standard deviation, V ar(XB
nT

) =
√

V ar(XB
nT

), by the mean,

σ(XB
nT

)
E(XB

nT
)

=
√

sµ

(nT + 1)(sµ− λA)
. (4)

Once again, we observe that the conditional waiting time distribution is highly concentrated about

its mean, for large values of nT .

It is not too difficult to extend the analysis of the conditional waiting time to the general case

of an arbitrary number of customer classes. For example for the third priority class analysis, it is

equivalent to aggregate the first two classes into one equivalent class. Thereafter, we use the same

analysis as that conducted above for type B customers. This completes the study of announcing

delays for call centers with infinitely patient customers.

4 Finitely Patient Customers

In this section, we consider a new major feature in our modeling. We let customers renege while

waiting in queue. In Section 4.1, we first describe the original model of the call center without

delay information. In Section 4.2, we next focus on building the call center model assuming that

it provides delay information to customers. In Section 4.3, we finally derive for the latter model a

number of performance measures related to queueing delays.

4.1 Model Description and Notation

We address the analysis of a call center with a single group of identical agents, serving two classes

of impatient customers, high and low priority classes. The model is identical to that described in
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Section 3.1, however in addition we allow customers to be impatient. After entering the queue, a

customer will wait a random length of time for service to begin. If service has not begun by this

time he will renege and is considered to be lost. Times before reneging for customers type A (B)

are assumed to be i.i.d., and exponentially distributed with rate γA (γB). In practice, one would

expect customers A to be less patient than customers B, γA > γB. We note that abandonments

make our system unconditionally stable. The resulting model, referred to as Model 2, is shown in

Figure 2.

 nA nB 
Aγ  

Bγ  s 

Aλ  
Bλ  µ  

Figure 2: Call center model with reneging, Model 2

4.2 Call Center Modeling with Announcement

Assume moving from the call center described in Section 4.1 to a call center with delay an-

nouncement. On the contrary to a call center with infinitely patient customers, there is a modeling

complexity when we provide delay information to customers, due to possible changes in their behav-

ior. In this section, we investigate the impact of announcing delays on the customer abandonment

experience. When we inform a customer about his anticipated delay, he will decide from the be-

ginning, either to hang up immediately because he estimates that his delay is too long, or to start

waiting in queue. In the latter case, there are two further possibilities. The first is that customers

never abandon thereafter. The second possibility is that the customer patience will change, i.e.,

customers may abandon even if they had chosen to start waiting. Customers would have a patience

behavior different from that in the original system (without announcement), depending on the

information we provide to them, since the announced time might influence their expectations or

perceptions regarding waiting time. We refer the reader to Armony et al. (4) and Guo and Zipkin

(12) for further details on the subject.

Several forms of delay information are possible. The best is that we would give to a new

customer his actual delay, which cannot be known in advance because it is random. The most

natural in practice is that the service provider gives a certain percentile β of the virtual delay
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distribution to each new arrival. The virtual delay is the time it takes for a server to become free

for the customer of interest. In other words, it is the time until all higher priority customers ahead

of the arrival leave the queue plus the duration of a service completion. Whitt (28) has considered

a similar problem for a single class call center. He proposed a model incorporating announcement

by assuming that a new customer who finds all servers busy balks with a given probability. Once

a customer elects to wait in queue, he would never abandon thereafter.

We assume that each new arrival comes with its own deadline of time patience, and paralleling

to the model of Whitt (28), we stipulate that a new customer elects to join the queue with the

probability that a server becomes free for him (his virtual waiting time) before he would renege.

This is exact only if we assume that the customer acts as if the delay information was his actual

delay, which is not the case. We do not let customers renege once they join the waiting line. This

assumption may be reasonable for high values of β, since the estimation of the anticipated delay

should be fairly accurate in that case. For lower β values our delay predictions will exhibit an upward

bias. The possibility of reneging after joining the queue is modeled in Jouini et al. (15), albeit

in a setting with a single customer class. The results in that paper show the close and complex

relationship between announcement precision β, balking and reneging. It is shown numerically

under what conditions announcing delays will be preferred to a system without announcement.

We leave the extension of reneging from queue subsequent to delay announcements in multi-class

models to future research.

Whitt (28) considers the case of announcing the mean delay to customers. In our setting the

distribution of virtual delays are summations of nA (for customers A) or at least nT (for customers

B) random variables which we expect to converge to Normal distributions as system size grows. As

a result, the mean will coincide with the median in busy systems, suggesting that an announcement

with β = 50% will be quite close to the mean. This announcement precision is however quite low,

implying that customers will experience delays longer than what has been announced to them in

many cases. In practice one would expect such customers to renege, which is not captured by our

model. Thus, for our results to be applicable, one should consider settings where announcement

precision is high with β values that exceed 50%.

Assume that a new arrival finds nA waiting type A customers in queue A, and nB waiting

type B customers in queue B. Note that implicitly we are focusing on new arrivals finding all

servers busy. If the number seen by an arrival is less than s, then the new arrival never balks
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and enters service immediately. Let us come back to a new arrival finding all servers busy. It

should be clear that the probability of balking for a type A new arrival depends only on nA (due

to the priority rule), say pA
bk(nA). However, the probability of balking for a new type B arrival

depends on the couple (nA, nB), say pB
bk(nA, nB). Furthermore, we should not fall in the confusion

of only considering it as a function of nT = nA + nB. Having different values of nA and nB, so

that nT = nA + nB is held constant, would affect the virtual delay distribution of the customer of

interest. The reason is that with delay information, the arrival rate of type A customers, seen by

our new type B customer, depends on the state of queue A. As a consequence, not considering the

couple (nA, nB) to compute the balking probability of that customer would lead to a wrong result.

Let Y A
nA

be the random variable measuring the state-dependent virtual delay for a new type A

arrival finding nA waiting customers ahead of him. Let Y B
(nA,nB) be the one for a new type B arrival

finding nA and nB waiting customers ahead of him in queues A and B, respectively. Furthermore,

let GA
nA

(t) and GB
(nA,nB)(t) for t > 0 be the PDF of Y A

nA
and Y B

(nA,nB), respectively. Then, the call

center provides upon arrival the values

DA
nA

= (GA
nA

)−1(β), and DB
(nA,nB) = (GB

(nA,nB))
−1(β) (5)

to type A and B customers, respectively. The balking probabilities are computed as follows. We

denote by TA (TB) the random threshold patience for type A (B). The random variable TA (TB)

has an exponential distribution with rate γA (γB). The probability for a new type A arrival to balk

is thereafter

pA
bk(nA) = P (TA < DA

nA
). (6)

The one for a new type B arrival is in turn given by

pB
bk((nA, nB)) = P (TB < DB

(nA,nB)). (7)

Using the PDF of the exponential distribution, the following holds

pA
bk(nA) = 1− e−γA·DA

nA , and pB
bk((nA, nB)) = 1− e

−γB ·DB
(nA,nB) . (8)

The resulting model of the call center, incorporating delay information, is shown in Figure
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Figure 3: Call center model with delay information, Model 3

3, and is referred to as Model 3. Note that it is reasonable to assume that balking decisions are

independent from one customer to another, so that arrivals still follow a modulated Poisson process.

What remains to be done in order to fully characterize Model 3 is to compute state-dependent arrival

rates for each customer type, which in turn reduces to characterizing the distribution functions of

Y A
nA

and Y B
(nA,nB). In the next section, we give closed-form expressions for their first two moments.

Based on these results, we propose in Section 5.2, a helpful and practical approximation of their

entire distributions.

4.3 Predicting and Announcing Virtual Delays

As in Section 3.2, we assume that the technology of our call center enables us to know when

queues are empty, and whether there is an available agent for an upcoming customer, or not. If

less than s customers are present in the system, the customer of interest gets service immediately.

If not, he has to wait in his corresponding queue for service to begin.

Knowing that all servers are busy, we focus on analyzing the conditional random variables Y A
nA

and Y B
(nA,nB), nA, nB ≥ 0. We separate the analysis depending on whether the arrival call is of type

A or B. Similarly to Section 3.2, the priority schemes under consideration makes the analysis for

type A customers less complicated than that for type B customers. The latter is indeed affected

by future type A arrivals who have higher priority for service.

Let us recall that we are calculating virtual delays which will be used within a second step in

order to compute balking probabilities. In other words, we are calculating the time it takes until a

server becomes free for the customer of interest in case he elects to wait (does not balk). In what

follows, we analyze these quantities for both customer types.
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4.3.1 Virtual Delays for Type A Customers

Consider a new type A arrival who finds all servers busy, nA waiting customers in queue A and

nB waiting customers in queue B. Owing to his higher priority, the virtual delay of a new type A

arrival does not depend on the number of type B customers already present in system, see Figure

4. The customer has to wait until the nA waiting customers leave the queue plus the time it takes

for a service completion (when all servers are busy). By a customer who leaves the queue, we only

mean a customer who enters service. In Model 3, there is no longer the possibility for customers

to renege once they elect to join the waiting line.

 

nBnA s 

µAλ

( )
A

p npb A

Figure 4: Virtual delay for a new type A arrival

Our customer A has to wait for the nA customers ahead of him to enter service, and then he

has to wait for a service completion. Overall, he has to wait for nA +1 service completions. Hence,

the pdf of Y A
nA

is simply the convolution of the pdfs of nA + 1 i.i.d. exponential random variables

each with parameter sµ. So, Y A
nA

has an nA + 1-Erlang distribution with parameter sµ. The mean

and variance of Y A
nA

are, respectively, given by

E(Y A
nA

) =
nA + 1

sµ
, and V ar(Y A

nA
) =

nA + 1
s2µ2

. (9)

Using the PDF of Y A
nA

, it only remains to come back to Equations (5) and (6) in order to compute the

balking probability pA
bk(nA). Define now the standard deviation of Y A

nA
by σ(Y A

nA
) =

√
V ar(Y A

nA
),

and the coefficient of variation by the ratio of the standard deviation over the mean, cv(Y A
nA

) =

σ(Y A
nA

)/E(Y A
nA

). As shown in Equation (10), the ratio cv(Y A
nA

) is characterized to have a simple

form independent of µ and s.

cv(Y A
nA

) =
1√

nA + 1
. (10)

From Equation (10), we again note that for large values of nA, the virtual delay of Y A
nA

is very

concentrated about its mean. This implies that for large values of nA, the mean value of Y A
nA

should
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provide a good approximation of the virtual delay.

4.3.2 Virtual Delays for Type B Customers

Knowing that all servers are busy, let nA and nB be the number of type A and B waiting customers

seen by a new type B arrival, in queues A and B, respectively.

The random variable Y B
(nA,nB) is the time until the nT = nA + nB waiting customers start

service, plus the time it takes for all future type A arrivals (during the wait of the customer of

interest) to enter service, plus the duration for a service completion (when all servers are busy),

see Figure 5.
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Figure 5: Virtual delay for a new type B arrival

To characterize Y B
(nA,nB), we ignore all future type B arrivals because the discipline of service

within queue B is FCFS. However, all future type A arrivals have to be considered because of their

higher priority against the customer of interest. Recall that reneging is no longer possible. We only

consider events of type A arrivals and service completions. Thereby, changes of queue states seen

by our customer are as follows. As long as type A customers are waiting in queue, the number

of type B waiting customers does not change, however that of type A customers increases by one

further to a type A arrival or decreases by one further to a service completion. The number of

type B waiting customers cannot increase. It only decreases by one further to a service completion

when no type A customers are waiting in queue. We should be careful not to forget that type A

arrivals are state-dependent due to the balking decisions of customers upon arrival.

Based on the above explanation, we move on to employ the following two-dimensional Markov

chain. Let the system state at a given random instant be (mA,mB) where mA (mB) is the number

of type A (B) customers in queue A (B), mA,mB ≥ 0. In addition, the Markov chain has an

absorbing state denoted by (−1). The system moves to (−1) subsequent to a service completion
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when both queues are empty. Reaching the latter state means that a server is available for the

customer of interest. When mA customers are waiting in queue A, we denote the state-dependent

arrival rates of type A arrivals by

λA(mA) = λA(1− pA
bk(mA)), mA ≥ 0. (11)

The non-zero transition rates are





q(mA,mB)(mA+1,mB) = λA(mA), for mA, mB ≥ 0,

q(mA,mB)(mA−1,mB) = sµ, for mA, mB > 0,

q(0,mB)(0,mB−1) = sµ, for mB ≥ 0,

q(0,0)(−1) = sµ.

(12)

As shown in Figure 6, measuring Y B
(nA,nB) may be formulated as the downcrossing time until

absorption in state (−1), starting from state (nA, nB).
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Figure 6: The random variable Y B
(nA,nB)

The Markov chain we consider has a special structure allowing analytical solutions. From Figure

6, the random variable Y B
(nA,nB) may be rewritten as

Y B
(nA,nB) = U(nA) + VnB−1 + ... + V0, (13)
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where U(nA) is the random variable measuring the downcrossing time until first passage at state

(0, nB−1) starting from state (nA, nB), Vi is the random variable measuring the downcrossing time

until first passage time at state (0, i − 1) starting from state (0, i) for 1 ≤ i ≤ nB − 1, and V0 is

the random variable measuring the downcrossing time until absorption in state (−1) starting from

state (0, 0).

The Markovian assumptions allow us to state that the random variables U(nA), V0, ..., and

VnB−1 are independent. From Figure 6, we see that V0, ..., and VnB−1 are identically distributed.

Let E(Y B
(nA,nB)) and V ar(Y B

(nA,nB)) be the mean and variance of the random variable Y B
(nA,nB),

respectively. Then, using the linearity property of expectations, we get

E(Y B
(nA,nB)) = E(U(nA)) + nBE(V0), (14)

and from the independence between these random variables, the following holds

V ar(Y B
(nA,nB)) = V ar(U(nA)) + nBV ar(V0). (15)

Let us now focus on computing the means and variances of U(nA), V0, ..., and VnB−1. To do so,

we define an intermediate birth-death process with discrete state space. The transition rates of the

process are denoted by





qm,m+1 = λA(m), for m ≥ 0,

qm,m−1 = sµ, for m ≥ 1,

q0,a = sµ,

(16)

and qm,n = 0 otherwise. The birth-death process is derived from the previous Markov chain and is

shown in Figure 7.

 a 0 1 nA-1 … … 

sµ 

λA(0) λA(nA -1) λA(nA) 
 

sµ 
sµ 

sµ 

nA nA+1 

Figure 7: Intermediate birth-death process

One may intuitively see that the intermediate birth-death process allows us to compute the

time it takes to empty the queue of a given number of waiting type A customers plus the time for
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a service completion, so that one of the waiting type B customer could enter service. The random

variables U(nA), V0, ..., and VnB−1 are defined on the intermediate birth-death process as follows.

The random variable U(nA) is the downcrossing time until first passage at state a, starting from

state nA. As for the random variable Vi, 0 ≤ i ≤ nB − 1, it is only the first passage time at state

a, starting from state 0.

By considering a general birth-death process, Jouini and Dallery (14) gives closed-form expres-

sions for any moment of order k ≥ 1 of several random variables related to first passage times.

We use their results in our context here. To simplify the presentation, we introduce the quan-

tities δm for m ≥ 0. For m = 0 we let δ0 = 1 (one per unit of time, u.t.), and for m ≥ 1 we

let δm = λA(m − 1). Let us now define the potential coefficients of the intermediate birth-death

process, say φm, as follows.

φ0 = 1, and φm =

∏m−1
j=0 δj

smµm
, for m ≥ 1. (17)

From Jouini and Dallery (14), the mean E(U(nA)) and variance V ar(U(nA)) of U(nA) are then

given by

E(U(nA)) =
nA∑

m=0

1
δmφm

∞∑

j=m+1

φj , (18)

V ar(U(nA)) =
nA∑

m=0

2
δmφm

∞∑

j=m+2

1
δj−1φj−1




∞∑

l=j

φl




2

+
nA∑

m=0

1
δ2
mφ2

m




∞∑

j=m+1

φj




2

. (19)

The mean E(V0) and variance V ar(V0) of the random variable V0 are given by

E(V0) =
1
δ0

∞∑

m=1

φm, (20)

V ar(V0) =
2
δ0

∞∑

m=2

1
δm−1φm−1




∞∑

j=m

φj




2

+
1
δ2
0

( ∞∑

m=1

φm

)2

. (21)

Note that we kept the intermediate parameter δ0 (=1) in Equations (20) and (21) in order to get the

correct unit of the quantities E(V0) and V ar(V0). Substituting Equations (18), (19), (20) and (21)

back into Equations (14) and (15) leads to the expressions of the mean and variance of the random

variable Y B
(nA,nB). Finally, using the results of Section 4.3.1 to compute the balking probabilities

for type A arrivals, the mean and variance of Y B
(nA,nB) are thereafter fully characterized.
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Note that one may derive all higher order moments of the virtual delay for both customer types,

which allows us to derive their full distributions. However, the analysis would be cumbersome and

numerically time consuming. We thereafter content ourself with only the first two moments, and

propose a useful approximation of these distributions as we shall explain later in Section 5.2.

Furthermore, for finite buffer systems the same analysis holds and the infinite summations in the

expressions for the first two moments are replaced by finite ones.

5 Some Practical Issues

In this section, we investigate some practical issues for an eventual implementation of delay

information. We identify two points that may help practitioners. The first is discussed in Section

5.1, and evaluates the need of announcing delays when queues are empty upon the arrival of a new

customer. The second is discussed in Section 5.2, and deals with an approximation for computing

the anticipated delay we communicate to each new arrival.

5.1 Empty Queues

In this section, we call into question the need for communicating delays to new customers who

find the queues empty. We consider a new arriving call finding empty queues. We define q as the

conditional probability that the call of interest has to wait before beginning service, given that he

finds the queues empty. The probability q does not depend on the type of the new arrival, and it

concerns the case of having all servers busy knowing that the queues are empty. We are interested

in calculating q, in order to get some indication on its value under normal working conditions of a

call center. For instance, if the proportion q is very small, then most arriving calls begin service

without waiting. So, there is little need for delay information. However, if q is quite large, then a

considerable proportion of new calls have to wait, and the prediction would be important.

Another reason that prompts us to address this problem is related to an organizational issue in

some call centers. In most call centers the state of the queues, i.e., the number of waiting customers

if any, is visible. If no customers are waiting in queue, the system may however be unable to tell

whether an agent is available for the new arrival or not. Even if technological capability to monitor

agent availability is in place, agents are known to game such systems in practice. As a consequence,

it would be interesting to study how the quantity q behaves.

The proportion q represents the conditional probability that a new call has to wait knowing
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that the queues are empty. To compute q, the analysis is straightforward. We choose to omit the

details. For the call center incorporating announcement of delays of Section 3 (Model 1, without

reneging) and that of Section 4 (Model 3, with reneging), we have the following simple and common

expression of q for both models

q =
λs

T

s!µs

(
s∑

i=0

λi
T

i!µi

)−1

. (22)

We have conducted a numerical analysis which we do not report here for brevity. In it, we

consider a large range of parameters typical of those that would be encountered in real situations.

The central insight is that only a small proportion of new calls (who find empty queues) have to

wait before beginning service. Under normal working conditions, the proportion is of the order of

10%. As a consequence, there is not a real need to inform customers about their anticipated delays.

In addition, even if one customer has to wait, his waiting time is sufficiently low.

5.2 Normal Approximation of Virtual Delays

Given the system state upon each arrival and given a coverage probability β, the service provider

has to compute the value of the anticipated delay. This numerical computation operation is char-

acterized to be too heavy. In fact for the low priority customers, exact moment expressions of the

virtual delays involve infinite summations. Even if these are replaced by finite summations for the

case with buffers, some numerical difficulties will remain since we need to conduct such real-time

operations for each arrival. Off-line tables would have to be built to circumvent these problems.

From a practical point of view, a normal distribution provides a satisfactory approximation of

virtual delays. Since the random variables of virtual delays we consider here deal with summations

of independent random variables, the Normal approximation should work well, see Whitt (29) and

Ward and Whitt (26). This claim is supported by theoretical results based on the Law of Large

Numbers and the Central Limit Theorem. The Normal approximation should especially work well

for new arrivals who find a large number of waiting customers in queue.

We only need the mean and standard deviation of the state-dependent virtual delay in order

to get its full distribution (approximately). Thus, we propose to use the Normal distribution by

only picking up the means and variances we derived in Sections 3 and 4. We should however point

out that for small values of β, such distributions may lead to negative values of anticipated delays.

To be judicious, we may adapt a given normal distribution by truncating it. For instance, let h(t)
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and H(t), −∞ < t < +∞, be the pdf and PDF of the original Normal distribution, respectively.

Also, let htr(t) and Htr(t), 0 < t < +∞, be those for the truncated Normal distribution. The pdf

of htr(t) is calculated as htr(t) = h(t)
1−H(0) . By doing so, we even out the area of the negative region

(t < 0) over that of the positive region, so that we build an appropriate distribution. Note that

this transformation should not really affect the original Normal distribution. The reason is that

the quantity 1 − H(0) is low for very small numbers of waiting customers in queue, and may be

reasonably neglected otherwise.

To assess the quality of the normal approximation, we conduct a simple numerical analysis. We

only consider the case of the more important type A customers in Model 3 (with reneging). We

believe that the same conclusions remain valid for all remaining cases. We quantitatively compare

the exact distributions of virtual delays of new arrivals A with the approximated ones (Normal

distribution). As we have investigated in Section 4.3.1, the virtual delay of a new arrival A who

finds nA waiting customers A in queue, Y A
nA

, has an nA + 1-Erlang distribution with parameter sµ.

The key parameters are thereafter nA and sµ. We choose sµ = 3 (for example 15 agents and an

average service time of 5 min). In Figure 8, we plot the pdf of the exact virtual delay and that

of the approximated one for nA=1, 5, and 10. From Figure 8, we deduce that the quality of the

approximation improves as the number of waiting customers in queue increases. This agrees with

our claim above.
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Figure 8: Exact and approximated density functions

To assess the quality of the Normal approximation for a given percentile β, we plot in Figure

9 the PDF of the exact and approximated virtual delays. We choose sµ = 3 and nA = 5. From

Figure 9, we see that the approximation is very accurate, especially for high values of confidence

intervals. The manager will announce a delay which is based on a given β. Naturally, he should
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Figure 9: Exact and approximated probability functions

preserve his credibility by choosing a high confidence interval (in the order of 90%). For example

for β = 90%, the approximated delay is 3.05 min while the exact one is 3.1 min.

6 Concluding Remarks and Further Extensions

We formulated and analyzed a multi-class call center model with priorities and impatient cus-

tomers, to whom anticipated delays may be announced upon arrival. Assuming that delay an-

nouncements will lead customers to balk in response, the analysis analytically characterizes virtual

delays that will be experienced in such call centers. While the results in the paper enable an exact

analysis, an approximation based on a Normal distribution is also proposed, in case computational

ease is valued more than announcement precision in practice. It is shown that especially for busy

systems such an approximation will not sacrifice a lot of precision.

Worrying about accurate and practical results, one may continue our work by empirically de-

scribing customer reactions in response to delay announcements, in order to validate our modeling

of that reaction herein. Guided by such results, one could then explore whether delays should be

announced to customers, to which types of customers such announcements should be made, and

with what level of precision. A further topic for future research is to analyze more complex sys-

tems: more than two customer classes and other disciplines of service such as threshold policies. It

would also be of value to extend our work to the case of different statistical behaviors of different

customer types. In other words, to settings where service times as well as times before reneging

are not identically distributed for different customer types.
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written in part while the first author was visiting Koç University. The authors wish to thank the
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