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Abstract

We consider a markovian multiserver queue with a finite waiting line in which a cus-

tomer may decide to leave and give up service if its waiting time in queue exceeds its random

deadline. We focus on the performance measure in terms of the probability of being served

under both transient and stationary regimes. We investigate monotonicity properties of

first and second order of this performance with respect to the buffer size, say k. Under the

stationary regime, we prove that our service level is strictly increasing and concave in k,

whereas we prove under the transient regime that it is only increasing in k.

Keywords multiserver queues; blocking; reneging; performance measures; convexity prop-

erties; coupling arguments.

1 Introduction

Monotonicity properties of performance measures are useful for understanding and solving

optimization problems of queueing systems. Optimization models are being used increasingly

in the design of a variety of systems where queueing phenomena arise. Examples include flexible

manufacturing systems, as well as service systems and telecommunications networks. For such

problems, it is important to know the convexity properties of the performance measures with

respect to the design variables. These properties may enable us to reduce the performance

optimization problem to a convex programming problem which is easier to solve. Using a

convexity result, Yao and Shanthikumar [34] accelerate their computation procedure to design

a loss queueing system subject to constraints on the loss probability. Koole and Pot [19]

consider an optimization problem for an M/M/s/K + M queue. The objective function is a

profit function of the number of servers and the buffer size. They derive some monotonicity

properties about the defined performance measure. Based on these properties, they develop a

fast algorithm which avoids the research of all possible solutions to get the global optimum.

Several convexity properties about various performance measures have been investigated in
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the queueing literature. The major performance measures for delay systems are the average

waiting time, the average queue length and the probability of delay. Those for pure loss systems

include basically the probability for a new arrival to be lost. In general, the loss probability is

related to systems involving finite buffers or systems with reneging. In this paper, we consider

a queueing system with impatient customers and finite waiting line. The performance measure

of interest is the probability for a new arrival customer to enter service. Or equivalently, the

probability to not be lost. We investigate first and second order monotonicity properties of our

performance measure as a function of the queue size. Note that the design of the buffer size

is an important issue in practice. Koole et al. [18] address this problem by investigating the

maximum queue length during a busy period for an infinite buffer size.

Another central feature in many practical queueing systems is the reneging phenomenon, i.e.,

one customer may decide to leave the queue (abandons) before starting service. For instance, call

abandonment is not negligible in call centers operations. A major drawback in many call center

models is assuming customers to be infinitely patient. Garnett et al. [7] show using numerical

examples that models with and without abandonment tend to give very different performance

measures even if the abandonment rate is small. A further application would be manufacturing

systems with perishable items. In this paper, we analyze the simplest abandonment model,

assuming that the customers patience is exponentially distributed. However, the model is still

of interest in practice as mentioned by Pierson and Whitt [25]. The authors have shown, using

various simulation experiments, that the M/M/s + M model provides a good approximation

of the M/GI/s+GI model.

Here is how the rest of the paper is organized. In Section 2, we review the literature close

to our work. In Section 3, we present the framework of the work: Section 3.1 is devoted to

formulate the queueing model, and Section 3.2 gives definitions and some preliminary results.

In Section 4, we focus on the first order monotonicity results. In Section 4.1, we start by proving

two helpful lemmae before proceeding to the main result. Next, we establish using coupling

arguments that the transient and stationary probabilities of being served are increasing in the

buffer size. In Section 4.2, we prove the result for the stationary performance measure using an

analytical approach. In Section 5, we prove that the stationary probability of being served is

strictly concave in the buffer size. Some numerical illustrations of the results are also presented.

In Section 6, we conclude and propose some directions for future research.
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2 Literature Review

In this section, we review the literature related to this paper. We start by presenting some

papers investigating monotonicity results for models without reneging. Second, we focus on

those for models incorporating reneging.

We classify the results for models with infinitely patient customers into three classes: pure

loss, limited buffer and infinite buffer models. For pure loss systems, Harel [9] proves that the

throughput of an M/G/s/s is concave in the arrival and service rates. He also characterizes

the traffic intensity below which the Erlang loss formula is convex in the arrival rate, and above

which it is concave. Furthermore, he shows that the Erlang loss formula is convex in the service

rate. For the same model, Messerli [22] proves that the loss probability is a convex function

of the number of servers. Additional properties of the loss probability are also discussed by

Jagerman [13].

As for systems with limited buffer, Nagarajan and Towsley [23] investigate the convexity of

the loss probability in the M/M/1/K queue with respect to the traffic intensity and the service

rate. They show that the loss probability is convex in the service rate. However, they prove

that there is a value of the traffic intensity which exactly delineates the convex and concave

regions of the loss probability as a function of the traffic intensity. Pacheco [24] considers for his

part a more general model with many servers, namely the M/M/s/K queue. He proves that

the loss probability is convex in the queue capacity. Meister and Shanthikumar [21] prove many

convexity results for tandem queueing systems. Several interesting stochastic comparisons of

various variants of multiserver queues with limited buffer are also derived by Berger and Whitt

[4].

In what follows, we review some monotonicity results for models with infinite queue capac-

ity. Tu and Kumin [28] prove that the expected number of customers in a G/G/1 queue is

convex in the service rate. They also show that the result does not hold for a GI/GI/2 queue.

Surprisingly, Harel [10] show that the expected number of customers in an M/D/s queue is

convex in both arrival and service rates. For the M/M/s queue, Lee and Cohen [20] show that

the average queue length and the probability of delay, are both convex in the arrival rate. For

the same model, Harel and Zipkin [12] establish that the average sojourn time, as well as its

standard deviation are convex in arrival and service rates. Again about the M/M/s queue,

Jagers and van Doorn [14] focus on the performance measure in terms of the probability for a
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customer to wait no longer than a given threshold. Note that this service level is widely used

in call centers. The authors show that the probability of interest is concave as a function of the

number of servers, if the latter is strictly greater than the offered load. We refer the reader for

further convexity properties to Weber [30] and [31], Grassmann [8], Shanthikumar [27], Harel

and Zipkin [11], Shaked and Shanthikumar [26] and Koole [17].

Let us now turn to the second area of literature related to this paper. Queues with im-

patient customers have received some attention in the queueing literature. The results focus

especially on performance evaluation. We refer the reader to Ancker and Gafarian [1], Gar-

nett et al. [7], and references therein for simple models assuming exponential reneging times.

Other papers have allowed reneging to follow a general distribution. Related studies include

those by Baccelli and Hebuterne [3], Brandt and Brandt [6], Ward and Glynn [29], and Zeltyn

and Mandelbaum [35]. Concerning the monotonicity properties, few results were derived. This

is due to the mathematical complexities of such problems. Bhattacharya and Ephremides [5]

consider multiserver queues with impatient customers. They show that the transient number

of lost customers is a monotone function with respect to the arrival rate, the service rate, as

well as the reneging rate. Armony et al. [2] consider a holding cost in an M/M/C queue with

impatient customers. They prove that this function is decreasing and convex in the service

rate and the number of customers. Some sensitivity results for the Erlang-A model can also be

found in Whitt [32].

3 Framework

This section is devoted to formulate the general framework of the paper. First, we describe

the queueing system and detail the processes assumptions. Second, we define the performance

measures of interest, namely, the fraction of customers who get service under both transient

and stationary regimes. We next develop some preliminary results.

3.1 Model Formulation

Consider a multiserver queueing system with a single class of customers. The model consists

of a set of s parallel, identical servers and a finite queue (waiting line). There is a maximum

number of customers that may be simultaneously present, we assume that the system can hold

at most a total of K customers including those in service. Clearly K ≥ s, and we denote the

queue capacity by k = K − s, k ≥ 0. The system is operated in such a way that at any time,
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any customer can be addressed by any server. So upon arrival, a customer is addressed by one

of the available servers, if any. If not, the customer joins the queue if less than K customers

are present in system. If not, the customer is refused entry and departs immediately without

service. He is blocked and considered lost. In addition, we assume that customers are impatient.

After entering the queue, a customer will wait a random length of time for service to begin. If

service has not begun by this time, he will renege (abandon), and again considered to be lost.

Finally, retrials are ignored, and reneging is not allowed once a customer starts his service.

The arrival of customers is assumed to follow a Poisson process. Interarrival times are

i.i.d. and exponentially distributed with rate λ. Successive service times are assumed to be

i.i.d., independent from the arrival process, and follow an exponential distribution with rate

µ. Times before reneging are assumed to be i.i.d., and exponentially distributed with rate γ.

Following similar arguments, the system can be modeled as an M/M/s/K + M queue. The

symbol M after the + is to indicate the markovian assumption for reneging times. Note that

owing to reneging, the system is always ergodic even if the queue has infinite capacity. Also,

ergodicity would always be assured for our system because of its limited capacity, even if the

customers were assumed to be infinitely patient. In conclusion, the system we consider here is

unconditionally ergodic.

As we shall establish later, we need not to specify here the scheduling policy, except the

assumption that it is workconserving. A scheduling policy is defined to be workconserving (non-

idling) if the waiting customers get into service as soon as a server is free. No server stays idle

as long as there are customers to serve. Several familiar disciplines of service as the first come,

first served (FCFS), the last come, first served (LCFS), the random selection (RS) disciplines

are characterized to be workconserving. A further possible classification for scheduling policies

is the preemption/non-preemption schemes. In preemptive cases, we may interrupt the service

of a customer to let a new arrival start service. However, a discipline of service is said to be

non-preemptive if there is no possibility for service interruption.

3.2 Preliminaries

In this section, we focus on characterizing the performance measure of interest. It is defined in

terms of the fraction of customers who get service, i.e., the fraction of customers who are not

blocked and who do not renege.
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Let us consider an interval of time [0, t], t > 0. We initially assume that the system starts

empty. Given that t units of time have elapsed, let n(t), and s(t) be the total number of arrivals

(including blocked customers), and the number of those who enter service, respectively. We

define the transient fraction of customers who enter service, Q(t), during [0, t] as Q(t) = s(t)
n(t) .

Taking the limit as t → ∞ of Q(t) leads to the stationary fraction Q of successful departures,

Q = limt→∞Q(t). Let b(t) and r(t) be the number of blocked customers, and that of those who

renege, respectively. Since the quantities s(t) and n(t) − b(t) − r(t) coincide in the long-run,

then Q can be rewritten as

Q = lim
t→∞

n(t)− b(t)− r(t)

n(t)
. (3.1)

In what follows, we derive a closed-form expression for Q. We denote the system state by a

random variable taking non-negative integer values representing the total number of customers

in system (including those in service). We should first distinguish two sequences of probabilities

that may describe the limiting state of our system. The first sequence is denoted by p(i) and

represents the steady state probability that the system is in state i, 0 ≤ i ≤ K, seen by an

outside random observer (at a random instant). The second is denoted by q(i) and represents

the probability that an arriving customer finds the system in state i, which is in general different

from p(i), 0 ≤ i ≤ K. The existence of both sequences is assured due to the ergodicity property

of our system.

Clearly, the quantity Q represents the probability in the infinite horizon for a new arrival

customer to enter service, which involves as a consequence, the sequence q(i). The latter is

too difficult to be computed, however the sequence p(i) is easy to derive as we shall detail

below. Fortunately, we state for our system that the quantities p(i) and q(i) coincide for any

state i. This is due to the well known PASTA property (Poisson Arrivals See Time Averages)

also referred to as ROP (Random Observer Property), which holds here given that the arrival

process is Poisson. The PASTA property is based on the memoryless property of the Poisson

process, which allows to generate a sequence of arrivals that take a random look at the system.

We refer the reader to Kleinrock [16] for further explanation, and Wolff [33] for a rigorous proof.

Let us now come back to Equation (3.1) by dividing both the numerator and the denominator

in the right hand side over t. Computing Q may be reduced thereafter to computing separately

the ratios n(t)/t, b(t)/t and r(t)/t as t goes to∞. Recall that the mean number of customers per
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unit of time is λ. Hence in the long-run (as t → ∞), the ratio n(t)/t converges by construction

to λ. As for the limit of b(t)/t as t → ∞, we may recognize it as the probability for a new arrival

to be blocked times the mean arrival rate λ. So, it is the probability that a new arrival finds a

full system times λ, namely the quantity λq(K), or equivalently λp(K). Let us now focus on

the limit of r(t)/t as t goes to infinity. One may recognize this quantity as the mean number

of reneging per unit of time seen by a random outside observer. Since it takes in average 1/γ

units of time for one customer waiting in queue to renege. Thus as t → ∞, r(t)/t converges to

the mean number of customers in queue (in the distant future) times γ. Based on the previous

analysis, Q can be rewritten as follows.

Q = 1− p(K)− γ

λ

K∑
i=s+1

(i− s)p(i). (3.2)

To get explicitly the expression of Q, we move on to compute the stationary probabilities

p(i), for 0 ≤ i ≤ K. In the usual way, we model our system as a finite continuous-time birth-

death process with discrete state space taking non-negative integer values ranging from 0 to K

and defined on a probability space. The birth rates are constant and equal to λ. The death

rates are state-dependent; when moving from state i to state i − 1, the death rate is iµ for

1 ≤ i ≤ s, and it is sµ + (i − s)γ for s < i ≤ K. Under the stationary regime, we easily get a

set of K recursive equations relating p(i) and p(i + 1) for 0 ≤ i ≤ K − 1. Proceeding to solve

by iteration leads to

p(i) =
λi

i!µi
p(0) for 0 ≤ i ≤ s, and p(i) =

λi

s!µs
∏i−s

j=1(s µ+ j γ)
p(0) for s < i ≤ K, (3.3)

where p(0) is the steady state probability to have no customers in system, and obviously,

p(i) = 0 for i > K. Then, we couple the last set of equations with the probability conservation

relation, i.e.,
∑∞

i=0 p(i) = 1, to get

p(0) =

(
s∑

i=0

λi

i!µi
+

λs

s!µs

K∑
i=s+1

λi−s∏i−s
j=1(s µ+ j γ)

)−1

, (3.4)

which determines all stationary probabilities. We still have to substitute them into Equations

(3.2) to obtain Q.
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4 Proof of First Order Monotonicity Property

One may intuitively state that the performance measures Q(t) and Q increase with respect to

the queue capacity k, keeping the parameters λ, µ, γ and s constant. The idea is that, although

adding more places in the waiting line may increase abandonments, it is clear that it could not

deteriorate the performances we consider here. On the contrary, it allows for more customers to

enter service. If not, it will at worst achieve an equal fraction of successful departures comparing

to a system with less queue capacity. In this section, we rigorously prove these results using

two different approaches. In Section 4.1, we prove using coupling arguments that Q(t) and Q

increase in k for a more general case, namely for a GI/M/s/K + M queue. In Section 4.2,

we consider our original system (the M/M/s/K + M queue) and prove using an analytical

approach that Q increases in k.

4.1 Sample Path Approach

We start with a tangential development that will be of a great help to prove our main result.

Let us relax some assumptions in our original system by considering a GI/GI/s/K+M queue.

We assume that interarrivals and service times are i.i.d., but we allow them to follow a general

distribution. In Lemma (1), we present an interesting result about the relation between the

performance measures of interest and the scheduling policy under which the system is working.

For the rest of the paper, we denote by Π the set of workconserving non-preemptive scheduling

policies.

The following result in Lemma (1) can be seen as an extension of that in Theorem (2) of

Jouini et al. [15]. In the latter, the author prove a conservation result for the probability of

being lost in a queueing system with an infinite buffer size. Here, we prove the conservation

result for the probability of being served by adding blocking (whenever the system is full).

Lemma 1 Consider a GI/GI/s/K + M queue. Times before reneging are assumed to be

i.i.d. and exponentially distributed. Then, the probability of being served Q is constant for any

workconserving non-preemptive scheduling policy.

Proof. The result is trivial for a queue with no capacity or with capacity 1. In such cases,

it is clear that the system behaves identically for any policy π ∈ Π, and as a consequence, Q

remains constant. Otherwise, for k ≥ 2, we prove the result by coupling arguments. Consider

two GI/GI/s/K+M models, say Model 1 and Model 2. We assume that Model 1 and Model 2
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have identical parameters except for the scheduling policies. Model 1 and Model 2 are working

under the policies π1 and π2, respectively, such that π1 ∈ Π, π2 ∈ Π, and π1 ̸= π2. Our approach

is based on a single sample path. In both models, we create identical successive arrival epochs, as

well as identical successive service times. However, since times before reneging are exponentially

distributed, the decision for one customer to abandon the queue is not affected by his elapsed

waiting time. This is stochastically equivalent to create randomly, for our sample path, a new

maximum time of patience for each customer in queue after each selection for service epoch (or

equivalently after each successful departure epoch). Assume that at time t = 0 both systems

are empty, and let work begins.

Both models behave identically until a busy period starts and the following situation occurs:

a server becomes idle (after a service completion) and more than one customer are waiting in

queue. Let Di be the epoch of that service completion (which occurs simultaneously in Model 1

and 2). For both models, let n be the number of customers in queue just before Di, 2 ≤ n ≤ k.

At Di, the idle server in Model 1 selects one customer from the queue who can be different

from that selected by the same idle server in Model 2. However, the number of customers in

queue goes down by 1 for both models, it becomes n − 1. Recall that up to now, the number

of blocked customers, as well as that of those who abandoned the queue, are identical for both

models.

At the epochDi, we create for each customer, waiting in the queue of Model 1, a new patience

time. Without altering distributions, since times before reneging are identically distributed,

we create the same set of n − 1 maximum patience times as in Model 1, and we assign them

arbitrary to the customers waiting in Model 2. AfterDi, three events are possible: one customer

reneges, or a new arrival occurs, or a server becomes idle (service completion). Recall that by

construction of our single sample path, these events occur simultaneously in both models.

Assume now that the first event occurs, then the number of customers who abandon the queue

goes up by 1 in both models and as a consequence remains identical for them. It is still also

identical if another customer abandons the queue. In general, it is the case as long as there

are customers waiting in queue. If not, both models will behave identically, anyway. Assume

now that a new arrival occurs. Note that the number of customers in queue is the same in

both models. If the queues are currently full, i.e., k are waiting for service, then the new

arrival will be blocked, and systems states remain unchanged. However, if at least there is
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one available space, hence, the number of customers in queue goes up by 1 in both models.

Note that if another arrival occurs or that one customer abandons the queue, then, the number

of customers in queue will increase by 1 (or remains unchanged if the system is full) or will

decrease by 1, respectively. The main conclusion is that the number of blocked customers, as

well as that of those who abandon the queue will vary identically in both models.

Assume now that one server becomes idle. If the number of customers in queue is currently

less or equal to 1, it is obvious to see that policies π1 and π2 will select at the same time the

unique available customer, if any. Otherwise, the busy period ends in both models, so both

policies will again select identically new arrivals for service until the beginning of the next busy

period. However, if the number of customers in queue is greater or equal to 2, the selected

customer for service may be different from one model to another. As above, we create for the

remaining set of waiting customers, the same set of patience time. Again, we can state that

the number of blocked customers, as well as that of those who abandon the queue remains the

same for both models.

Carrying on using the same arguments, we state that in a distant future, the number of

blocked customers and that of those who renege in Model 1 coincide with those in Model 2.

Since the number of arrivals are also equal for both models, the service level in terms of the

fraction of successful departures is unchanged, Qπ1 = Qπ2. This completes the proof. �

Although the probability of being served is independent of the scheduling policy, the mean

waiting time in queue for the served customers does depend on the scheduling policy. Jouini et

al. [15] have proved the latter result when considering the particular case of a GI/GI/s +M

queue. They have also characterized the policies under which upper and lower bounds of the

mean waiting time are achieved.

We should note however that the result in Lemma (1) does not hold if times before reneging

are not i.i.d. and exponentially distributed, or if service times at any point during an arbitrary

busy period are order of service dependent, we need to assume that no service needs are created

or destroyed within the system: no renege in the midst of service, no forced idleness of servers,

and so on.

In Lemma (2), we show that Q is still unchanged for any workconserving scheduling policy

(with preemption or not) if we further assume that service times are i.i.d. and exponentially
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distributed.

Lemma 2 Consider a GI/M/s/K +M queue. Times before reneging are assumed to be i.i.d.

and exponentially distributed. Then, the probability of being served Q is constant for any work-

conserving scheduling policy.

Proof. We again show the result using coupling arguments. Based on a single sample path,

we compare the quantity Q for two identical GI/M/s/K +M models, say Model 1 and Model

2, working under two different scheduling policies π1 and π2, respectively. We assume that π1

and π2 are workconserving, and do not restrict them to be non-preemptive. We use a similar

approach to that for Lemma (1). The only difference is only when an interruption of service

occurs in one of the models. Note that just before the epoch of that event, both models are

identical: all servers are busy, same number n of customers in queue, same remaining ser-

vice times, and same set of remaining times before reneging for waiting customers in queue.

Without loss of generality, assume that in Model 1, a new arrival interrupts the service of a

customer currently in service. Since service times are assumed to be exponentially distributed,

then the remaining time for a service completion is not affected by the elapsed time in ser-

vice. This allows us to create randomly, for our sample path, a new set of remaining service

times for the customers currently in service (s customers in both models), and also a new set

of patience time for waiting customers in queue (n customers in both models). Continuing

the sample path comparison in the long run will subsequently show that Q coincides for both

models. This completes the proof of the lemma. �

In Theorem (1), we show the main result of first order monotonicity for a GI/M/s/K +M

queue. The analysis resorts in part to the previous preliminary results of this section.

Theorem 1 Consider a GI/M/s/K+M queue. Times before reneging are assumed to be i.i.d.

and exponentially distributed. Then, probability of being served Q is strictly increasing in the

buffer size k.

Proof. To prove the result of the theorem, it suffices to compare the achieved Q for the two

following systems. The first, say Model 1, is a GI/M/s/K +M queue with k waiting spaces.

From Lemma (1), it does not restrict generality to assume that Model 1 works under the FCFS
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discipline of service. The second model is identical to the first in all parameters except that it

has k + 1 waiting spaces. From Lemma (2), the latter is equivalent, in terms of the achieved

Q, to a GI/M/s/K + M queue, say Model 2, with k + 1 waiting spaces and working under

any preemptive workconserving policy. In summary, it is left to establish that the stationary

probability of being served in Model 2, say Q2, is strictly greater than that in Model 1, say Q1.

The proof follows the sample path approach. Before proceeding to the details, let us char-

acterize a specific preemptive workconserving policy, say π, under which Model 2 is operated.

We divide the queue in Model 2 (with capacity k + 1) into two virtual queues. The first, say

queue 1, has capacity k. The second, say queue 2, has the remaining capacity, i.e., 1. Upon

arrival, a customer is addressed by one of the available servers, if any. If not, the customer

must join one of the queues. We will specify the queue joining policy later. Customers in queue

1 have priority over customers in queue 2 in the sense that servers are handling customers

belonging to queue 1 first. The priority rule is preemptive, which simply means that a server

currently serving a customer pulled from queue 2, while a new arrival customer joins queue 1,

will interrupt this service and turn to queue 1 customer. Within each queue, customers are

served in order of their arrival, that is, under the FCFS discipline.

Let us now couple Model 1 and 2 and let work begins. Both models behaves identically

until the situation where in Model 1 all servers are busy, k customers are waiting in queue and

a new arrival occurs. Let us stop our clock temporarily. We denote that customer by the “low

customer”. Clearly, the “low customer” is blocked in Model 1 because the system is currently

full, however, he joins the waiting line in Model 2. We assign him to queue 2 (with lower

priority). Recall that up to now the number of customers served is identical in both models.

Let our clock resumes ticking: arrivals, blocking, abandonments, as well as service completions

will occur at the same epochs in both models until the busy period in system 1 ends (which

occurs with probability 1 due to the ergodicity condition). We distinguish two possible cases

for the “low customer”: either he has meanwhile abandoned, or he is still waiting in queue 2.

In the first case, both systems states become again identical. In the second case, i.e., if the

“low customer” is still waiting, then we assign him to the server currently idle in Model 2. As

long as the current idle period in Model 1 does not finish, we let the “low customer” stay in

service. If the “low customer” finishes his service before that a new arrival occurs (at the same

epoch in both models), therefore Model 2 will have one more service completion comparing to
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Model 1, and all events in both models become again identical. If not, that is if the idle period

in Model 1 ends and the “low customer” has not successfully leaved Model 2, then we interrupt

his service and we put him back in queue 2. The idea here from choosing the policy π is to

ensure an identical behavior, in both models, with regard to all customers except for the “low

customers”. Such customers are blocked (lost) in Model 1, however, they join queue 2 in Model

2.

From the previous arguments, one may easily deduce that Q1 ≤ Q2. Let us now proceed to

establish that Q1 < Q2. It is clear that one “low customer” at most may be present in Model 2

at a given observation moment. Let us further define a particular cycle duration referred to as

the “low cycle”. The “low cycle” starts when a “low customer” enters Model 2, and terminates

upon the arrival of the next “low customer”. The latter allows the following “low cycle” to

start, and so on. The duration of a “low cycle” is given by the time it takes so that the “low

customer” who starts the cycle either reneges or successfully finishes his service plus the time it

takes starting from that epoch until the next “low customer” arrival epoch. Since the systems

we consider here are stable, hence, any busy period in Model 1 ends with probability 1, i.e.,

its duration is finite (< ∞). In addition, knowing that times before reneging are finite, we

state that the “low cycle” duration is also finite. Furthermore, since interarrival times, times

before reneging, as well as service times are i.i.d. and further independent of each others, it

then follows that “low cycles” durations are also independent and identically distributed. Next,

assuming the stationary regime and observing that there is a non-zero probability that a “low

customer” finishes successfully his service within its corresponding “low cycle”, it yields from

the Law of Large Numbers that there is a non-zero proportion of “low customers” that will fin-

ish successfully their service. So, we state that the number of customers being served in Model

2 is strictly greater than that in Model 1. Finally, it is implied that the stationary probability

of being servedQ is strictly increasing in the buffer size k. This completes the proof. �

In a parallel to the proof of Theorem (1), we also state that the probability of being served

under the transient regime, Q(t), is an increasing function of k. Note that it is not necessarily

strictly increasing in k as it is the case for the quantity Q.
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4.2 Analytical Approach

In this section, we again consider our original M/M/s/K +M queue described in Section 3.1.

As shown in Section 3.2, a closed-form expression of the quantity Q may be derived. This

allows us to again prove the result of Theorem (1) using an analytical approach. The analysis

we address in this section is in particular useful for the proof of the convexity result in Section

5. Before giving the details of the proof of the monotonicity property, we begin with some

preliminary results by means of Properties (1) and (2). For the rest of the paper, an empty

sum is being interpreted as zero, and an empty product is being interpreted as one.

Our objective is to show that Q is strictly increasing in k for an M/M/s/K + M queue.

To do so, we consider two models. The first is an M/M/s/K +M queue with parameters λ,

γ, µ, s, and k waiting spaces, k ≥ 0. The second model is identical to the first however it

has a larger buffer with k + 1 waiting spaces. Recall that for our analysis, we do not need to

specify the scheduling policy except that it is workconserving. Next, it suffices to show that the

stationary probability of being served in the first model, say Qk, is strictly lower than that in

the second model, say Qk+1. Or equivalently, if we introduce the sequence {Uk, k ≥ 0} defined

as Uk = Qk+1 − Qk, it remains for us to establish that Uk > 0 for all k ≥ 0. From Equation

(3.2), Uk can be rewritten as

Uk = pk(k + s)− pk+1(k + s+ 1) +
γ

λ

(
k+s∑

i=s+1

(i− s)pk(i)−
k+s+1∑
i=s+1

(i− s)pk+1(i)

)
. (4.1)

The stationary probabilities are given by Equations (3.3) and (3.4). The subscripts are to

indicate to which system the stationary probabilities are corresponding, either for the one with

queue capacity k, or for that with queue capacity k + 1. In Property (1), we state a useful

relation between Uk and Uk+1 for any non-negative integer k.

Property 1 For all k ≥ 0, the following holds

Uk+1 =
s!µs

∑s
i=0 ϕi +

∑k+s
i=s+1 ρi

s!µs
∑s

i=0 ϕi +
∑k+s+2

i=s+1 ρi
· λ

sµ+ (k + 2)γ
· Uk, (4.2)

where

ϕi =
λi

i!µi
, for i ≥ 0, and, ρi =

λi∏i−s
j=1(sµ+ jγ)

, for i ≥ s+ 1. (4.3)

Proof. The proof is provided in Appendix A.
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Note that proving Property (1) represents the “hard” part of the proof of the monotonicity

result as well as that of the convexity result. One may verify that Equation (4.2) holds for

different special cases. For instance, let us consider an infinite-server queue M/M/s/K + M

(s → ∞). Taking the limit in Relation (4.2) as s goes to ∞ implies that Uk = 0 for all non-

negative integer k ≥ 1 (in addition from Equation (A.4) for example, we have U0 = 0), which

obviously agrees with the classical queueing results. The result also holds for anM/M/s/K+M

queue with infinitely impatient customers (γ = ∞). In that case, the M/M/s/K +M queue is

equivalent to a loss system (without waiting space). Thus, it is easy to see that the quantity

Qk does not depend on the buffer size k. So, Uk = 0 for any k ≥ 0, which agrees with Equation

(4.2).

Although we present in Property (2) an inequality that directly seems to be of independent

interest, it is useful for forthcoming proofs of our results.

Property 2 Let λ and µ be strictly positive reals and let {Ns, s ≥ 1} be a sequence defined as

Ns = sµ
s∑

i=0

λi

i!µi
− λ

s−1∑
i=0

λi

i!µi
. (4.4)

Then, Ns > 0 for all s ≥ 1.

Proof. The inequality holds by induction. We have N1 = µ > 0, then Property (2) holds for

s = 1. Assume now that Ns > 0 for a given s ≥ 1, and let us show that Ns+1 > 0. From

Equation (4.4), Ns+1 can be written as

Ns+1 = (s+ 1)µ

s+1∑
i=0

λi

i!µi
− λ

s∑
i=0

λi

i!µi
(4.5)

= sµ

s∑
i=0

λi

i!µi
+ sµ

λs+1

(s+ 1)!µs+1
+ µ

s+1∑
i=0

λi

i!µi
− λ

s−1∑
i=0

λi

i!µi
− λs+1

s!µs

= Ns +
s λs+1

(s+ 1)!µs
− λs+1

s!µs
+ µ

s+1∑
i=0

λi

i!µi

= Ns −
λs+1

(s+ 1)!µs
+ µ

s∑
i=0

λi

i!µi
+

λs+1

(s+ 1)!µs

= Ns + µ

s∑
i=0

λi

i!µi
.

Using the induction assumption, it thus follows thatNs+1 > 0. Finally, we conclude thatNs > 0
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for all s ≥ 1. This completes the proof. �

In Theorem 2, we state the main result of this section. Having Properties (1) and (2), we

are now ready to establish the first order monotonicity property of the probability of being

served, Q, with respect to the buffer size k.

Theorem 2 Consider an M/M/s/K + M queue. Times before reneging are assumed to be

i.i.d. and exponentially distributed. Then, Q is strictly increasing in the buffer size k.

Proof. As explained in the beginning of this section, proving the theorem is equivalent to

proving that Uk is strictly positive for k ≥ 0. Keeping the parameters λ, µ, s and γ constant,

the result holds by induction on k.

Let us establish our claim for the first rank, k = 0. The quantity U0 is given by U0 = Q1−Q0,

where Q0 and Q1 are the probabilities of being served for the M/M/s/s+M (no waiting space)

and M/M/s/s+1 +M (single waiting space) systems, respectively. Using Equation (3.2), the

probability Q0 is given by Q0 = 1 − p0(s), where p0(s) is the stationary probability to have s

customers in the M/M/s/s + M system. As for Q1, it is given by Q1 = 1 − λ+γ
λ p1(s + 1),

where p1(s+1) is the stationary probability to have s+1 customers in the M/M/s/s+1 +M

system.

From Equations (3.3) and (3.4), we get

Q0 = 1−
λs

s!µs∑s
i=0

λi

i!µi

, (4.6)

and,

Q1 = 1− λ+ γ

sµ+ γ

λs

s!µs∑s
i=0

λi

i!µi +
λs

s!µs
λ

sµ+γ

. (4.7)

Therefore,

U0 =
λs

s!µs
∑s

i=0
λi

i!µi

− λs+1 + λs γ

s!µs (s µ+ γ)
∑s

i=0
λi

i!µi + λs+1
. (4.8)

To prove that U0 > 0, we consider U0 as a real function of γ, for γ ≥ 0, and we study the sign

of U0(γ). It is clear that U0 has the property to be continuous and derivable in γ. Taking the
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derivative, U ′
0, of U0 in γ leads to

U ′
0(γ) = −

s!µssµ
∑s

i=0
λi

i!µi + s!µsγ
∑s

i=0
λi

i!µi + λs+1 − (λ+ γ)s!µs
∑s

i=0
λi

i!µi

(s!µs(sµ+ γ)
∑s

i=0
λi

i!µi + λs+1)2
· λs

= −
s!µssµ

∑s
i=0

λi

i!µi + s!µsγ
∑s

i=0
λi

i!µi + λs+1 − (λ+ γ)(s!µs
∑s−1

i=0
λi

i!µi + λs)

(s!µs(sµ+ γ)
∑s

i=0
λi

i!µi + λs+1)2
· λs

= −
s!µssµ

∑s
i=0

λi

i!µi + s!µsγ
∑s−1

i=0
λi

i!µi + λsγ + λs+1

(s!µs(sµ+ γ)
∑s

i=0
λi

i!µi + λs+1)2
· λs

+
λs+1 + λs!µs

∑s−1
i=0

λi

i!µi + λsγ + s!µsγ
∑s−1

i=0
λi

i!µi

(s!µs(sµ+ γ)
∑s

i=0
λi

i!µi + λs+1)2
· λs (4.9)

= −λss!µs
sµ
∑s

i=0
λi

i!µi − λ
∑s−1

i=0
λi

i!µi

(s!µs(sµ+ γ)
∑s

i=0
λi

i!µi + λs+1)2
.

Using the notation in Equation (4.4), U ′
0(γ) can be rewritten as

U ′
0(γ) =

−λss!µs

(s!µs(sµ+ γ)
∑s

i=0
λi

i!µi + λs+1)2
·Ns. (4.10)

Applying now Property (2) for s strictly positive integer, and, for λ and µ strictly positive reals,

we easily see that U ′
0(γ) < 0. Then, U0 is a strictly decreasing function in γ, for γ ≥ 0. Hence,

it follows that

U0(γ) > lim
γ→+∞

U0(γ), for γ ≥ 0. (4.11)

Observing that

lim
γ→+∞

U0(γ) =
λs

s!µs
∑s

i=0
λi

i!µi

− λs+1 + λs γ

s!µs (s µ+ γ)
∑s

i=0
λi

i!µi + λs+1
= 0, (4.12)

we deduce that U0(γ) > 0 for γ ≥ 0. Thereafter, our claim is true for the first rank k = 0.

Let us consider k ≥ 0 and assume that our claim is true for the rank k, i.e., Uk > 0. Let us

now prove that our claim is true for the rank k + 1. This is a direct consequence of Property

(1). For s ≥ 1, λ, µ > 0 and γ ≥ 0, we state using Property (1) that Uk+1 is the product of Uk

and a strictly positive real. So, Uk+1 > 0. Finally, we conclude that Uk > 0 for k ≥ 0, which

completes the proof of the theorem. �
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5 Proof of Second Order Monotonicity Property

In this section, we investigate the second order property of monotonicity (of the probability of

being served) in the queue capacity. First, we prove using a simple counterexample that the

transient probability of being served, Q(t), is not concave in k. Second, we state our main result

in Theorem (3) about the concavity property. Finally, we present some numerical illustrations

of that result.

To prove the non-concavity of Q(t) as a function of k, we consider three M/M/1/K +M

queues denoted by Model 1, Model 2 and Model 3. Assume the discipline of service to be FCFS.

The models are identical in all parameters except for the buffer size. Specifically, Models 1, 2

and 3 contain 1, 2 and 3 waiting spaces, respectively. During an interval of time [0, t], we denote

the transient probability of being served for Model 1 by Q1(t). We denote those for Model 2

and 3 by Q2(t) and Q3(t), respectively. In what follows, we construct one possible sample path

which shows that the transient probability of being served is not concave in k. In mathematical

terms, it consists to find an instant t such that Q3(t)−Q2(t) > Q2(t)−Q1(t).

Initially, the models are empty. Now, let work begins. All models behave identically until

the situation where in each model the unique available server is busy and there is one waiting

customer in queue, say A1. Thereafter, assume that one arrival, say A2, occurs before a service

completion or an abandonment. Note that this event occurs with a non-zero probability. The

customer A2 is blocked in Model 1, whereas he joins the queue in Models 2 and 3. Assume also

that the next event is an arrival denoted by A3. The customer A3 is blocked in Models 1 and

2, however he joins the queue in Model 3. Next, assume that A2 abandons the queue, which

occurs simultaneously in Models 2 and 3. Then, assume that A1 in all models and A3 in Model

3 finish their service and successfully leave the systems. Let tA3 be the epoch of the departure

of A3. So, we state that during [0, tA3 ], the number of served customers in Model 1 is equal to

that in Model 2. However, there is one served customer in more in Model 3 compared to the

other models. In other words, Q3(t) > Q2(t) and Q1(t) = Q2(t), which leads to the inequality

Q3(t)−Q2(t) > Q2(t)−Q1(t) and closes the discussion.

Turning now to the concavity of the stationary quantity Q as a function of k, we present

the following theorem.

Theorem 3 Consider an M/M/s/K + M queue. Times before reneging are assumed to be

i.i.d. and exponentially distributed. Then, Q is a strictly concave function in the buffer size k.
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Proof. Let us again consider three M/M/s/K +M queues denoted by Model 1, 2 and 3. All

models are identical in all parameters except in the buffer size. In Model 1, there are k waiting

spaces. However, Model 2 and Model 3 have k + 1 and k + 2 waiting spaces, respectively.

We do not need here to specify the scheduling policy except that it is workconserving. For

Model 1, 2 and 3, we denote by Qk, Qk+1 and Qk+2 the stationary probabilities of being

served, respectively. Following this introduction, one may easily see that proving our theorem

is equivalent to proving that Uk = Qk+1 − Qk is strictly greater than Uk+1 = Qk+2 − Qk+1,

for all k ≥ 0. In other terms, it remains to prove that the sequence {Uk, k ≥ 0} is strictly

decreasing. Knowing from Theorem (2) that Uk > 0, for k ≥ 0, it suffices thereafter to show

that
Uk+1

Uk
< 1, for k ≥ 0. From Equation (4.2), we have

Uk+1

Uk
=

s!µs
∑s

i=0 ϕi +
∑k+s

i=s+1 ρi

s!µs
∑s

i=0 ϕi +
∑k+s+2

i=s+1 ρi
· λ

sµ+ (k + 2)γ
, for k ≥ 0, (5.1)

which may be rewritten, for k ≥ 0, as

Uk+1

Uk
=

(
(s!µs

∑s−1
i=0 ϕi)× λ

sµ+(k+2)γ

)
+
(
(λs +

∑k+s
i=s+1 ρi)×

λ
sµ+(k+2)γ

)
s!µs

∑s
i=0 ϕi +

∑k+s+2
i=s+1 ρi

. (5.2)

From the one hand, Property (2) leads to

λ

s−1∑
i=0

ϕi < (sµ+ (k + 1)γ)

s∑
i=0

ϕi. (5.3)

Hence,

(s!µs
s−1∑
i=0

ϕi)×
λ

sµ+ (k + 1)γ
< s!µs

s∑
i=0

ϕi. (5.4)

From the other hand, we have for all i, such that i < k + s+ 1,

λ

sµ+ (k + 2)γ
<

λ

sµ+ (i− s+ 1)γ
, (5.5)

which implies

λ

sµ+ (k + 2)γ
ρi <

λ

sµ+ (i− s+ 1)γ
ρi = ρi+1. (5.6)
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Summing Equation (5.6) on all i, s+ 1 ≤ i ≤ k + s, we get

λ

sµ+ (k + 2)γ

k+s∑
i=s+1

ρi <

k+s∑
i=s+1

ρi+1 =

k+s+1∑
i=s+2

ρi. (5.7)

Next, observing that

λs+1

sµ+ (k + 2)γ
<

λs+1

sµ+ γ
= ρs+1, for k ≥ 0, (5.8)

the summation of both Inequalities (5.7) and (5.8) leads to

(λs +

k+s∑
i=s+1

ρi)×
λ

sµ+ (k + 2)γ
<

k+s+1∑
i=s+1

ρi <

k+s+2∑
i=s+1

ρi. (5.9)

Finally, it remains to apply Relations (5.4) and (5.9) back into Relation (5.2), to state that

Uk+1

Uk
< 1. This completes the proof of the theorem. �

To get some numerical illustrations of our results, we consider various M/M/s/K + M

models by taking a broad range of parameters values. The service rate is unchanged for all

chosen examples, µ = 1. The values of the reneging rate are 0.5, 1 and 2. The number of servers

are 1, 2, 3, 5, 10, 15, 50, 70 and 100. To vary the “servers utilization” calculated as λ/sµ, we

consider λ = 1.8 for s = 1, 2 and 3; λ = 8 for s = 5, 10 and 15; λ = 60 for s = 50, 70 and 100.

For each set of the previous values, the buffer size is ranging from 0 to 30. The detailed results

are presented in Tables 1, 2 and 3 of Appendix B.

From the numerical results, we underline the following comments. As expected from Theo-

rems (2) and (3), Q is increasing and concave in k keeping all remaining parameters constant.

One may see that there is no need to go beyond a buffer size around 10 to approximately reach

the maximum of the probability of being served (reached within an infinite buffer size). Starting

from a system with no waiting space, most of the improvements are achieved by adding two

places in the buffer. Obviously, we also see that Q is decreasing with respect to the abandon-

ment rate γ. The reason is simply that the probability to abandon the queue is increasing in the

abandonment rate. Furthermore, for a fixed server utilization, large systems allow to achieve

higher service levels. This does not seem at odds with known results, it is due to the pooling

effect.
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6 Conclusions

In this paper, we considered a queueing system with reneging and finite buffer size. The model

is of interest for the modeling in practice of several systems with impatient customers, such

as call centers. We investigated monotonicity results of the probability of being served with

respect to the buffer size. These results are helpful when addressing optimizations issues. We

considered both transient and stationary quantities of the performance of interest. Under the

transient regime, we proved that it is an increasing and non-concave function of the buffer size.

Under the stationary regime, we proved that it is strictly increasing and concave in the buffer

size.

As a topic for future research, it would be interesting to investigate in a similar fashion as

here, the convexity properties of the performance measure as a function of other parameters

such as the arrival rate, service rate, reneging rate, and number of servers.
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Appendixes

A Proof of Property (1)

In this appendix, we prove the result in Property (1). Using the notations in Equation (4.3),

the stationary probabilities for an M/M/s/s + k +M queue (k extra waiting lines) given in

Equations (3.3) and (3.4) may be rewritten as

pk(i) = ϕi × p(0), for 0 ≤ i ≤ s, (A.1)

pk(i) = ρi × p(0), for s < i ≤ s+ k, (A.2)

and

pk(0) =
s!µs

s!µs
∑s

i=0 ϕi +
∑s+k

i=s+1 ρi
. (A.3)

Substituting them into Equation (4.1) yields, for k ≥ 0, to

Uk =

(
ρk+s

s!µs
∑s

i=0 ϕi +
∑k+s

i=s+1 ρi
− ρk+s+1

s!µs
∑s

i=0 ϕi +
∑k+s+1

i=s+1 ρi

)
(A.4)

+
γ

λ

( ∑k+s
i=s+1(i− s)ρi

s!µs
∑s

i=0 ϕi +
∑k+s

i=s+1 ρi
−

∑k+s+1
i=s+1 (i− s)ρi

s!µs
∑s

i=0 ϕi +
∑k+s+1

i=s+1 ρi

)
.
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Or equivalently with some algebra

Uk(s!µ
s

s∑
i=0

ϕi +
k+s+1∑
i=s+1

ρi) = ρk+s(1 +
ρk+s+1

s!µs
∑s

i=0 ϕi +
∑k+s

i=s+1 ρi
)− ρk+s+1 (A.5)

+
γ

λ

(
k+s∑

i=s+1

(i− s)ρi(1 +
ρk+s+1

s!µs
∑s

i=0 ϕi +
∑k+s

i=s+1 ρi
)−

k+s+1∑
i=s+1

(i− s)ρi

)

= ρk+s +
ρk+s ρk+s+1

s!µs
∑s

i=0 ϕi +
∑k+s

i=s+1 ρi
− ρk+s+1

+
γ

λ

(
−(k + 1)ρk+s+1 +

ρk+s+1

s!µs
∑s

i=0 ϕi +
∑k+s

i=s+1 ρi

k+s∑
i=s+1

(i− s)ρi

)

= ρk+s + ρk+s+1(−1 +
ρk+s

s!µs
∑s

i=0 ϕi +
∑k+s

i=s+1 ρi
− (k + 1)γ

λ
+

γ

λ

∑k+s
i=s+1(i− s)ρi

s!µs
∑s

i=0 ϕi +
∑k+s

i=s+1 ρi
).

Calculating further gives

Uk(s!µ
s

s∑
i=0

ϕi +

k+s+1∑
i=s+1

ρi)(s!µ
s

s∑
i=0

ϕi +

k+s∑
i=s+1

ρi) = ρk+s(s!µ
s

s∑
i=0

ϕi +

k+s∑
i=s+1

ρi) (A.6)

+ ρk+s+1

(
ρk+s − (s!µs

s∑
i=0

ϕi +
k+s∑

i=s+1

ρi)−
(k + 1)γ

λ
(s!µs

s∑
i=0

ϕi +
k+s∑

i=s+1

ρi) +
γ

λ

k+s∑
i=s+1

(i− s)ρi

)

= ρk+s(s!µ
s

s∑
i=0

ϕi +
k+s∑

i=s+1

ρi) + ρk+s+1

(
ρk+s − (1 +

(k + 1)γ

λ
)(s!µs

s∑
i=0

ϕi +
k+s∑

i=s+1

ρi) +
γ

λ

k+s∑
i=s+1

(i− s)ρi

)
.

Observing that ρk+s+1 =
λ

sµ+(k+1)γ ρk+s, for k ≥ 0, we may write

Uk(s!µ
s

s∑
i=0

ϕi +
k+s+1∑
i=s+1

ρi)(s!µ
s

s∑
i=0

ϕi +
k+s∑

i=s+1

ρi)
1

ρk+s
(A.7)

= (s!µs
s∑

i=0

ϕi +
k+s∑

i=s+1

ρi + ρk+s+1)−
λ+ (k + 1)γ

sµ+ (k + 1)γ
(s!µs

s∑
i=0

ϕi +
k+s∑

i=s+1

ρi) +
γ

sµ+ (k + 1)γ

k+s∑
i=s+1

(i− s)ρi

= (s!µs
s∑

i=0

ϕi +
k+s+1∑
i=s+1

ρi)− (s!µs
s∑

i=0

ϕi +
k+s∑

i=s+1

ρi)

− λ− sµ

sµ+ (k + 1)γ
(s!µs

s∑
i=0

ϕi +
k+s∑

i=s+1

ρi) +
γ

sµ+ (k + 1)γ

k+s∑
i=s+1

(i− s)ρi.

Simplifying Equation (A.7) implies the following relation

Uk(s!µ
s

s∑
i=0

ϕi +

k+s+1∑
i=s+1

ρi)(s!µ
s

s∑
i=0

ϕi +

k+s∑
i=s+1

ρi)
1

ρk+s
(A.8)

= ρk+s+1 −
λ− sµ

sµ+ (k + 1)γ
(s!µs

s∑
i=0

ϕi +

k+s∑
i=s+1

ρi) +
γ

sµ+ (k + 1)γ

k+s∑
i=s+1

(i− s)ρi.
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For the rank k + 1, Relation (A.8) becomes

Uk+1(s!µ
s

s∑
i=0

ϕi +

k+s+2∑
i=s+1

ρi)(s!µ
s

s∑
i=0

ϕi +

k+s+1∑
i=s+1

ρi)
1

ρk+s+1
(A.9)

= ρk+s+2 −
λ− sµ

sµ+ (k + 2)γ
(s!µs

s∑
i=0

ϕi +
k+s+1∑
i=s+1

ρi) +
γ

sµ+ (k + 2)γ

k+s+1∑
i=s+1

(i− s)ρi

=
λ

sµ+ (k + 2)γ
ρk+s+1 −

λ− sµ

sµ+ (k + 2)γ
(s!µs

s∑
i=0

ϕi +

k+s∑
i=s+1

ρi + ρk+s+1)

+
γ

sµ+ (k + 2)γ

k+s∑
i=s+1

(i− s)ρi +
(k + 1)γ

sµ+ (k + 2)γ
ρk+s+1.

Hence,

Uk+1(s!µ
s

s∑
i=0

ϕi +
k+s+2∑
i=s+1

ρi)(s!µ
s

s∑
i=0

ϕi +
k+s+1∑
i=s+1

ρi)
1

ρk+s+1
(A.10)

=
sµ+ (k + 1)γ

sµ+ (k + 2)γ
ρk+s+1 −

λ− sµ

sµ+ (k + 2)γ
(s!µs

s∑
i=0

ϕi +
k+s∑

i=s+1

ρi) +
γ

sµ+ (k + 2)γ

k+s∑
i=s+1

(i− s)ρi.

Multiplying both sides in Equation (A.10) by sµ+(k+2)γ
sµ+(k+1)γ implies

Uk+1(s!µ
s

s∑
i=0

ϕi +

k+s+2∑
i=s+1

ρi)(s!µ
s

s∑
i=0

ϕi +

k+s+1∑
i=s+1

ρi)
1

ρk+s+1
· sµ+ (k + 2)γ

sµ+ (k + 1)γ
(A.11)

= ρk+s+1 −
λ− sµ

sµ+ (k + 1)γ
(s!µs

s∑
i=0

ϕi +
k+s∑

i=s+1

ρi) +
γ

sµ+ (k + 1)γ

k+s∑
i=s+1

(i− s)ρi.

From Equations (A.8) and (A.11), we next deduce that

Uk+1(s!µ
s

s∑
i=0

ϕi +

k+s+2∑
i=s+1

ρi)(s!µ
s

s∑
i=0

ϕi +

k+s+1∑
i=s+1

ρi)
1

ρk+s+1
· sµ+ (k + 2)γ

sµ+ (k + 1)γ
(A.12)

= Uk(s!µ
s

s∑
i=0

ϕi +
k+s+1∑
i=s+1

ρi)(s!µ
s

s∑
i=0

ϕi +
k+s∑

i=s+1

ρi)
1

ρk+s
.

Finally, simplifying Equation (A.12) and again observing that
ρk+s+1

ρk+s
= λ

sµ+(k+1)γ , we get for

all k ≥ 0,

Uk+1 =
s!µs

∑s
i=0 ϕi +

∑k+s
i=s+1 ρi

s!µs
∑s

i=0 ϕi +
∑k+s+2

i=s+1 ρi
· λ

sµ+ (k + 2)γ
· Uk, (A.13)

which completes the proof of the property. �
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B Numerical illustrations

In this appendix, we present numerical examples to illustrate the convexity results. We compute

the probability of being served as a function of the queue capacity for several systems chosen so

as to cover a broad range of parameters values. Systems parameters are presented in Section 5.
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λ = 1.8 λ = 8 λ = 60

k s = 1 s = 2 s = 3 s = 5 s = 10 s = 15 s = 50 s = 70 s = 100

0 35.7143 63.3484 81.9733 52.0992 87.8339 99.0899 78.3881 97.6256 99.9999

1 44.3548 73.3209 89.1589 56.3701 90.9867 99.5033 79.3985 98.0027 100.0000

2 47.5087 77.5281 92.0093 58.5389 92.9632 99.7085 80.1610 98.3100 100.0000

3 48.8651 79.3467 93.0916 59.7405 94.2080 99.8076 80.7453 98.5601 100.0000

4 49.4796 80.1024 93.4736 60.4509 94.9854 99.8542 81.1989 98.7634 100.0000

5 49.7536 80.3947 93.5977 60.8924 95.4627 99.8755 81.5551 98.9283 100.0000

6 49.8691 80.4986 93.6349 61.1773 95.7490 99.8850 81.8377 99.0615 100.0000

7 49.9140 80.5324 93.6452 61.3664 95.9160 99.8890 82.0639 99.1688 100.0000

8 49.9299 80.5425 93.6478 61.4942 96.0106 99.8908 82.2466 99.2548 100.0000

9 49.9352 80.5454 93.6485 61.5815 96.0625 99.8915 82.3952 99.3235 100.0000

10 49.9367 80.5461 93.6486 61.6411 96.0901 99.8918 82.5169 99.3780 100.0000

11 49.9372 80.5463 93.6487 61.6815 96.1044 99.8919 82.6174 99.4211 100.0000

12 49.9373 80.5463 93.6487 61.7086 96.1115 99.8919 82.7008 99.4550 100.0000

13 49.9373 80.5463 93.6487 61.7264 96.1149 99.8919 82.7704 99.4815 100.0000

14 49.9373 80.5463 93.6487 61.7379 96.1165 99.8919 82.8289 99.5021 100.0000

15 49.9373 80.5463 93.6487 61.7450 96.1173 99.8919 82.8782 99.5180 100.0000

16 49.9373 80.5463 93.6487 61.7494 96.1176 99.8919 82.9200 99.5302 100.0000

17 49.9373 80.5463 93.6487 61.7519 96.1178 99.8919 82.9556 99.5395 100.0000

18 49.9373 80.5463 93.6487 61.7534 96.1178 99.8919 82.9860 99.5466 100.0000

19 49.9373 80.5463 93.6487 61.7542 96.1178 99.8919 83.0121 99.5519 100.0000

20 49.9373 80.5463 93.6487 61.7546 96.1179 99.8919 83.0345 99.5559 100.0000

21 49.9373 80.5463 93.6487 61.7548 96.1179 99.8919 83.0539 99.5589 100.0000

22 49.9373 80.5463 93.6487 61.7549 96.1179 99.8919 83.0706 99.5611 100.0000

23 49.9373 80.5463 93.6487 61.7550 96.1179 99.8919 83.0851 99.5627 100.0000

24 49.9373 80.5463 93.6487 61.7550 96.1179 99.8919 83.0977 99.5639 100.0000

25 49.9373 80.5463 93.6487 61.7550 96.1179 99.8919 83.1087 99.5648 100.0000

26 49.9373 80.5463 93.6487 61.7550 96.1179 99.8919 83.1182 99.5654 100.0000

27 49.9373 80.5463 93.6487 61.7550 96.1179 99.8919 83.1265 99.5658 100.0000

28 49.9373 80.5463 93.6487 61.7550 96.1179 99.8919 83.1337 99.5662 100.0000

29 49.9373 80.5463 93.6487 61.7550 96.1179 99.8919 83.1399 99.5664 100.0000

30 49.9373 80.5463 93.6487 61.7550 96.1179 99.8919 83.1454 99.5665 100.0000

Table 1: Values of Qk (in %) for γ = 0.5
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λ = 1.8 λ = 8 λ = 60

k s = 1 s = 2 s = 3 s = 5 s = 10 s = 15 s = 50 s = 70 s = 100

0 35.7143 63.3484 81.9733 52.0992 87.8339 99.0899 78.3881 97.6256 99.9999

1 42.9864 71.9585 88.3281 56.1529 90.8551 99.4904 79.3906 98.0001 100.0000

2 45.2522 74.8962 90.3886 58.1089 92.6103 99.6776 80.1380 98.3012 100.0000

3 46.0253 75.8487 90.9857 59.1433 93.6035 99.7606 80.7026 98.5414 100.0000

4 46.2760 76.1248 91.1378 59.7245 94.1442 99.7954 81.1343 98.7317 100.0000

5 46.3486 76.1951 91.1719 60.0621 94.4250 99.8094 81.4682 98.8810 100.0000

6 46.3671 76.2108 91.1787 60.2603 94.5635 99.8147 81.7291 98.9972 100.0000

7 46.3713 76.2140 91.1799 60.3754 94.6283 99.8166 81.9351 99.0867 100.0000

8 46.3721 76.2146 91.1801 60.4406 94.6570 99.8173 82.0990 99.1549 100.0000

9 46.3723 76.2147 91.1802 60.4761 94.6690 99.8175 82.2305 99.2063 100.0000

10 46.3723 76.2147 91.1802 60.4945 94.6739 99.8176 82.3367 99.2447 100.0000

11 46.3723 76.2147 91.1802 60.5036 94.6757 99.8176 82.4229 99.2730 100.0000

12 46.3723 76.2147 91.1802 60.5078 94.6764 99.8176 82.4932 99.2937 100.0000

13 46.3723 76.2147 91.1802 60.5097 94.6766 99.8176 82.5508 99.3086 100.0000

14 46.3723 76.2147 91.1802 60.5105 94.6767 99.8176 82.5980 99.3192 100.0000

15 46.3723 76.2147 91.1802 60.5108 94.6767 99.8176 82.6368 99.3267 100.0000

16 46.3723 76.2147 91.1802 60.5109 94.6767 99.8176 82.6687 99.3320 100.0000

17 46.3723 76.2147 91.1802 60.5110 94.6767 99.8176 82.6949 99.3356 100.0000

18 46.3723 76.2147 91.1802 60.5110 94.6767 99.8176 82.7163 99.3380 100.0000

19 46.3723 76.2147 91.1802 60.5110 94.6767 99.8176 82.7338 99.3397 100.0000

20 46.3723 76.2147 91.1802 60.5110 94.6767 99.8176 82.7481 99.3408 100.0000

21 46.3723 76.2147 91.1802 60.5110 94.6767 99.8176 82.7596 99.3415 100.0000

22 46.3723 76.2147 91.1802 60.5110 94.6767 99.8176 82.7688 99.3420 100.0000

23 46.3723 76.2147 91.1802 60.5110 94.6767 99.8176 82.7762 99.3423 100.0000

24 46.3723 76.2147 91.1802 60.5110 94.6767 99.8176 82.7821 99.3425 100.0000

25 46.3723 76.2147 91.1802 60.5110 94.6767 99.8176 82.7867 99.3426 100.0000

26 46.3723 76.2147 91.1802 60.5110 94.6767 99.8176 82.7902 99.3427 100.0000

27 46.3723 76.2147 91.1802 60.5110 94.6767 99.8176 82.7930 99.3427 100.0000

28 46.3723 76.2147 91.1802 60.5110 94.6767 99.8176 82.7951 99.3428 100.0000

29 46.3723 76.2147 91.1802 60.5110 94.6767 99.8176 82.7966 99.3428 100.0000

30 46.3723 76.2147 91.1802 60.5110 94.6767 99.8176 82.7978 99.3428 100.0000

Table 2: Values of Qk (in %) for γ = 1
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λ = 1.8 λ = 8 λ = 60

k s = 1 s = 2 s = 3 s = 5 s = 10 s = 15 s = 50 s = 70 s = 100

0 35.7143 63.3484 81.9733 52.0992 87.8339 99.0899 78.3881 97.6256 99.9999

1 41.2371 70.1107 87.1346 55.7787 90.6222 99.4669 79.3752 97.9950 100.0000

2 42.5412 71.7812 88.3617 57.3866 92.0354 99.6247 80.0936 98.2842 100.0000

3 42.8391 72.1385 88.6026 58.1445 92.6993 99.6847 80.6211 98.5063 100.0000

4 42.8970 72.2021 88.6419 58.5085 92.9858 99.7055 81.0121 98.6735 100.0000

5 42.9064 72.2116 88.6473 58.6788 93.0991 99.7122 81.3045 98.7969 100.0000

6 42.9077 72.2129 88.6480 58.7540 93.1400 99.7142 81.5250 98.8861 100.0000

7 42.9079 72.2130 88.6480 58.7848 93.1537 99.7147 81.6922 98.9493 100.0000

8 42.9079 72.2130 88.6480 58.7964 93.1578 99.7148 81.8195 98.9931 100.0000

9 42.9079 72.2130 88.6480 58.8004 93.1590 99.7149 81.9164 99.0228 100.0000

10 42.9079 72.2130 88.6480 58.8017 93.1594 99.7149 81.9901 99.0426 100.0000

11 42.9079 72.2130 88.6480 58.8021 93.1594 99.7149 82.0460 99.0555 100.0000

12 42.9079 72.2130 88.6480 58.8022 93.1595 99.7149 82.0879 99.0637 100.0000

13 42.9079 72.2130 88.6480 58.8022 93.1595 99.7149 82.1192 99.0688 100.0000

14 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1422 99.0720 100.0000

15 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1588 99.0739 100.0000

16 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1708 99.0750 100.0000

17 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1791 99.0756 100.0000

18 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1849 99.0760 100.0000

19 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1888 99.0762 100.0000

20 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1914 99.0763 100.0000

21 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1930 99.0763 100.0000

22 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1941 99.0764 100.0000

23 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1948 99.0764 100.0000

24 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1952 99.0764 100.0000

25 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1954 99.0764 100.0000

26 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1956 99.0764 100.0000

27 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1956 99.0764 100.0000

28 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1957 99.0764 100.0000

29 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1957 99.0764 100.0000

30 42.9079 72.2130 88.6480 58.8023 93.1595 99.7149 82.1957 99.0764 100.0000

Table 3: Values of Qk (in %) for γ = 2
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