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Abstract

In this paper, we prove new convergence results improving the ones by Chas-
sagneux, Elie and Kharroubi [Ann. Appl. Probab. 22 (2012) 971-1007] for the
discrete-time approximation of multidimensional obliquely reflected BSDEs. These
BSDEs, arising in the study of switching problems, were considered by Hu and Tang
[Probab. Theory Related Fields 147 (2010) 89-121] and generalized by Hamadéne
and Zhang [Stochastic Process. Appl. 120 (2010) 403-426] and Chassagneux, Elie
and Kharroubi [Electron. Commun. Probab. 16 (2011) 120-128]. Our main re-
sult is a rate of convergence obtained in the Lipschitz setting and under the same
structural conditions on the generator as the one required for the existence and
uniqueness of a solution to the obliquely reflected BSDE.

Key words: BSDE with oblique reflections, discrete time approximation, switching
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1 Introduction

In this paper, we study the discrete-time approximation of the following system of
reflected backward stochastic differential equations

s T T
Yo gt + [ SO0V Z)ds - [ ZeWos Ky~ Ky 0<ts<T.
t t
<5@£>I§1§‘%{W—C@(Xt)}7 0<t<T, (el
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| e = e 7 - iy axct <o tet,
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(1.1)
where Z := {1,....,d}, f, g and (c"); jer are Lipschitz functions and X is solution to
the following forward stochastic differential equation (SDE) with Lipschitz coefficients

¢ ¢
Xy=x+ f b(Xs)ds + f o(Xs)dWs. (1.2)
0 0

An important motivation for this study comes from economics applications, espe-
cially to energy markets. Indeed, it has been shown that the solution to the above equa-
tions allows to compute the solution of optimal switching problems which are linked
to real option pricing (see e.g. [3]). This motivated a huge literature on switching
problems both on the financial economics and applied mathematics sides, as pointed
out in the introduction of [I6]. The theoretical study of equation (LI]) has started in
dimension 2 in the paper [14] and was latter extended in higher dimension in [9] 3], 22].
These studies are related to optimal switching problem and, in terms of existence and
uniqueness result to ((LT]), impose really strong conditions on the driver f of the BSDEs.
These conditions were then weakened successively in [I77, [16] [7]. It is quite important to
notice that contrary to normally reflected BSDEs [13], the best existence and unique-
ness result available in the literature requires structural conditions, see below, both on
the driver f and the function c¢. To the best of our knowledge, it can be found in the
paper [15].

The numerical study of (LI]) by probabilistic methods has attracted much less
attention [22] [IT1] [§]. The first rate of convergence for a numerical scheme associated to
(CI) was proved in [7] but under quite restrictive condition on the driver f. The main
goal of our work is actually to prove a rate of convergence for a discrete-time scheme to
obliquely reflected BSDEs under the same conditions on f required to have existence
and uniqueness to (1) and minimal Lipschitz condition on the function c.

As in [T} 19, 8], we first introduce a discretely reflected version of (LII), where the
reflection occurs only on a deterministic grid R = {rg :=0,...,r, := T}: Y ¥ = Y;E =
9(X7) € Q(X7), and, for j < k —1 and t € [r},7j41),

AL L er F(Xu, YR Z®) du — f”“ ZRaw,
t - Ti+1 uy o0 u u U
R t N t (1.3)
VR =Y ey + P(X V) Ljgeny.
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where P(z,.) is the oblique projection operator on the closed convex domain
O() = {y e Ry’ > max(y — o (@), Vi e z} ,
JE

defined by
P:(z,y) e R x RY <max{yj - c”(x)})
jet 1<i<d
We denote |R| the modulus of R given by |R| := maxo<i<r—1 |rit1 — 74l
An important step in our study is to prove that these discretely reflected BSDESs
are a good approximation of the continuously reflected ones (ILI]). In section 4, we are
able to control the error in terms of |R| under minimal Lipschitz condition for the cost
functions ¢, which is new in the literature, improving, in particular, the results of [§].

We then consider a Euler type approximation scheme associated to the BSDE (IL.3))
defined on a grid m = {tg,...,t,} by Yy g(X7) and, for i e {n —1,...,0},

2" = BT H; | Fu,
VR = BT | Bl + hif (XE, T, 20, (1.4)
Y= }Nfim’”l{t#m} + P(XT, }N/;R’ﬂ)l{tie%b
where X7 is the Euler scheme associated to X, h; := t;11 —t; and weights (H;)o<i<n—1
are matrices in Mb? given by

-R Wi, -W. R

H;)' = v—t B2 1<l <d,
(H) hi hi h;
with R a positive parameter. We denote |7r| the modulus of 7 given by |7| := maxo<i<n—1 i

and we assume that we always have & < .

To obtain our convergence results, we work, throughout this paper, under the fol-
lowing assumption:

(Hf)
(i) The functions o : R? — M%? and b : R? — RY are Lipschitz-continuous functions.
(ii) The functions f : R? x RY x M%4 - R4 g:R? — R? and (¢ : R? — R); jez are
Lipschitz-continuous functions and f7(z,y,2) = f/(z,y,2"). We denote by LY
and LZ the Lipschitz constants of f with respect to vy and z.

(iii) g(x) € Q(x), for all z € R%

(iv) The cost functions (c/); jer satisfy the following structure condition

¢t =0, for 1 <i < d;
inf cga ¥ (x) > 0, for 1 <i,j < d with i # j; (1.5)
inf,cga{c”(z) + d'(z) — ()} >0, for1<i,j<dwithi#jj#L



Let us emphasize here the fact that our results are obtained without any assumption
on the non-degeneracy of the volatility matrix o. We also point out that (H f)(i7) is
the best condition — up to now — for existence and uniqueness to (L] to hold.

A fundamental result to obtain convergence for continuously reflected BSDEs is
first to prove that the scheme given in ([L4]) approximates efficiently discretely reflected
BSDEs. This result is interesting in itself if one is only interested in the approximation
of Bermudan switching problem (i.e. when the switching times are restricted to lie in
the grid R). It is discussed in section 3 below and requires, in particular, the use of a
new representation result for the scheme (4.

Combining the fact that discretely reflected BSDEs are a good approximation of
continuously reflected BSDEs and that the scheme ([L4]) is also a good approximation
of ([IL3)), we obtain our new convergence result, which is the main result of this paper
and is summarised in the following Theorem.

Theorem 1.1. Let us assume that (Hf) is in force. Set R such that L“R < 1, 7 such
that LY |w| < 1 and define o(|n|) = log(21/|x|). Then the following holds, for some
positive constant C':

(i) Taking |R| ~ |7|"/?, we have

sup B[V, — V712 + [v7, = V72| < Ol Pa|)).

0<isn
(ii) Taking |R| ~ |7|*/3, we have

sup B |Y;, = T2+ v, = V2] < Ol Vo),

0<i<n

and

n-1 tit1
[Z J, 12 - 287 as | < o allD)

Moreover, if the cost functions ¢ are constant, then the previous estimates remain true
with a(|w|) == 1.

It is important to compare the previous result with Theorem 5.4 in [§] which gives
also rates of convergence for the discrete-time approximation of obliquely reflected BS-
DEs. Up to a slight modification of the scheme (introducing the truncation of the
Brownian increments), we see that we are able to obtain the convergence rate 1/4,
when the previous result, under (H f), were only predicting a logarithmic convergence.
Also, we are able to work under a minimal Lipschitz condition for the cost functions,
which was not the case before.

The rest of the paper is organised as follows. In Section 2, we present preliminary
results that will be useful in the rest of the paper. We discuss the representation prop-
erty of obliquely reflected BSDEs in terms of auxiliary one-dimensional BSDEs. We



also give new regularity results for the discretely reflected BSDEs which are key tools
to obtain our convergence results. Section 3 is devoted to the study of the numerical
scheme, in particular its fundamental stability property. Using this stability property
and the regularity results given in Section 2, we prove a control of the error between the
scheme and the discretely reflected BSDEs. Section 4 is concerned with the approxi-
mation of continuously reflected BSDEs by the discretely reflected ones. A convergence
rate is obtained that allows to prove, using the result of Section 3, our main result,
Theorem [I.1] above. For the reader convenience, some technical proofs are postponed
in an Appendix Section.

Notations Throughout this paper we are given a finite time horizon 1" and a proba-
bility space (€2, F,P) endowed with a d-dimensional standard Brownian motion (W});=0.
The filtration (F;)i<7 is the Brownian filtration. & denotes the o-algebra on [0,7"] x Q
generated by progressively measurable processes. Any element x € R™ will be identified
to a column vector with ith component 2 and Euclidean norm |z|. For =,y € R", z.y
denotes the scalar product of x and y. We denote by < the component-wise partial
ordering relation on vectors. M™™ denotes the set of real matrices with n lines and m
columns. For a matrix M € M™™, M%¥ is the component at row i and column j, M*
is the ith row and M+ the jth column.

We denote by C*? the set of functions with continuous and bounded derivatives up
to order k. For a function f : R" - R, z — f(x), we denote by 0, f = (Op1 f,..., 0w f).
If f:R"xRY - R, (z,y) — f(x,y) we denote d, f (resp. 0Oy f) the derivatives with
respect to the variable x (resp. y). For g : R® v R% & — g(x), d,¢ is a matrix and
(0:9)" = 0zg".

For ease of notation, we will sometimes write E[.] instead of E[.|F], ¢ € [0,T].
Finally, for any p > 1, we introduce the following:

1
- P the set of Fp-measurable random variables G satisfying |G|g»r := H|G|P]» <
+00,

- P the set of cadlag adapted processes U satisfying

< O

)

\U|.gv := E[ sup |Ugl?
te[0,T']

and .72 the subset of continuous processes in .77,

- JP the set of progressively measurable processes V satisfying

T 5
|V]wr :=E U |Vt|2dt>
0

- P the set of continuous non-decreasing processes in .7,

1
P
< O

)

- ' ®P the set of pure jump non-decreasing processes in .? with jump times in .



In the sequel, we denote by C' a constant whose value may change from line to line
but which never depends on || nor |R|. The notation C,, is used to stress the fact that
the constant depends on some parameter .

2 Preliminary results

In this section, we present key properties of continuously and discretely reflected BSDEs.
We start by recalling the representation property in terms of ”switched” BSDEs of the
multidimensional systems of reflected BSDEs (L)) or (L3]).

In a second part, we study the regularity properties of the solution to discretely
reflected BSDEs in a Markovian setting. These results are key tools to obtain a con-
vergence rate for the numerical approximation. They are new in the framework of this
paper but their proofs rely on arguments that are now quite well understood.

2.1 Representation of obliquely reflected BSDEs

As mentioned in the introduction, the motivation to work on the above class of obliquely
reflected BSDEs comes from the study of ”switching problems” in the financial eco-
nomics literature. Indeed, RBSDEs provide a characterization of the solution to these
switching problems. Interestingly, the interpretation of the RBSDE in term of the solu-
tion of a ”switching problem” is a key tool in our work. We now recall the link between
the two objects, which takes the form of a representation theorem for the solution of
the RBSDEs in terms of ”"switched BSDEs”. This link has been established before, see
e.g. [I7]. We state it here in a generic framework as this will be useful latter on.

We consider a matrix valued process C' = (C¥)1<; j<, such that C% belongs to .7
for 7,7 € Z and satisfies the structure condition

C¥ =0, forl<i<dand 0 <t <T;
infycpo, 7 C’;?} e> 0, 4 for 1 <i,j <d with ¢ # j; (2.1)
infepor{Cy + C' = Cf'} > 0, for 1 <i,j <dwithi+j,j#L

We introduce a random closed convex set family associated to C"
Q= {yeRW > max(y’ — C}), 1 <z’<d}, 0<t<T,
je
and the oblique projection operator onto Q;, denoted P; and defined by

P :yeR? (r?ez_}zx{yj - C’fj}> . (2.2)

1<i<d

Remark 2.1. It follows from the structure condition 2II) that Py is increasing with
respect to the partial ordering relation <.



A switching strategy a is a nondecreasing sequence of stopping times (6;)jen ,
combined with a sequence of random variables (a;)jen valued in Z, such that o is
Fp,—measurable, for any j € N. We denote by & the set of such strategies. For
a = (0j,a;)jen € &7, we introduce N'* the (random) number of switches before T':

NO = #{keN* . 0, <T}. (2.3)

To any switching strategy a = (6}, a;);jen € &7, we associate the current state process
(at)tefo,r) and the cumulative cost process (Af)e[o,7] defined respectively by

Na Na
.
ar = aolyogi<nyy + Zajfll{ej—létdj} and A := ZC%J Jl{gfgth}’
j=1 Jj=1

for0<t<T.

Remark 2.2. (i) The sequence of stopping times is only supposed to be non-decreasing,
but the assumptions on the cost processes (211 imply that any reasonable strategy
uses a sequence of increasing stopping times. This is specially the case for the
optimal strategies.

(i) Note that the cumulative cost process will keep track of all the switching times,
even the instantaneous ones; whereas the state process will keep track of the last
state when instantaneous switches occur.

For (t,i) € [0,T] x Z, the set % ; of admissible strategies starting from state i at
time ¢ is defined by

427,571' = {a = (Hj,aj)j N4 |60 = t, ap = i, E[‘A%F] < OO} s
similarly we introduce safti}f the restriction to R—admissible strategies
Ay = {a= O 0))ene A | G R, Vi<N Y,

and denote &/® := Ui<a ;2%0%3
For a strategy a € 4, we introduce the one-dimensional switched BSDE whose
solution (U, V?) satisfies

T

T
U = o 4 f FO (s, V) ds — f VEAW, — A% + A (2.4)
t

t

where the terminal condition £, the random costs process and the random driver F'
satisfies following assumptions, for some p > 2:

(HFp)
(i) F:Qx[0,T] x M4 - R?is 2 @ B(RY) ® B(M%?)-measurable,

(i) FI(-,2) = FI(-,2%) for all j € T,



(iii) |F(s,2) — F(s,2")| < Clz — 2| for all s € [0,T1], z, 2" € M4,
(iv) € is Fp-measurable and is valued in Qr,

T
(v) E &l + 55 1F(s,0)1" ds| < C.

We now define multidimensional processes ) and Y% as follows, for ¢ € {1,...,d}

(V,)f :=ess sup U and (PF)E = ess sup UL .

aed ¢ acd%,

The process ) represents the optimal value that can be obtained from the switched
BSDEs following strategies in <7. The process Y® can be seen as a ” Bermudan” version
of it i.e. when the switching times are restricted to lie in . Both processes enjoy a
representation in terms of reflected BSDEs, the main difference lying into the reflecting
process that for the latter will be a pure jump process with jump times in .

Let (¥, Z,K) be the solution to the following BSDE

T T

yf:guf Ff(s,zs)dsf ZEAW, + KL —Kf 0<t<T, (eT,
t t

LV = max(V] - ¢}, 0<t<T, (e,

JE
T . .
V¢ — max yﬂfc’fﬂ]dicfzo, (e,
[t = e 2 = ] ax

) ) (2.5)
and (Y%, Y% 2% KR®) with Y} = YF | t € (0,T] be the solution of following discretely
reflected BSDESs,

T T
5;?:§+f F(s,z?)ds—f ZFdW, +KF - K, 0<t<T,
t t

Ve o, reR, (2.6)
T
R\ R\E L RV
[y = max () = cy] auedy -0, te1,

Existence and uniqueness of a solution for equation (23] has been addressed in [17, [16]
and in [8] (Proposition 2.1) for equation (Z6l). For the reader convenience we recall
here these results.

Proposition 2.1. Assume that (HF,) holds for some p > 2. There exists a unique
solution (¥, Z,K) € S2 x A x A to [ZI) and a unique solution (YR YR, ZR KR
with (Y%, Z% K% e .72 x A% x %2 to Z0). They also satisfy

Ve + [Zlev + 1Kl zr < Cp and [YR] 9 + |27 0 + |KF| 20 < Cp.

Gathering Proposition 3.2 in [7] and Theorem 2.1 in [8], we have the following key
representation result.



Proposition 2.2. Assume that (HF5) is in force. The following hold:

(i) for all 0e{1,...,d}, te[0,T],

R

V)= =Ut  and YN =N =uf
for some a € < o and a® e 424?%.

(ii) The strategy a = (05, a;) ;=0 can be defined recursively by (9o, ap) = (t,£) and, for
i1,

0 ::inf{s [0; 1, ]‘(3}3)0‘1 1< max {(Ys)F Csaj_lk}},

k;éaj 1

dj := min {f £ @j,1

) = € = o (35"~ 0y |

k;éaj 1

(iii) The strategy a” (0] e ®)j=0 can be defined recursively by (OF, &) := (t,£) and,
Jorj =1,

9_;]% := inf {S € [9_2%_1, T] n %‘(3}?}%) -1 < max {(y?R) C;J‘S}R—lk}} ’

k;éoz
. ) N a® 0 &Rk
d;R := min {E # a?ﬁ_l (yg%?)f — Cg;% V= kmax {(ye%) — Cg;% ! }} .
J J ;éoz J

Remark 2.3. If f/tf ¢ Q; then there is an instantaneous jump, i.e. 0, = t. In the same
way, if t € R and (YR ¢ Q; then 0F =t.

2.2 Discretely obliquely reflected BSDEs in a Markovian setting

We will now study the discretely obliquely reflected BSDEs (2.6)) in a Markovian setting,
namely the solution to (L3]). We will in particular prove regularity results for this
process. The main difference with Section 3 in [§] comes from the assumption on f, in
particular the full dependence in the y-variable, recall (H f)(ii).

Let us recall that under assumption (H f)(i), there exists a unique strong solution to

the SDE (I2]) which satisfies

Co(1+|X¢P), forallp>2,te|0,T]. (2.7)

Eyf sup |X[P
s€(t, T




2.2.1 Basic properties

The following proposition gives some usefull estimates on the solution to ([IL3]). Its proof
is postponed to the Appendix.

Proposition 2.3. Assume that (H f) is in force. There exists a unique solution
(YR YR Z%) e .72 x .72 x 2 to (L) and it satisfies, for all p = 2,

V¥ + 1 2% + | KT 20 < Cp.

We now precise the results of Proposition 22 in the setting of this section. In
particular, we describe the optimal strategy and some of its properties that will be
useful in the sequel.

Corollary 2.1. (i) The following equalities hold, for all ¢ € {1,...,d}, t € [0,T],

~ R
(V) = ess sup Utgcm = UtéR’a for some @™ € % |
ac®,

where (U%’“,V%’“,{Vm’a) is solution of the switched BSDE ([24) with random driver
F(s,z) = f(s, X5, Y, 2) for (s,2) € [0,T] x M®?, terminal condition & := g(Xr) and
costs C¢ = ¢ (Xy).

(ii) The optimal strategy a® = (0;,c;);0 can be defined recursively by (6o, ap) :=
(t,0) and, for j =1,

0; := inf {s €01, T nR ‘ (Y)%-1 < max {(zm)k - caj—lk(Xs)}} ,
k;éaj,1

aj := min {q # o ’ (%?)q — (X ) = max {(%S;)k _ Cajlk(ng)}} ‘
i

i) Moreover, for all £ € {1,...,d}, t € [0,T], the optimal strategy a® € <%
tl

satisfies
» T
_l’_
t

p

_5|2 p/2 Rar|P —R
yRa ds) + ‘AT’“ + ‘NW‘ < Cp(1 + | X¢[P).

Ey sup ’U;R’a%
se[t,T]

(2.8)

Proof. Thanks to Proposition[Z3] we can apply Proposition 22 with the random driver
F, the terminal condition ¢ and costs C¢) defined above, which gives us the represen-
tation result. The first estimate in (28] is a direct application of this representation
result and Proposition Other estimates in (2.8]) are obtained by using standard
arguments for BSDEs combined with the estimate (A.J]), see proof of Proposition 2.2
in [8] for details. ]
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2.2.2 Fine estimates on (Y% Y% Z7%)

In this section, we prove regularity results on the solution (Ym, Y% z m) of the discretely
reflected BSDEs. To do that, we will use techniques already exposed in [I], Bl §], based
essentially on a representation of Z%, obtained by using Malliavin Calculus. For a
general presentation of Malliavin Calculus, we refer to [20]. We now introduce some
notations and recall some known results on Malliavin differentiability of SDEs solution.
We will work under the following assumption.

(Hr) The coefficients b, o, g f, and (¢¥); ; are C1? in all their variables, with the
Lipschitz constants dominated by L.

This assumption is classically relieved using a kernel regularisation argument, see e.g.
the proofs of Proposition 4.2 in [5] or Proposition 3.3 in [IJ.

We denote by D2 the set of random variables G which are differentiable in the
Malliavin sense and such that |G[3.. = |G|%. + Sg | D:G|%2dt < o0, where DG
denotes the Malliavin derivative of GG at time ¢ < T'. After possibly passing to a suitable
version, an adapted process belongs to the subspace L5? of #? whenever V, € DY2 for

T
all s < T and HV||211’2 = V2. + 5, [DV|22dt < .

Remark 2.4. Under (Hr), the solution of (L2) is Malliavin differentiable and its
derivative satisfies

| sup |DsX]|| ., < oo and Er[ sup |Dqu|p] <COA+|X,P), u<r<T. (29)
s<T

r<s<T

Moreover, we have

sup [ DsX; — Ds Xy oy + | sup 1D Xs — Dy Xl ||y < CPIt—ul'/?, (2.10)
t<s<

s<u

forany O <u<t<T.

Malliavin derivatives of (Y® Y® Z®). We now study the Malliavin differentia-
bility of (Y® Y%, Z®%). The techniques used are classical by now, see [I, 5]. In this
paragraph, we will follow the presentation of [§]. Once again, the main difference with
this paper is the assumption (H f) made on the driver f. In the setting of [§], f has to
satisfy fi(z,y,2) = f'(z,y’, 2*) whereas (H f) does not impose such restriction on the y
variable. This implies that the representation of Z, see Corollary below, is slightly
more complicated. Namely, it contains the term DY, compare to Proposition 3.2 in 18]
To obtain the regularity results on (Y%,?m, Zm)7 we need thus to prove estimates on
DY, which is the main result of the next Proposition.

Proposition 2.4. Under (Hf)-(Hr), (Y®, Z%®) is Malliavin differentiable and its deriva-

11



tive satisfies, for allr € [0,T], u <r, i €Z,
D, (Y = Er[ax 9°7 (X7) Dy X1 +| 0, % (6F) D, X ds
T

T T d
+j 0y f(OF) DY ds + f Y, et f2(OF) D (2) ™ ds
T Toe=1

Nll
— ) Bpc (ng)Dquj] (2.11)
j=1
where a = a® is the optimal strategy associated with the representation in terms of

switched BSDEs, recall Corollary 21, and O% := (X, YR Zm). Moreover, the following
estimates hold true: for allT € [0,T],0<u<r,0<v<r,

DY, [> < CrL(1+|X,[%) (2.12)
and
1
~ ~ 2
|D.Y, — DY, > < Cr(1+ |XT\)E{ sup |DyXs — DUXS\4] . (2.13)
r<s<T
Proof.

Let G € DY2(RY). Since X belongs to L4 under (Hr), and P is a Lipschitz
continuous function, we deduce that P(X;, G) € DV2(R9). Using Lemma 5.1 in [I], we
compute

Dy(P(X;,G))" = (2.14)
d

Z (DSG] 7Dscij (Xt))]-Gj —c¥ (X¢)>maxp<; (GE—c(Xy)) lgicis (X¢)zmaxys ; (GE—ci(Xy))

j=1

Combining (2.14)), Proposition 5.3 in [I0] and an induction argument, we obtain
that (Y% Y% Z%) is Malliavin differentiable and that a version of (D,Y™®, D, Z%) is
given by, forall i€ Z, t € [0,T], 0 < u < ¢,

1 A Ti+l
Du(Z%)kaw® +f 0, F(OR) Dy X, ds
t

Ti4+1 . ~ Ti+1 d . .
77, fl(Gf)DuY;mds+fj S 0. fONDL(ZNikds  (215)
t t =1

recall (H f).
Now, we consider the optimal strategy a := a@” defined in Corollary 211 (ii) above
and fix j < k. Observing that the process a is constant on the interval [6;,60;,1), we

12



deduce from (2.19])

d
DUFM = D) - Y |
k=1t

0541
Du(ZR)kawk + f 0, £ (O™ Dy Xds
t

011

(2.16)
051 ~ 9j+1 4 ,
775, e (07 D T Rds +f S 0.0y0 £ (OF) D, (27) 2 ds
t t =1
for t € [0;,0;41] and 0 < u < t. Combining (2ZI4)) and the definition of a given in
Corollary .11 (i), we compute, for v < 0,41 and j < &,

Du(Yaﬁl)m - Du(%ﬂfﬂ)aﬁl _ amcajajﬂ(ngH)Dqu

j+1
Inserting the previous equality into (ZI6) and summing up over j we obtain, for all
t<r<T,

T d T
Dy (YR =0,9°7 (X7)Dy X7 — f > Du(ZF)*F AW, +] 0, £ (0F) Dy X,ds
T k=1 s

T T d
*f 0y (0D, Y ds + f D a2 (OF) Dy (ZF) " ds
T T =1

Na
— ) 0™ (X, )(DuX ), (2.17)
j=1
Taking conditional expectation on both sides of the previous equality proves (ZIT]).
Moreover, we are in the framework of section [A.2]in the Appendix by setting ) = D,Y
and X = D, X. Condition (A2 is satisfied here by N with 3 := CL(1 + |X]|), recall
(Z8). Using Proposition [A] and (29]), we then obtain (ZI2]).
From equation ([ZI7), we easily deduce the dynamics of Dy, (Y®) — D,(Y™), which
leads, using again Proposition [A.T] to (ZI3]). OJ

The representation result for Z* is then an easy consequence of the previous propo-
sition.

Corollary 2.2. Under (H f)-(Hr) the following representation holds true,

N(l
ZR =B 09" (X0)ALr D X1 — ). 0:¢%1% (X, )Af g, Dy Xo,
j=1
T ~
+ f (am fo(OMAL DX, + 0, f%(@?)AgSDtYS%) ds} : (2.18)
t
where a = a® is the optimal strategy associated with the representation in terms of

switched BSDEs, recall Corollary 21, and for £ € T,

Af, == exp < f Ozar. fO (OFYAW, — %f |0.ar. far(@f)ﬁdr) . (2.19)
t t

13



Moreover, under (H f), we have
\Z;R\ <L+ (X)), foralltel[0,T], (2.20)

for some positive constant L that does not depend on the grid R.

Proof. 1. A version of Z% is given by (D;Y;®)o<i<7. The expression of D;Y is obtained
directly by applying It6’s formula, recall (2.1T]).
2. Under (H f)-(Hr) the estimate (Z20]) follows from (ZI2]) and (Z3)). Under (H f),

we can obtain the result by a standard kernel regularisation argument. O

Regularity of (Y%, Z®). With the above results at hand, the study of the regularity
of (YS%7 Z Sfe) follows from ”classical” arguments, see e.g. [0 [§]. For sake of completeness,
we reproduce them below.

We consider a grid 7 := {tp = 0,...,t, = T} on the time interval [0,T], with
modulus || := maxg<j<n—1 |ti+1 — ti], such that & < 7.

We need to control the following quantities, representing the J#2-regularity of (EN/, Z):

T T
EUO mme(et)th} and EUO |Z?Zf(t)|2dt} , (2.21)

where 7(t) := sup{t; € m; t; < t} is defined on [0,7"] as the projection to the closest
previous grid point of 7w and

_ 1 tit1
Zt = 7EU deds|}"ti] , ief{0,...,n—1}. (2.22)
tivi =t |y,
Remark 2.5. Observe that (Z%) <7 := (Zf(s))ng interprets as the best #’?-approximation
of the process Z® by adapted processes which are constant on each interval [titit1),

for all i < n.

The first result is the regularity of the Y-component, which is a direct consequence

of the bound ([Z20).
Proposition 2.5. Under (H f), the following holds

sup E[\Y/f}e - }7;}&)|2] < Cp|n| .
te[0,T']

Proof. We first observe that, for all 0 <t < T,

" 2

w( s

t
E[mﬂ‘* - Y%t)|2] <E F(X0, VR 2™ ds + f ZRaw,

7(t)

7(t)

t
<CLEJ (1+|Xs|2+|y;%|2+|zg?|2) ds].

w(t

< CLE (2.23)

t ~
- +f Z%2ds
m(t)
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where we used (2.7)) and Proposition 23l From (2.20)), we easily get IE[ |Z gce| dt]

Cr|m|. Inserting the previous inequality into ([223]) concludes the proof of this Propo-
sition. ]

The following Proposition gives us the regularity of Z®. Its proof is postponed to
the Appendix.

Proposition 2.6. Under (Hf), the following holds
T
E{f |z} — ZiR|2dt] < (Cp, <|7T|% + I£|7T|) .
0

3 Study of the discrete-time approximation

The aim of this section is to obtain a control on the error between the obliquely reflected
backward scheme ([4]) and the discretely obliquely reflected BSDE (LL3). This is the
purpose of Theorem Bl in subsection B4] below. In order to prove this key result, we
start by interpreting the scheme in terms of the solution of a switching problem in
subsection We then use this representation to obtain a general stability property
for the scheme in subsection Subsection 3] is devoted to preliminary definition
and propositions.

3.1 Definition and first estimates

Given a grid 7 of the interval [0,7], we first consider an obliquely reflected backward
scheme with a random generator and a random cost process C™. For t € [0,T], we
denote by OF the random closed convex set associated to C] and PJ° the projection
onto QF, recall (Z2) . The scheme is defined as follows.

Definition 3.1.
(i) The terminal condition VT s given by a random variable £ € £2 (Fr) valued in
o7
(ii) for 0 <i<n,
VT = BIYRT | Ful + i FF (21T,
Zhm = ED}ZHH | F ), (3.1)
VI = D Lgmy + PR ) Lpsen

with (H;)o<i<n some R4 independent random vectors such that, for all0 <i<n, H;
is Fi,., -measurable, By, [H;] = 0,

Nilgxa = ME[H, H;] = hEqy, [H H;], (3.2)

and

<\ < —, (3.3)

>
=

where A and A are positive constants.
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Remark 3.1. Let us remark that 32) and B3) imply that

A < WE[|H; ] = By, [|Hi ] < A (3.4)

In this section we use following assumptions. (HFd),)

(i) For all i € {0,....,n — 1}, FF : Q x M%4 — R is a F,, ® B(M®%9)-measurable

function,
(ii) the random cost process C™ satisfies the structure condition (1),

(iii) F7(2) = F//(z%) forall je Zand all 0 < i <n — 1,

7

(iv) |EF(2) — EF ()] < L?|z — /| for all z,2" € M%4,
(v) E[I7? + S5 IFF () by + supyen [CEP| < Gy,

(Vi) supgcjcn_1 hi|Hi| L7 < 1.

Remark 3.2. i) Under (HFdy), it is clear that the general scheme [B.1) has a unique
solution.

i1) The weights (H;)o<i<n depend also on the grid m but we omit the script m for ease
of notation.

We observe that this obliquely reflected backward scheme can be rewritten equiva-
lently for i € [0,n] as

2

PR = 4 Xy R e ST 2] X M+ (61 )
Kf’w = Zle AKRE™ with AKP™ .= YR )NJ?E’W,

(3.5)

where (M) are given by [B.2) and, for all k € [0,n — 1], AM}, is an F;, -measurable

random vector satisfying
E [AM] = 0, By [[AM;]*] < 0 and E; [AMHy] = 0. (3.6)

Following Corollary 2.5 in [4], we know that assumption (HFd)y)(v) is an essential
ingredient to obtain a comparison result for classical time-discretized BSDE schemes.
We are able to adapt this comparison result in the context of obliquely reflected back-
ward scheme in the following proposition.

Proposition 3.1. Let us consider two obliquely reflected backward schemes solutions
(YR 1yRa 1zRm) gnd YR 2R 2 2R gesociated to generators (LFT), (2FT),
terminal conditions 1€™, 2€™ and random cost processes (1C™), (2C™) such that (HFdy)
is in force. If

o<, 'RCZEPY<2ECZET, foral 0<i<n-—1,
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and (*CTY* = (2CTY*,  forall j keI, t;eR,

then we have
1yi9%,n < Qyi%,n and 13}?% < ngﬁm’ for all 0<i<n.

Moreover, this comparison result stays true if these obliquely reflected backward schemes
have two different reflection grids ' and R? with R < N2, In particular, we are allowed
to have no projection for the first scheme, i.e. R = F.

Proof. We just have to use the comparison theorem for backward schemes (Corollary
2.5 in []) and the monotonicity properties of P (see Remark 2.1]). O

Proposition 3.2. Assume that (HFdy) is in force. The unique solution (Y™, YR zR)
to BI) satisfies

2

~ 2
5T + g

0<i<n

2 n—1

E{ sup ] —I—E[Z hi +E[\1Cf’7r\2] < C.

0<i<n &

1=0

Proof. The proof of uniform estimates (with respect to n and ) divides, as usual, in
two steps controlling separately (ym’“, y%’”) and (2%, ICgR’“). It consists in transposing
continuous time arguments, see e.g. proof of Theorem 2.4 in [16], in the discrete-time
setting.

Step 1. Control of 37%’“ and Y%7, We consider two non-reflected backward schemes
bounding R,

Define the R%valued random variable §V and random maps (E)Ogign_l by (5 Y=
S, (¢™)F| and (F)(2) := Y9, [(FF)k(2)] for 1 <j <dand 0 <i<n—1. We then
denote by (}u/, Z ) the unique solution of the following non-reflected backward scheme:

Yo =¢

Zi = E[Yin1 Hi | F],

Y; = E[Y;1 | Fy, ] + hiF5(Z;).

Since all the components of Y are similar, Y € Q™: Thus the above backward scheme is

an obliquely reflected backward scheme with same switching costs as in ([31). We also
introduce (Y, Z) the solution of the following non-reflected backward scheme

}O/n = gﬂ
Z; = E[Yis1 Hi | F, ],
Vi = E[Vir | F) + hEF(Z0),

Using the comparison result given by Proposition B we straightforwardly deduce that
(V) < (YRm) < (YP7) < (Y)/, for all j € Z. Since (Y, Z) and (Y, Z) are solutions
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to standard backward schemes, classical estimates and (H F'dy) lead to

o * . .
E[ sup Y, ’7r|2 + sup |Y; ’7r|2] < E[ sup |YZ|2 + sup |YZ|2]

o<ign o<ign o<ign 0<ign
n—1
< CE | [€"]* + <Z |Ff<0)|2hi>] (3.7)
=0
<C.

Step 2. Control of (Z%7 K®7™). Let us rewrite (35) for Y™™ between k and k + 1
with k€ [0,n — 1]:

YT = Y FE(Z0 M hy, — A P20 TH) — AMy + AT

Using the identity |y|> = |z|? + 2z(y — x) + |x — y|?, we obtain, setting z = yf”’ and
R,
Y=Vt
R, ST R, R, — R, R,
VR =R + 20T (~FE (R + A ERTHT + AMy — AKRT)

2
+ FT(Z0 e — AL ZDTHY — AM, + AK)T

Taking the expectation in the previous inequality, we get, combining (H Fds) with

BD-E) and E),
BV > EIVETP) - 28 V07 (B (0 + AKET) |
i 2
+E ‘hkA,;lz,?’”H,j] } + E[|[AM,;|?]

> BV 2] - CE WP (1FF ) + 12077 i) | - 28 |97 AK7 7|
+E hi)\ZQEtk[ > ((Z;?’F)TZ/?’W)M(Hk)u(Hk)lj} +E[JAM;[?]
i,5€[1,d]

> BV )~ CE [V (17 )b + 1207 )| - 28 [y k]

d %
+ SE [l 20| + Bl AMI.
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Then we sum over k € [0,n — 1] and we compute, using Young inequality with £ > 0,

— n—1
Z [hk|2m” ] + Y E[AMP] < C.E
k=0 k=0

+€Z [z ]+ 26 s |

\\77/

0<k<n

sup |V, + Z |F7(0)] hk]
k=0

<CE|p D2 3O h’“]
+eZ [hk|2%” ]+5E[|icfﬂf|2]. (3.8)

Moreover, we get from (B.5])

E [|IC?§”T\2] < CE

sup \y%”|2+2 |F7(0 m]

0<k<n

+C Z [hk|2%’r ] +C Z [AM, 2. (3.9)
k=0

Combining [B.8) with 39), and using (HFds) and ([B.7), classical calculations yield,

for € small enough,

— n—1
Z [mzﬂ“ ] + Y EAM < ©
k=0 k=0

Finally we can insert this last inequality into (3.9]) and use once again (H F'dy) and (B.7)
to conclude the proof. O

3.2 Optimal switching problem representation

We now introduce a discrete-time version of the switching problem, which will allow us
to give a new representation of the scheme given in Definition Bl To simplify notations,
we start by adapting the definition of switching strategies to the discrete-time setting:
A switching strategy a is now a nondecreasing sequence of stopping times (6, ),en valued
in N, combined with a sequence of random variables (a.),en valued in Z, such that
is JFy, -measurable for any r € N.

Then by mimicking Section 21 we define classical objects related to switching
strategies. For a switching strategy a = (0., @, )ren, we introduce N the (random)
number of switches before n:

=#{reN* : 0, <n}. (3.10)
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To any switching strategy a = (0., )ren, We associate the current state process
(ai)ie[o,n) and the cumulative cost process (A{)c[o,,) defined respectively by

Ne Ne
a; = a01{0<i<90} + Z ar*11{9T71<i<0r} and Ag = Z(Cg:% )Oér—lar l{Grgién} ,
r=1 r=1

for 0 < i < n. We denote by &™7 the set of R-admissible strategies:
%™ — {a = (0,, a,)ren switching strategy | tg, € R Vr e [1,N], B[ |A%]*] < o0} .

For (i,7) € [0,n] x Z, the set 427;};’” of admissible strategies starting from j at time ¢; is
defined by

A" = {a = (O, )ren € 777 |60 = i, a0 = j} .

For a strategy a € 427?;’” we define the one dimensional R-switched backward scheme
whose solution (%™, YRma) satisfies
u7§LR77T7a — (T,an
§R7 ’ §R7 ’
Vot =BT ] | F
R, R, , R, N . .
U, ™ = EBIUSTT | Fo ] + i BTV — Zj=1(ct7;j)aj gk, IS k<.

(3.11)

Similarly to equation (B.I), we observe that this obliquely reflected backward scheme
can be rewritten equivalently for k € [i,n] as

n—1 n—1 n—1
A NP S (VAL VI S e VAL - AN QLN VL
m=k m=Fk m=k
Ry (3.12)

where (M) are given by ([B.2) and, for all k € [0,n — 1], AM§ is an F;,  -measurable
random variable satisfying

B [AME] =0, By [[AME]?] < 0 and By, [AMEH,] = 0. (3.13)

The next theorem is a Snell envelope representation of the obliquely reflected back-
ward scheme.

Proposition 3.3. For any j € Z and 0 < i < n, the following hold:

(i) The discrete process Y™™ dominates any R-switched backward scheme, that is,

yrme < (ﬁ?’”)j, P-a.s. for any a € 427?;” (3.14)

)
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(ii) Define the strategy a™™ = (0,,a,)r>0 recursively by (0g,a0) = (i,7) and, for

r>=1,
0, =inf {ke[0,1.n] [ tre R, (P < max ()"~ Oy,
o i {0 | O G = i (O iy ™)
r e ek )
Then we have @™ € ;z%f;’w and
P = P pogs, (3.15)

(iii) The following “Snell envelope” representation holds:

(JNJ?%’”)j = ess sup L{?e’”’a P-a.s. (3.16)

R,
ae;afi’j

Proof. We will adapt the proof of Theorem 2.1 in [§] to the discrete time setting.
Observe first that assertion (iii) is a direct consequence of (i) and (ii).
Let us fix i € [0,n] and j € Z.

Step 1. We first prove (i).
Set a = (0, )r>0 € safi?;’” and the process (Y*, Z%) defined, for k € [i,n], by

I R e ,an,
{yg = Zr?o(yk )a 19r<k<9r+1 + &0 (317)

R
Zg = ZT}O(Zk; 77r)OéT 16r<k<67‘+1'

Observe that these processes jump between the components of the obliquely reflected
backward scheme (B.5]) according to the strategy a, and, between two jumps, we have

0r+1 1 0r+1 1
yeT (ygifl ar 4 Z Fwar (Z§R7r)ozr hy — Z hk)\ (Zg%,ﬂ)aerT
k=0, k=0,
Ori1—1
T R, 'r R, e
Z A(Mk)a (’C(QTJr1 1)\/07‘) *(Kg,n )a
k=0,
0r+1—1 Or+1—1 Or+1—1
=V5 o+ D) FUMEN— ) mNZRH — > AM)™
k=0, k=0, k=0,
%7 r %7 r §R7 T ~§R7 s
+ (’C(glrl)vgr)a - (’CeTw)a + ((ygrfl)a - (ygrfl)a ), r=0. (3.18)
Introducing

Ne—1 |:(9r+1—1)\/0w\k

Ki= ) D (AKETe

r=0 m=0, Ak

+16,,1<k ((ygifl)ar _ ojgﬁm )t 4 (Cg;Ml)O{TaHl) ]

r+1
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for k € [[i,n], and summing up BI8]) over r, we get, for k € [i,n],

n—1 No—1 (0ry1—1)VvEk
f =T Y e (Z)h Z R Al 28 H,N — Z D AM,)™
m=k m=0,vk

— AT AT K — K

Using the relation Y,;"™ = Py, (5}91;”) for all r € [0, V%], we easily check that £® is
an increasing process. Since U™ solves [B.12), we deduce by a comparison argument
(see Corollary 2.5 in [4]) that L{?e’”’a < YV¢. Since a is arbitrary in ;2%;};’”, we deduce

B.14).

Step 2. We now prove (ii).

Consider the strategy a’™ given above as well as the associated process ()N/a%’w, Zamm
defined as in I7). By definition of "™, we have

(y%e,ﬂ' )651" (PW (j}?’ﬂp ))d’r — (f}?v” )a’r+1 _ (CZT_ )@ra’rJrI’ r> 07

97‘+1 7‘+1 97‘+1 €r+1 Q1
which gives that k@™ = 0 and then, for all k € [[i,n],
5}]9%” 7ran7r ZFﬂam a’ Zh A~ lza

N g (G —1) vk . " "
- >, DI (AM)Y = AT+ AT (3.19)

r=0 m=0,vk

Hence, ()Niamﬁr , Za%’ﬂ) and (Z/la%’Tr , V‘i%’ﬂ) are solutions of the same backward scheme and
(JNJ?%’”)j = Uf%’ﬂ. To complete the proof, we only need to check that @™ e &% that
is IE‘I[\.A@:RJr ?] < 0. By definition of @™ on [i,n] and the structure condition on costs
(1), we have [A7"7| < maxy, . |szk| which gives E[|.A2"7|2] < C. Combining (319)
with the Lipschit%%pfoperty of F™ and estimates in Proposition B.2, we get the square
integrability of A% and the proof is complete. ]

Proposition 3.4. Assume than (HFds) is in force. For all0 < i <n, j€Z, we have
2
] < C,

Proof. Fix (i,7) € [0,n] x Z. According to the identification of (U%’”’a%’ﬂ,vm’”’a%m)
with (yé“’”, Za%’ﬂ) obtained in the proof of Proposition[3.3], we deduce from Proposition
expected controls on URTATT and YRmatT

a7 =R,
ugem,a ’ Z hk ’V?RW ,a ‘ + ‘A?L

+ ’N altr

IE[ sup

1<k<n

for the optimal strategy a™™ € sa/ R
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By taking conditional expectation in ([.I9]), we have
n—1
=R, —R,m SR R, =R, T =R,
B [An ] =Ey, [5”’“" =V L ERT (20 Y+ AT ] :
m=i

Thus, using standard inequalities and the growth of F™, we easily obtain

E[lA7"" 2] <CE

n—1
SR, =R, =R,
sup Vi D128 P + AT |2] :

We have already noticed in the proof of Proposition that we have |A?%’W| <
maxy.; |C9%|, which inserted into the previous inequality leads to E[JAZ""[?] < C.
We finally complete the proof, observing from the structure condition (2.1]) that

E[IN"T 2] < CE[JAZ™ ).

3.3 Stability of obliquely reflected backward schemes

We now consider two obliquely reflected backward schemes, with different parameters
but the same reflection grid ®. For ¢ € {1,2}, we consider an Fr-measurable random
terminal condition ‘¢, a random generator z + ‘F(.,z) and random cost processes
(‘C)1<i j<a satisfying the structural condition (ZI). As in Subsection B2} terminal
conditions, generators and cost processes are allowed to depend on 7 but we omit the
script 7 for reading convenience. We denote by (gjﬂev’r, by me’”) the solution of the
associated obliquely reflected backward scheme.

Defining d)ﬂtm — lyﬂ?,w _ 2y8‘€,7r7 5378‘%,# — 15)%@ _ 25)%,7r7 §ZRT . 1zRT _ 22%,7r7
§¢ 1= 1& — 2¢ together with

|0C} ,

o 1vij  2ij
oo = gn‘ax‘ Gy =G

JEL

|0F%|,, := max sup IIF,g — 2F,ﬁ‘ (2),
i€l zeMd:d

for 0 < k < n — 1, we prove the following stability result.

Proposition 3.5. Assume that (HF'dy,) is in force for some given p = 2. Then we
have, for any i€ [0,n],

R, 2 R, 2 1 o R, 2
sup E U&yk’ + o ] +ZE| Y by |02
i<k<n I
n—1 2/p
< CE Z 0FL|% hi + |06 | + Cpr*PE [ sup  [0Cy, |§o] .
k=i OSkSn,tkEgE

Proof. We adapt to our setting the proof of Proposition 2.3 in [8]. The proof is divided
into three steps and relies heavily on the reinterpretation in terms of switching problems.
We first introduce a convenient dominating process and then provide successively the
controls on §Y™™ and 6Z™7 terms.
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Step 1. Introduction of an auxiliary backward scheme. Let us define F :=
LFV2F, € :=1¢v2¢and C by ¥ :=10¥ v 2C%. Observe (HFd,) holds for the data
(C,F,€) and C satisfies the structure condition (ZI)). We denote by (Y%7, yRr zRm)
the solution of the discretely obliquely reflected backward scheme with generator F,
terminal condition &, reflection grid R and cost process C.

Using Proposition B1] and the definition of F', £ and C', we obtain that

PR 1R, 20w (3.20)

Using Proposition B3] we introduce switched backward schemes associated to Y%7,
2YR7 and YR and denote by @ = (0., ),>0 the optimal strategy related to hAk
starting from a fixed (7,7) € [0,n] x Z. therefore, we have

n—1 n—1
O, 5 R,m,a an a 9?7ra R,m.a a
VY = Ut =gt YRR, h—thAlv H - Y AM;
k=i k=i
— A + AZ (3.21)

Step 2. Stability of the Y component. Since d € dﬁ’”, we deduce from Proposi-
tion B3] (i) that

n—1
(ZJNJ’?:EJF)]' > Zu’fR,ﬂ',é :Zgén Z ZFak mwa h . Z hk;>\ IZV%TFGHT Z AZMZ
k=i k=i
—tAY fAf, (e {1,2}, (3.22)

where ‘A% is the process of cumulated costs (‘C%); jer associated to the strategy a.
Combining this estimate with (320) and B.21]), we derive

|(1j7??,7r)j o (237?3,#)]" < |ui§R,7r,é N 12/{?3,%,(1‘ + ‘uiﬂ?ﬂr,d . 22/[5]?,#,&|. (323)
Since both terms on the right-hand side of (23] are treated similarly, we focus on the
first one and introduce discrete processes 't := Y%™@ 4 A% and T4 .= 1yyfma 4 1 ga,
Rewriting (B2I) and [B22]) between k and k + 1 for k € [i,n — 1], we get
a lra _ 24-1 o lrz+1 + [Fk(ik (Vgiﬂna) lFak( V%ﬂ' a)]hk
_hk)\ [V%ﬂa_lvgeﬂr,d] ;! —[AMz— IMZ]'

Using the identity |y|* = |z|*> + 22(y — ) + |z — y|?, we obtain,

B, [I040 — T 7]
= [T — 'T3 — 20 — T (FP VP ) — T FE (VR

+ By [[[FfF (W0 — LES (VR0 hy — gy A W R gl TAME — AL M.
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Then, by the same reasoning as in the step 2 of the proof of Proposition B.2], previous
equality becomes

Ey [Ty — 'ThP] = [Tf = T3P — 2T = "TOEE V™) = FECVE™)h
d

L M

and we obtain, by summing over k and taking expectation,

n—1
E | [T —1T52 + D7 [t — 1y 2
k=1
~ ~ nil - - ~ ~ ~ ~
< CE[\F?L — T2 4+ YT = T EE (V) - 1ng(1v,fv“v“)|hk].
k=1

Since F' = 'F v 2F and 'F is a Lipschitz function, we also get
F ) = OV < 0FkL + OV = T,

and then, by using Young’s inequality and discrete Gronwall’s lemma, we deduce from
the last and the penultimate inequalities that

n—1
E [|u§‘*’“’é — 1u§‘*’”’a|2] <C <E[|6£|2 + > 10F|Z by + AL — 1AL + AT - 1A?|2]> .
k=i

(3.24)
Moreover we compute, for all k € i, n],

B[l A7 - "ALP] <E[IN  sup  [6Cy, |5]-

o<m<n, tmeR
If p = 2, then N < k yields

E[lAL — "ALP] < #’E[  sup  [3C,, [7].

o<m<n,tmeR
Otherwise, from Proposition 3.4], Holder inequality and the fact that N'¢ < &, we deduce
2/p

p—2
E[|Aé1Az|2]<E[|Né|f$]PE[ sup |3y, [%

o<m<n,tmeR

p—2 2/]7

2 . L2—=
<E[p 2 WP T E|  sup [5G, [5

o<m<n,tmeR

2/p

< CprYPE [ sup  |0Cy,, |2

o<m<n,tmeR
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Inserting the last estimate into ([B.24]), we get

2/p
sup |0C%,, |5

o<m<n,tmeR

n—1
B[t — 2] < (E[I5§I2 + 2, 1657 hk) + Gy
k=1

By symmetry, we have the same estimate for E [|L{§R’7T’a — QL{?%’”’QP]. Therefore,

from ([B:23]) and the fact that j is arbitrary, we deduce the wanted estimate for E[|5)~)Zm 2],
The estimate for E[|5)}? "™12] is a direct corollary.

Step 3. Stability of the Z component. Observing that 523(” = Etk[(éykﬂ
E¢, [5)7217;])H;], one computes

nel6 2 < OBy |0V — B [ 8957 | 1P (3.25)

From the scheme’s definition, we have

B[SV | 12 = 1630712 = 2030 [ (207 = 2B CZN )
Inserting the last estimate into ([B:20]) and using (H F'dy), we obtain, for some 7 > 0,
hl6ZET12 < C (Etk[wy,?j; 2] SYRT|2 4 Chy, (1 + > 6B 4 by 52272 4 hk|6Fk|oo> .

Taking expectation on both sides and summing over k with n = 1/2, we get

15
2

( [163272) 2 B[ J6VEP — 109F ]+ max B16TF?] + nzlhk\amoo ,

k: shs k=i
kE
n—1
shsn k=i

The proof is concluded using estimates on SYRT and sYRT already obtained in the first
part of the proof. O

We will now use this general stability result on obliquely reflected backward schemes
to obtain a L2-stability result for the scheme () (see [6] for a general definition of
L?-stability for backward schemes). Firstly, we introduce a perturbed version of the
scheme given in (L4).

Definition 3.2. (i) The terminal condition is given by a Fr-measurable random
variable Y, € £?;
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(ii) for 0 <i<mn,
A E[Yiﬁfﬂ | Fidl,
§R R
VT = BV | Fl 4 haf(XE Y 2T + (3.26)
R, SR
V= VI L gmy + P (XTL Y ) L gemy,

with P the oblique projection

]G

Pus (o) e R xR (- e)))
1<k<d

associated to costs ¢, (x) = c(x) + ¢f. Perturbations ¢} := (CZf,thz) are JFy,-
measurable and square integrable random variables. Moreover we assume that the
random costs (¢, (Xy,))o<i<n Satisfy the structure conditions (21).

Setting JY; = Yi%’7r - 5724%’”, §Y; = z%’w - ngi%’w and 67; = ZER’” - ZER’”, we obtain
the following L2-stability result for the scheme ().

Proposition 3.6. Assume that (Hf) is in force and, for all p = 2

n—1
Bl [V,)* + Y I+ sup G| < C. (3.27)
i=0 O\Z\n
We also assume that |t|LY <1 and
( sup  hy |Hi|> L7 <1. (3.28)
0<i<n—1

Then schemes (L)) and B.28) are well defined and the following L?-stability holds true,
forallp =2

n—1
sup E[\(SYZ'\Z + \557;\2] + % Z hiIE‘{\éZi\z]
i=0

0<i<n
B 2/p
1 C
< ( H |6, 2] Zh— [|gf ]>+cp,@4/pﬂ-z swp (G| (3:29)
= e

Proof. Since we have assumed |7|LY < 1, then a simple fixed point argument shows
that schemes ([4]) and ([B:26) are well defined, i.e. there exists a unique solution to
each scheme.

For the L?-stability, we want to apply Proposition with & = g(X7), 2¢ = Y,
IFi(z) = FOXEY2), 2R(2) = FOXEY2) + ¢ 1G, = o(X]) and 20, =
c(X7) + ¢ - To do this, we have to check that assumption (H Fd,) is fulfilled for these
two obliquely reflected backward schemes. Firstly, we have assumed

( sup h; \HZ|) L? < 1.
0<i<n—1
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Moreover, hypothesis (H f), assumption ([3.27)) and classical estimates for processes X
and X7 leads to

n—1
IE[Ilél2 + PP+ DMEO)P + PEO)1h + sup [|'Cyl? + 7 [7]

0<isn

<G+ CE[ sup [[F72 4 \ffiﬁ’”m] .

0<i<n

To estimate quantities E[supogign |l7i%’7r|2] and E[supogign |Yi9%77r|2 , we just have to
rewrite slightly the first step of the proof of Proposition The beginning of the proof
stays true: (B yields, for all i € [0, n],

B s [T+ [0 < e

i<k<n

n—1
N + PEP + D) (1M Fr(0)]* + [ F(0)[] hk]
k=1

n—1
<C (1 + ) E{ sup [pﬁfﬂ? + |?,fﬂf|2]] hk> .

k—i Lksm<n

Thus, the discrete Gronwall lemma allows to conclude that

E[ sup [|§~/k§R’7T|2 + |f/k§R,7r|2H <C
0<k<n

and then assumption (HFd)) is fulfilled. Proposition and (Hf) imply, for all i €
[0, 7],

1<k<n

N 1 n—1
sup E[\&Yk\z + \5Yk|2] + = ) W0z ]
k=1
2/p

n—1
<C (E{|5Yn\2] + ) |5Fk\oo> + CprPE| sup [ [P

k=i

<ksn

tkE%

2/p
n—1 n—1

Zhi BIc[2| + Y sup BI6iul? + 6%, hk> + CorYPE| sup [¢C [P

k=0 k—i k<m<n 0<k<n
tkeﬁ

C (IE[|5Y ]

Applying the discrete Gronwall lemma to the last inequality completes the proof. []

3.4 Convergence analysis of the discrete-time approximation

We will give now the main result of this section that provides an upper bound for the
error between the obliquely reflected backward scheme ([L4]) and the discretely obliquely
reflected BSDE (L3)).
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Theorem 3.1. Assume that (Hf) is in force. We also assume that |r|LY < 1 and

weights (H;)o<i<n—1 are given by

~R Wi ,-W, R
v A

Hy)' = e P

1</0<d, (3.30)

with R a positive parameter such that RL% < 1. Then the following holds:

o o R, ™ 1 tit1 ™
sup B||TR - ¥ 4 [vR - v +— [Zf |2} = 2 Pds

0<i<n

<Cr (|7T|1/2 + /f|7r|> .

Proof.

Step 1. Expression of the perturbing error. Since we want to apply Proposition
B8, we first observe that (Y%, Z%) can be rewritten as a perturbed obliquely reflected

backward scheme. Namely, setting Y; := Yté? and 12/2 = fff?, for all i € [0, n], we have
E[Y;Hi | F,],
= E[Yi | Fi) + haf (XT3 Z0) + ¢, (3.31)
Y= Vil gemy + Po(XE, V) Leny,
with
tit1
¢/ =E, Ut (£ V2 28 = f(X7. VR, 2) ds} and  (f = e(Xy,) — (X))

Let us check that 27 is fulfilled for all p > 2: using (H f), Proposition and
classical estimates for X and X™, we get

n—1
E| [V + D 1] + Sup [« V’]

=0

n—1
< GE[1+ sup [Xg[P + sup [X[JP + sup Y2 + f | Z%%ds + Z| t+1Hh|2]

s€[0,T] 1€[0,n] s€[0,T] i—0

n—1 2
<Cp[1+E| sup YR+ Z |H;h;|?
SE[O,T] =0

2
Applying Burkholder-Davis-Gundy inequality, we have E[ (Z?;OI |Hihi|2) } < C and
so ([B.27) is fulfilled. Finally, we easily check that ([B30]) implies (3:28]).
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Setting p = 4, we apply

Step 2. Discretization error for the Y component

Proposition and get by direct calculations
sup B 1% — V72 4 [y - v
0<isn
1/2
— 1
e (E{|9<XT> - Z oz 1o ]) + CyrE| sup [¢E[*
— 0<isn
- t;eR
T ~ ~
< CH[|Xr — XT|?] sup IE sup | X — X7T|2 + CIE{I yr - YEES)PdS]
O<Z<n 1 €[tistit1] 0
1/2
+CE Z ZR — Zi*hy +C/<E[ sup | Xy, X”|4] .
0<i<n—1

n—1 nt;,
+CE Zf \ZF — Z]}|*ds
i=0 vti
Classical estimations on the Euler scheme for SDEs, see e.g. [18], yield
1/2
| X, ng|4} < Crlr).

sup

sup E[ sup |Xng|2]+HE|:
[ 0<i<n—1

H| Xy — X7*]+
0<isn—1 SE ti7ti+1:|
Applying Proposition and Proposition [Z8, we obtain
tit1 _
gl [ 152 72, s+ E[Z [ 128 - zpas | < o+ 2 4 ),
It remains to bound the term
n—1 n—1 2
_ _ AW; AW;
E[Z |Z§ff Z@'|2hi] <2 [ —E, [ YR ] ] +2E[Z E,, [Y;ﬁl ( - i Hz>] hi] .
i=0 | _Li=0 ! |
: :;B

A}ZV"], we have

2
hl.]

By remarking that Z?? =E [ bt ZRaw,
AWZ']
T
rle] [ 170 v 28)Pas | <

tit1
U f(Xs, YR Z®)ds
h;

tit1
Z h; f (X, YR, Z%)2ds

Finally, we also get by standard calculations, Proposition 23 and classical results about

—22/2
dx

Gaussian distribution tails
AW; 2 2d (T° e
B < su Y, | x sup E ! _ H, <C —f 22
0<i<5—1E[| bl Osz‘sg—l ‘ hi ' (hi Rh;' V2T
CR [2n2\*?
<R22> < Cgml.

< Q (Rhi—le—R%i /2) < h2

h
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Step 3. Discretization error for the Z component. Let us remark that we have
1 n—=1 nt;. For 1 n—1 nt; g - 1 n-1 )
=0 =0
- E[Z \Zi — 2|

Previous calculations already yield

n—1
—E[ZJ \Z% — Z})? ds] + ELZO|Zt Zi|?h; <%(|7T|1/2+f£|7r|).

Moreover, we apply Proposition to obtain

n—1
11@[2 \Z; — 27 2h <C’(|7T|1/2+/<|7T|>,

=0

thanks to estimates obtained in step 2. O

4 Application to continuously reflected BSDEs

This section is devoted to the study of the error between the scheme (4] and the
continuously obliquely reflected BSDEs (ILT)). An upper bound of this error is stated
in Subsection while Subsection 1] is devoted to the error between the continuously
obliquely reflected BSDEs (ILIl) and the discretely obliquely reflected BSDEs (LL3)).
Before these results, we start by giving some classical estimates on the solution of (ITI).

Proposition 4.1. Assume that (Hf) is in force. There exists a unique solution
(Y, Z,K) € S5 x 75 x Ay to (LT)) and it satisfies, for all p = 2

Yo, + 12|, + |Kr| 20 < Cp.

Proof. The existence and uniqueness result comes from [7]. Concerning estimates, we
want to apply Proposition .T] with terminal condition §{ = g(X7), random generator
F(s,z) = f(Xs,Ys,2) and costs Cf = ¢ (X;). So, we just have to show that (HF,)
is in force. Thus, using the fact that f is a Lipschitz function with respect to y, it is
sufficient to control Y® in .%? to conclude. We are able to obtain estimates on DN/'%\ P
by a direct adaptation to the continuous time setting of the proof of Proposition

0

4.1 Error between discretely and continuously reflected BSDEs

We show here that the error between the continuously reflected BSDE (IT]) and the dis-
cretely reflected BSDE (L3)) is controlled in a convenient way. We start by introducing

a temporary assumption.
(Hz) For all (z,y,2) € R x RT x M®, |f(z,y,2)] < C(1+ [z| + [y]).
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Proposition 4.2. Assume that (Hf) and (Hz) are in force, then

Efsup |V, — V] + sup |V; — VP

reR te[0,T]

< CO|R| log(2T/|R)).

Moreover, if the cost functions are constant, we obtain a better rate of convergence,
namely,

Efsup |V, — V] + sup |V — VP

reR te[0,T]

< CIR).

Proof. 1. We denote (Y, Z, K) the solution of an auxiliary continuously obliquely
reflected BSDE with cost functions ¢, with terminal condition & := g(X7) and whose
random generator is given by

f(S’Z) = f(Xs’}/;’Z) Vv f(XS’?;%’Z) :

We also denote (Y, Z,K) the solution of the continuously obliquely reflected BSDE
with cost functions ¢, with terminal condition ¢ := ¢g(Xp) and with random driver

f(s,2) = f(Xs, YR 2). From Proposition 22, we know that each component of Y, Y

and Y can be represented as optimal values of some control problem namely

(V)P =ess sup U2 = U, (V;)! =ess sup U, (Y;)" = ess sup Ut%’a, (4.1)

QEM’t O/GVQ{Z'J QEM’t

with t € [0,T], i€ Z, U%, U® and U™ solutions to following ”switched” BSDEs:

T T
U = €7 + f o (s, V) ds — f VEdW, — A% + A7 (4.2)
t t
T T
Uf = €7 + f o (X, Yo, Vs — f VEAW, — A% + AP (4.3)
t t
T T
Ul = ¢ + f £ (X, Y VR ds — f VAW, — A%+ AF, (44)
t t

and a the optimal strategy given by Proposition 2.2l Using a comparison argument, we
easily check that U® > U® v U™, for any strategy a € < ¢. This estimate combined
with (1)) leads to

Vi viy (V) forall Ce{l,....d}.
Moreover, Corollary 2Tl and (41]) give us that

(V) = ess sup Utm’a < ess sup Utm’a = (V)%
acd® acd; ¢

Then, we finally obtain

Yi=viv (YN forall £e{l,...,d}. (4.5)
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Furthermore we observe that, for all £ € {1,...,d} and all ¢t € [0,T],
(YD) = (1) < 1) = () + (V) = (%)) (4.6)

We will now deal separately with the two term in the right hand side of the above
inequality.

2.a We start by studying the first term. From the representation in terms of switched
BSDEs given in (1), we know that (Y;)! = U? and (Y;)* > U? with U solution to
@3). Indeed @ € 7, is the optimal strategy associated to the driver f and is a priori
sub-optimal for the driver f. Combining this with (£X]), we obtain that

0< (V) - (M) < U2 - U

and we only need now to control the right hand inequality. By applying 1t6’s formula
to the process e’|Uf — U#|? and by using assumption (H f), usual computations lead
to, for some 8 > 0,

T
uF - UF 4 [ [ v - v
t
T ~ v ~ ~ > ~ ~ ~ - ~
<, | [ [20102 - UV - v+ e - V) - 5102 - 2] as|
t
T ~ v ~ ~ > -~ ~
<[ [20? - iUz - U 17 - VIR v, - TR s,
t
and then, for any 8 large enough,
T
T - ()P < B [ Y- TP (47)
t

2.b We now study the second term in the right hand side of ([4.6]). Combining (4.3])
and the representation in term of “switched BSDEs” given by (&1l), we have, for all
tel[0,T], Le{l,...,d},

0< (V) = (N <Uf = (1) (4.8)

for some @ € 4. We now introduce the strategy a, standing for the projection of
a = (0, &) on the grid R, namely: a := (0, ) € @75}2 defined by

Op = inf{r =6, , e N} and ap = dy.

Note that, if the optimal strategy @ has many time of switching on (rj,7;41], where
rj, Tj+1 belong to the grid R, the projected strategy a will have many instantaneous
switches at 741, see also Remark .

From Corollary 211 we have Y;% > Ut%’a which, combined to (8], leads to

(V) — (v < |og — UM (4.9)
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To study the right hand side of the above inequality, we treat separately the case t ¢ R
from the case t € R. Let us start by assuming that ¢t ¢ R : ¢ €|rj, 741 with r;, rj44
in R. We introduce a slight modification a° := (67, o) € 4 ¢ of the optimal strategy a
defined by

0% =é11é1>t+{(7f+6) /\éQ}lél:t’ 07, Zék Vk # 1, aj =ar Vk=0,

with € €]0,7j11 — ;[ a parameter. Then ([@3) becomes

() = O < 07 = OF | + 108 = U™ (4.10)
We also introduce continuous processes I'* := U% — A% and T' = U%* — A%, We then
have, for all s € [t,T],
~ ~ T ~xE ~ £ ~ T ~ g
E-T,=T%—-Tr+ f (£ (u, VI) = f(u, YR, VI du — f (V& — vEaydw, .
S

S

By applying [t6’s formula to the process eﬁs|f’§ — T'4|? and by using assumption
(H f), usual computations lead to, for § > 0 large enough,

eM|IF —Ty?

T
<E, U e [2C10% = T 1T (s, Vi) = F(s, VI + [V = Vo] |y, = TR ds]
t
T . T . .
_ BE, U e[| — 1, ?] ds] _E, U P VE 1/;Rva|2ds] + Et[eBTH‘% . FT|2]
t t

T T
<E PT|T5 — Tp|? + CePT fO (s, V) — fos, V) Pds + | %]y, — YR2ds|.
T . s s . s
(4.11)

On one hand, using (Hz) we compute that
- 2
T |N®

T
L (s, VE) = fs, V) Pds = f Z fO (s, Vi ) (Lyoe <s<or) — Lo, <s<p,})| ds
=1

t

S OINP sup (1+ X + Vo2 + V)R] (4.12)
s€[0,T]

since N = N% On the other hand, by using (H f) we obtain

\f% — I’T\2 = \A%E — A%|2 < C’|Né\2 sup sup | X, — er|2 (4.13)

1<k<kre[ry_1,m%]
. = E
and, since A} = Af =0,

05 — T2 = U8 — Ut (4.14)
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Combining (£12), (AI3) and (@I4) with (£I0) and @II]), we get
(V)" = (VNP < 2P |TF — TP + 267|107 - U PP
T
< CylUE —UF)? + Et{cﬁe(a’e) + 2f MY, — ?f\ﬂdu] . (4.15)
t

with

EM) := |N‘VL|2 sup (1 + |XS\2 + \Y5|2 + \K%\Z)PR\ + |N‘VL|2 sup sup | X, — er\Q.

s€[0,T7] 1<k<kre[rg_1,mk]

Importantly, the constant C'z does not depend on . Now, let us study the term |U g —
Ut(f‘Q_ We recall that, for all s € [t, 05,

v 2E v e eiv ~ e eivvs e £ €
UF = O+ [V Y — [ — e () — 5% CXor g o
S

s

and

B 65 07 . 3
Ul =Y =Yg+ f Fu, Z5)du — f ZydW, + Kje — K.
S

S

Then, a straightforward adaptation of a classical stability result for BSDEs (see e.g.

[10]) gives us
"ra raf |2 rac g4 las a5 2 g4 0|2
E[|U7 - U ] < CEDU% — Ype — ¢ M1(Xgs) — 1% (X ) Lo —p5|” + | Kp: — K| ]
with a constant C' that does not depend on . We can remark that
v s . - af v at
Uge = Uge = Yafll(’iﬁi T Y9§2 Loz —65.
and
oS o cag 0Tyl laf
[Yo — Yo' — ™12 (Xpe)[Tgs =05 = 0, [Ype' — Yy — ™1 (Xp:)]15,, = 0.
Thus we obtain
Ta _ 77a% |2 OT vl las 2 g )2
B\ — UF° ] < O[5t — ¥ — o5 (Xop)P1g, -, + [Kf: — K{P].
Since 0F =0, 6, and Y, K and X are continuous processes, by a direct domination we
can apply the dominated convergence theorem to get
igr%)E[\Uf —U¥ )] =o0.
Thus, when ¢ tends to 0 in ([4I5), up to a subsequence, we obtain

T

AV — (VP < Et[cﬁg(%) + zf ey, — ?ﬁ?du] . (4.16)
t
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We now treat the case t € &&. This case is simpler than the case t ¢ R since we do
not have to introduce an auxiliary strategy a°: we can do previous calculations directly
with the optimal strategy a. The only difference comes from the fact that A% and A¢
are not necessarily equal to 0, but, since t € R, we have A% = A% and so A — A¢ = 0.
Finally, (£.10]) stays true when ¢ € R.

2.c Combining (A1) and ([AI6]) with (6], we obtain, for all t < s < T,

Et[eﬁﬂYg - Y?F] < CHEJER)] + 2 fT Et[eﬁwu - YE*IQ] du.

S

Then, a direct application of Gronwall lemma gives us
¥ = T2 < By, - V1] < CoRIEM)].

Using Jensen inequality, Doob maximal inequality and Cauchy-Schwarz inequality, the
previous inequality allows us to obtain

<CE[(®)?]"”

E| sup [V; =Y
te[0,T']

1/4
<CE[|N?[F]"* E[ sup (14 [ X[* + [V + [VF*) | |R]
s€[0,T]

1/4
+ CIE[|NQ|8]1/4E[ sup sup |X, — er|8] .

1<k<kre[rp_1,rk]

Finally, we just have to apply estimates of Proposition [l Proposition 23] classical
estimate for X, and Theorem 1 in [I2] to get

ﬂsw\n—%w < CIR| + C|R| log(2T/|R])

te[0,T]

and

< C|R| + C|R|log(2T/|R)).

E[sup Y, — Y7,§R|2] <E| sup [V, —YR]?
ref te[0,T]

To conclude the proof, we just have to remark that the term sup; <<, SUPyefr, ;] 1 Xr—

X,,|? does not appear in £(R) when cost functions are constant. ]

Proposition 4.3. Let us assume that (Hz) and (Hf) are in force, then the following
holds:

T 2
E U Zy— 7% ds] < C|R|Y%\/log(2T/|R)).
0

If cost functions are constant, previous inequality holds true without the term +/log(2T/|R|).
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Proof. Introduce §Y :=Y —Y® §Y .=V —Y® 67 := Z—2Z% and 6f := f(X,Y, Z) -
F(X, Y% Z%). Applying Ito’s formula to the cadlag process |§Y|?, we get

T
6Y01> + | [0Z4%ds = [0Yr[> =2 | 6Y,-ddYe— ) [0V — oV
0 (0,7] 0<s<T

Recalling that 5Y - = 0Y, S 5Y dKY¥ > 0 and the Lipschitz property of f, standard
arguments lead to

> g T 1/2
E[M}/()F] +E |(5Zs|2d8 < CE 0Y,dK,| < CE| sup |5K5|2 E[K%]I/Q .
0 0 0<t<T

Then, using Proposition 1] and Proposition concludes the proof. O
As a by-product we get a strong estimate on Z.

Corollary 4.1. Let us assume that assumption (Hf) is in force. Then we have
|Zy| < L(1 + |X¢|) dP®ds a.e.
where L is the constant that appears in (220).

Proof. Let us introduce a new generator f(x,y,2) := f(z,y, pz(2)) with p, the pro-
jection on the Euclidean ball of radius L(l + |z|) where L comes from the estimate on
Z% given in ([Z20). We easily have that f is a Lipschitz function such that

|F(@.y,2)] < €+ Jal + o).

We denote (V,Z,K ) the solution of the obliquely reflected BSDE with generator f.
Since (H f) is in force, we can use (2.20) for the discretely reflected BSDE with generator
f and we get that

1IZF < LA+ |X|) dP®ds a.e.
Using Proposition 3] we take || — 0 and we obtain that
|Z,| < LA+ |X;|) dP®ds a.e.

and then R o o
f(SaXéH}/S, Zs) = f(S7XS,}/S, Zs) dP@ ds a.e.

Thus, by uniqueness of the solution to the obliquely reflected BSDE, we have that
7 = Z, concluding the proof of the Corollary. ]

Theorem 4.1. We assume that (H f) is in force. Then we have

E|sup |V, — YR + sup [V — V72| < C|Rlog(2T/|R]), (4.17)
reR te[0,T]
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and

E UT Z,— 7% st} < O/ R[Tog (2T/IR]). (4.18)

0

If, furthermore, cost functions are constant, previous estimates hold true without the
log(2T/|R|) term.

Proof. Thanks to Corollary 1], we can replace the generator f by f (x,y,2) =
f(x,y, pz(2)) with p, the projection on the Euclidean ball of radius L(1 + |x|) with-
out modifying our BSDEs. Since (Hz) is in force for the generator f , we can apply
Proposition and Proposition and the theorem is proved. O

4.2 Proof of Theorem [I.1]

Combining the previous results with the control of the error between the discrete-time
scheme and the discretely obliquely reflected BSDE derived in Section Bl we obtain the
convergence of the discrete time scheme to the solution of the continuously obliquely
reflected BSDE. Namely, we just have to put together Theorem 1] and Theorem B.11

A Appendix

A.1 Proof of Proposition

Observing that on each interval [r;,7;11), (Y%, Z%) solves a standard BSDE, existence
and uniqueness follow from a concatenation procedure and [21].

Concerning estimates, we cannot apply directly Proposition 2.1 in [§] since we have a
generator f with a coupling in y. Our strategy is to apply Proposition 2Tl with terminal
condition £ = g(Xr), random generator F(s,z) = f(X,, Y2, 2) and costs C¥7 = ¢ (X,).
So, we just have to show that (HF}) is in force. Thus, using the fact that f is a Lipschitz
function with respect to v, it is sufficient to control YR in ..

As in the proof of Theorem 2.4 in [16], we consider two nonreflected BSDEs bounding
YR Define the R%valued random variable §(X7) and the random map f by () (z) :=
Y4 ()] and (f¥(w,t,2) = 3L, ‘(f)i(Xt(w), YR (w), z)‘ for 1 < j < d. We then

denote by (Y, Z) € (.#P x #°P) the solution of the following nonreflected BSDE:
V=gt + | fs.Z)ds— | Zaw, o<t<T
t t
Since all the components of Y are similar, Y € Q. We also introduce (Y, Z ) the solution
of the BSDE
T

T
Yy = g(Xr) + f F(Xo YR Z)ds — f ZsdWs, 0<t<T.
t t

Using a comparison argument on each interval [r;, ;1) and the monotonicity property
of P, we straightforwardly deduce (Y)" < (Y®)" < (Y)?, for all 1 <4 < d. Since (Y,Y)
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are solutions to standard non-reflected BSDEs, classical estimates (see e.g. [2]) lead to

Et[ sup |3~/fe\p] < Et[ sup |YiP + sup |§u/;\p]
t<s<T t<s<T t<s<T
T

~ p
<Gl + [ | g of al
t

p
ds] .

yR

< CpEt

T
1+ sup |Xs|p+f sup
t

se(t,T] s<u<sT

Finally, using Gronwall lemma we get

Et[ sup |?§R|p:| < CpEy

t<s<T

1+ sup |XsP
s€t, T

which leads to, recall (2.7]),

E{ sup |17§*|p] <Cy(L+ XD, (A1)

t<s<T

and in particular to [Y%| 5 < C),.

A.2 A priori estimates

In this section, we prove a generic estimate for a process that can be represented by
using switched BSDEs. This result is tailor-made for the solution of obliquely reflected
BSDEs. For a positive process 3 € .72, we denote by &7 the set of strategies a € o7,
satisfying

1
Et[|Na|2] 2 < ﬂt7 fOI’ t < T. (AQ)

We consider a process X € .77, for all p > 2, and for a € &/, we define

Na

A = Zng%Gjl{ejgth},
j=1

where ~ is a process in .2 essentially bounded by a constant A. We also consider a
process 9) € .2 which is given by 9 = (9%)1<i<a s:t. Yi = U¢ for some a € & N 4
where, for ¢t <r < T,

T T
UL =% + f F(s, X, 45,05, s)ds — f PrdW, + A7 — AL .
t t

with v* a Fp-measurable random variable essentially bounded by A and F a progres-
sively measurable map satisfying

[E (s, 2, u,0,9) ] < M| + [uf + o] + [yl) - (A.3)
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Proposition A.1.

1
2
9, < Ca(1 + @»)Er[ sup |3€5|4] . rel0,T].

r<s<T

Proof. Let us introduce &% = U* + A%, Applying [to’s formula, we obtain for all
r<t<u<T,

T T
Er[|®g|2 +f |Q3§|2ds] < {|® ? + f GBLF(s, X, 42,02, 9))ds
u u
Using classical arguments and the assumption on F', we obtain

T
E{|&%?] < CAE, [ sup 12,2 + f \235\2(18] + sup E[|2%] . (A4)

t<s<T

<s<T

We observe that, for t < s < T,

Ne 2

Z ’ng :{Gj 1{9j <s<T}
j=1

E{2°] = E

1
2
< AE,.[N“ sup |3es|2] < Aﬁ,,Er[ sup |3es|4]

t<s<T t<s<T

Inserting the previous inequality into (A4]), we obtain,

1

3 T
E{|&%*] < Ca(1 +ﬁr)Er{ sup |3es|4] + CAETU |2)s|2ds] . (A.5)

r<s<T

In particular, for all r <t < T, we compute

[\

1 T
B () = 1B {0 < et + e swp x|+ Cam, [ aPas|
t

r<s<T

Using Gronwall Lemma, we get

NI

9,2 < Ca(1 + B E [ sup |aes|4]

r<s<T

A.3 Proof of Proposition

Before starting the proof, let us state the following estimates on the A-process appearing
in the representation (ZI8]).

sup | sup Af|e» <C7, 0<t<T, p>2. (A.6)

ac/® 1<s<T
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We also compute from the dynamics of A that

sup <||A§t —Afyllzr + | sup |AG s — ALl ||gp> <CVt—u, u<t<T, p=2.
aco/ R t<s<T
(A7)

The proof of Proposition follows from the same arguments as in the proof of
Theorem 3.1 in [8]. The novelty comes from the term DY but the estimates (2.12I)-
213) allow to control it without any difficulty. From Remark 7] it is clear that

T T
EU |Z% — Zf|2ds] < EU |Z% — Zf(s)|2ds] : (A.8)
0 0

For s < T and a = (g, Ok ) k=0 € &, with £ € Z, we define (Vi) s<i<T by

Nll
Vsc,Lt = Ey [axgaT (XT)AZ,TDSXT - Z OpcI=1% (XGk) csL,GkDSXGk
k=1

T
+ f (ax Fo(OMAL DX, + 0 fa(@i*)Ai,uDs?f)) du] :

s

We now fix ¢ € Z and denote by a" € dumg, for u < T, the optimal strategy associated

to the representation of (V)¢ recalling (i) in Corollary EZT1
Observe that, by definition, we have

N = N and o =a", forall r;<t<u<rjy; and j<k. (A.9)
Fix ¢ < n, and deduce from (ZI8]) and (A.9) that

B I(28) = @D F| = #ves - Vi ] < 2 (v — vl | + v - v i)
(A.10)

for t € [t;,ti+1). Combining (Hr), Z9), @I0), (A6), (AT) and Cauchy-Schwartz
inequality with the definition of V%, we deduce

. . 1
B Vi - ViR < Culrlt, ti<t<tia, i<n. (A.11)
Since V}“:Z is a martingale on [t;,%;11], we obtain

t; t; 12 t; t; 19
B Vi — Vil P | < B IVith,,, — Vi
t

i 2 23 2
,zi+1| o |VZ:1¢1’+1| ]

< E
ti 2 t; 2

< E[|Vg+1,ti+1| o |ngti| ] + EDVZ
t; i 1

SH WV P = VLR + Culrle . ti<t<tia, (A1)
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where the last inequality follows from (AIIl). Combining (AI0), (A1), (AI2)

and summing up over i, we obtain

T k—1

1 Tho— 0 Ti_ s

E[ fo (Z]) - <Z§ﬁt)>f|2dt} < Culml? + || (B [V P—IVeo 2| + Zluv:j;; 2=y ).
]:

Combined with (Z9) and (A.6), this concludes the proof since ¢ is arbitrary.
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