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Abstract

The nature of data in Astrophysics has changed, as in other scientific
fields, in the past decades due to the increase of the measurement capabili-
ties. As a consequence, data are nowadays frequently of high dimensionality
and available in mass or stream. Model-based techniques for clustering are
popular tools which are renowned for their probabilistic foundations and
their flexibility. However, classical model-based techniques show a disap-
pointing behavior in high-dimensional spaces which is mainly due to their
dramatical over-parametrization. The recent developments in model-based
classification overcome these drawbacks and allow to efficiently classify high-
dimensional data, even in the “small n / large p” situation. This work presents
a comprehensive review of these recent approaches, including regularization-
based techniques, parsimonious modeling, subspace classification methods
and classification methods based on variable selection. The use of these
model-based methods is also illustrated on real-world classification problems
in Astrophysics using R packages.

1 Introduction

As noticed by Hubble back in 1936 [32]:

“The nebulae are so numerous that they cannot all be studied indi-
vidually. Therefore, it is necessary to know whether a fair sample can
be assembled from the most conspicuous objects [...]. The answer to
this question [...] is sought in the classification of nebulae.”

clustering may be a powerful tool for Astrophysicists who have to face to mass of
data. However, in Astrophysics and many other scientific fields, the recent tech-
nological developments have resulted in a dramatic increase of the measurement
capabilities. In particular, it is nowadays frequent to observe high-dimensional data,
i.e. the number p of measured variables is large, mass of data, i.e. the number of
observations n is large, or even data streams, i.e. the observations arrive over the
time and n→∞. Among clustering techniques, model-based approaches [27, 37]
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are popular. They are renowned for their probabilistic foundations and their flexi-
bility, as shown in [Girard and Saracco’s Chapter]. One of the main advantages of
these approaches is the fact that their models and results can be interpreted from
both the statistical and practical points of view.

Unfortunately, model-based methods usually show a disappointing behavior in
high-dimensional spaces. They suffer from the well-known curse of dimension-
ality [3] which is mainly due to the fact that model-based techniques are over-
parametrized in high-dimensional spaces. Furthermore, in several applications, the
number of available observations can be small compared to the number of vari-
ables and such a situation increases the problem difficulty. However and since the
dimension of observed data is usually higher than their intrinsic dimension, it is
theoretically possible to reduce the dimension of the original space without loosing
any information. For this reason, dimension reduction methods are frequently used
in practice to reduce the dimension of the data before the clustering step. Fea-
ture extraction methods, such as principal component analysis (PCA), or feature
selection methods are very popular. However, dimension reduction usually does
not consider the clustering task and provide a sub-optimal data representation
for the classification step. Indeed, dimension reduction methods usually imply an
information loss which could have been discriminative.

To avoid the drawbacks of dimension reduction, several approaches have been
proposed in the last decade to allow model-based methods to efficiently classify
high-dimensional data. Earliest approaches include constrained models or regu-
larization. More recently, subspace clustering techniques and variable selection
techniques have also been proposed. Subspace clustering techniques are mostly
based on probabilistic versions of the factor analysis model and allow to classify
the data in low-dimensional subspaces without reducing the dimension. Conversely,
variable selection techniques do reduce the dimension of the data but select the
variables to retain regarding the clustering objective. Both techniques turn out to
be very efficient and their practical use will be discussed as well in this article.

This chapter is organized as follows. Section 2 introduces the curse of di-
mensionality in model-based clustering and also highlights some positive features.
Earliest approaches for high-dimensional clustering are presented and discussed in
Section 3. Then, Sections 4 and 5 respectively introduce some recent techniques
for subspace clustering and variable selection. Some concluding remarks are given
in Section 6. Before to move forward, let us notice that we present here only the
models and, unless a specific note, the inference of those models is done via the
EM algorithm (see [Girard and Saracco’s Chapter]).

2 Curse and blessings of the dimensionality

Before to present classical and recent methods for classifying high-dimensional
data, we focus in this section on the causes of the curse of dimensionality in
model-based clustering. It will be also shown that high-dimensional spaces have
interesting properties which may ease the clustering task.
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Figure 1: Volume of the unit hypersphere according to the dimension of the space.

2.1 Bellman’s curse of the dimensionality

When reading research articles or books related to high-dimensional data, it is very
likely to find the term “curse of dimensionality” to refer to problems caused by the
analysis of high-dimensional data. This term was first used by R. Bellman in the
preface of his book [3] promoting dynamic programming. Although the term “curse
of dimensionality” used by Bellman is of course rather pessimistic, the paragraph
of the preface in which the term first appeared is in fact more optimistic:

All this [the problems linked to high dimension] may be subsumed
under the heading « the curse of dimensionality ». Since this is a
curse, [...], there is no need to feel discouraged about the possibility
of obtaining significant results despite it.

This paragraph will indeed show that the Bellman’s thought was corrected since, at
least for clustering, high dimensions have nice properties which do allow to obtain
significant results.

Before moving to more optimistic things, it is important first to focus on
some surprising features of high-dimensional spaces to correctly understand the
difficulties of working with high-dimensional data. As revealed by several au-
thors [23, 44, 50, 51], high-dimensional spaces are difficult to handle because
simple ideas which are true and well-established in low-dimensional spaces (2D
or 3D for instance) turn out to be wrong in high-dimensional spaces. A simple
and classical example is the volume of the unit hypersphere which can be easily
computed with respect to the dimension p of the space as follows:

V (p) =
πp/2

Γ(p/2 + 1)
,

where Γ is the usual Gamma function. Figure 1 shows the surprising behavior of the
unit hypersphere volume according to the dimension of the space. It appears that,
as expected, the volume of the sphere increases when moving from dimension 1 to
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2, 2 to 3 and so forth. However, after the dimension 5, the volume stops increasing
and very surprisingly, decreases very fast toward 0. Consequently, the volume of
the unit hypersphere in a 30-dimensional space is 2 × 10−5. This suggests that
high-dimensional spaces have very different features than those of low-dimensional
spaces.

2.2 The curse of dimensionality in model-based clustering

The curse of dimensionality takes a particular form in the context of model-based
clustering. Indeed, model-based clustering methods require the estimation of a
number of parameters which directly depends on the dimension of the observed
space. If we consider the classical Gaussian mixture model with K groups, the
total number of parameters to estimate is equal to:

ν = (K − 1) +Kp+Kp(p− 1)/2,

where (K − 1), Kp and Kp(p− 1)/2 are respectively the numbers of parameters
to estimate for the proportions, the means and the covariance matrices. It turns
out that the number of parameters to estimate is therefore a quadratic function of
p in the case of the Gaussian mixture model and a large number of observations
will be necessary to correctly estimate those model parameters. Furthermore, a
more annoying problem occurs in the EM algorithm when computing the posterior
probability tik = E[Z = k|yi, θ] that observation yi ∈ Rp, i = 1, ..., n, belongs to
cluster k ∈ {1, ...,K}. Indeed, this probability depends, in the GMM context, on
the quantity Γk(y) = −2 log(πkφ(y;µk,Σk)) which can be rewritten as:

Γk(y) = (y − µk)tΣ−1
k (y − µk) + log(det Σk)− 2 log(πk) + p log(2π),

and which requires the inversion of the covariance matrices Σk, for k = 1, ...,K.
Consequently, if the number of observations n is small compared to p, the estimated
covariance matrices Σ̂k are ill-conditioned and their inversions conduce to unstable
classification functions. In the worst case where n < p, the estimated covariance
matrices Σ̂k are singular and model-based clustering methods cannot be used at
all. Unfortunately, this kind of situation tends to occur more and more frequently
in many scientific fields such as Astrophysics or Biology for instance.

2.3 The blessing of dimensionality in clustering

Hopefully, as expected by Bellman, high-dimensional spaces have specific features
which could also facilitate their exploration. In the context of clustering, high-
dimensional spaces do have useful characteristics which ease the clustering of
data in those spaces. In particular, Scott and Thompson [45] showed that high-
dimensional spaces are mostly empty. A simple experience can once again illustrate
this phenomenon. Let us consider the shell between the hypersphere of radius 0.9
and the unit hypersphere in a p-dimensional space. In order to study the behavior
of the volume of this shell regarding the dimension of the space, let us consider the
ratio between the volume of the two hyperspheres. Figure 2 presents the evolution
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Figure 2: Ratio between the hypersphere of radius 0.9 and the unit hypersphere
according to the dimension of the space.

of this ratio regarding the dimension p of the space. The ratio decreases quickly
toward 0 and suggests that the p-dimensional shell between the two hyperspheres
tends to have in fact an intrinsic dimension equals to p− 1. A similar experiment,
suggested by Huber [33], consists in drawing realizations of a p-dimensional ran-
dom vector Y with uniform probability distribution on the hypersphere of radius 1.
The probability that a realization yi of this experiment belongs to the shell between
the hypersphere of radius 0.9 and the unit hypersphere is therefore:

P (yi ∈ S0.9(p)) = 1− 0.9p.

In particular, the probability that yi belongs to the shell between the hypersphere of
radius 0.9 and the unit hypersphere in a 20-dimensional space is roughly equals to
0.88. Therefore, most of the realizations of the random vector Y live near a p−1 di-
mensional subspace and the remaining of the space is mostly empty. This suggests
that clustering methods should model the groups in low-dimensional subspaces
instead to model them in the whole observation space. Furthermore, it seems
reasonable to expect that different groups live in different subspaces and if this
may be a useful property for discriminating the groups. Subspace clustering meth-
ods, presented in Section 6, exploit this specific characteristic of high-dimensional
spaces.

3 Earliest approaches for high-dimensional clustering

Earliest approaches to deal with the clustering of high-dimensional data can be
split into three families: dimension reduction methods, regularization methods and
parsimonious methods.
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3.1 Dimension reduction

Approaches based on dimension reduction assume that the number p of measured
variables is too large and, implicitly, that the data at hand live in a space of lower
dimension, let us say d < p. A common practice is to project the data into a
low-dimensional space and then to apply a clustering algorithm on the projected
observations to obtain a partition of the original data.

The most popular linear method used for dimension reduction in this context
is certainly principal component analysis (PCA). It was introduced by Pearson [39]
who defines PCA as a linear projection that minimizes the average projection cost.
In other words, PCA aims to find an orthogonal projection of the data set in
a low-dimensional linear subspace, such that the variance of the projected data is
maximum. This leads to the classical result where the principal axes {u1, ..., ud} are
the eigenvectors associated with the largest eigenvalues of the empirical covariance
matrix S of the data. Interestingly, Tipping and Bishop [47] proposed, several
decades after, a probabilistic view of PCA by assuming that the observations are
independent realizations of a random variable Y ∈ Rp which is linked to a latent
variable X ∈ Rd through the linear relation:

Y = ΛtX + ε,

where X and ε are independent. It is further assume that X ∼ N (µ, Id) and
ε ∼ N (0, σ2Ip), such that the marginal distribution of Y is N (Λµ,ΛtΛ + σ2Ip).
The estimation of the parameters µ, Λ and σ2 by maximum likelihood conduces in
particular to estimate Λ by the eigenvectors associated with the largest eigenvalues
of the empirical covariance matrix S of the data.

Notice that the probabilistic PCA (PPCA) model is in fact a particular case of
the factor analysis (FA) model [46]. Indeed, the FA model makes the same assump-
tion as the PPCA model except regarding the distribution of ε which is assumed
to be N (0,Ψ), where Ψ is a diagonal covariance matrix. However, conversely to
the PPCA model, the estimation of model parameters by maximum likelihood does
not conduce to closed-form estimators in this case.

Despite the popularity of this approach, we would like to caution the reader that
reducing the dimension without taking into consideration the clustering goal may
be dangerous. Indeed, such a dimension reduction may yield a loss of information
which could have been useful for discriminating the classes or groups. In particu-
lar, when PCA is used for reducing the data dimensionality, only the components
associated with the largest eigenvalues are kept. Such a practice is disproved math-
ematically and practically by Chang [22] who showed that the first components do
not necessary contain more discriminative information than the others. In addition,
reducing the dimension of the data may not be a good idea since it is easier to
discriminate groups of points in high-dimensional spaces than in lower dimensional
spaces, assuming that one can build a good classifier in high-dimensional spaces.

Let us illustrate the possible disadvantage of PCA in the context of clustering
high-dimensional data. For the purpose of illustration, we consider her biomedical
data where a supervision is available. We consider the “prostate” data set which is
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Figure 3: Mean spectra of the three classes for the prostate data set.

available in the ChemometricsWithR package [40] for R. The data were presented
in [1]. The data set consists in 327 spectra of blood samples measured on 10523
variables from 2000 to 20000 Da. The samples come from patients with prostate
cancer, benign prostatic hypertrophy and normal controls. Figure 3 presents the
means of the three classes.

Listing 1 shows how to do a PCA on the prostate data and compares the
classification ability of different principal subspaces.

Listing 1: Disavantages of PCA for clustering
# p r o s t a t e data a r e s t o r e d i n X
l i b r a r y (MASS)

# PCA of the data ( u s i n g SVD s i n c e n < p )
U = svd (X)$v
par (mfrow=c ( 1 , 2 ) )
p lot ( as . matrix (X) %∗% U[ , c ( 1 , 2 ) ] , co l=c l s ,

pch=19, x l a b=’PC a x i s 1 ’ , y l a b=’PC a x i s 2 ’ )
p lot ( as . matrix (X) %∗% U[ , c ( 2 , 3 ) ] , co l=c l s ,

pch=19, x l a b=’PC a x i s 2 ’ , y l a b=’PC a x i s 3 ’ )

# Supe r v i s e d c l a s s i f i c a t i o n i n t o p r i n c i p a l s ub space s
n = nrow (X ) ; nb = 50
Tx = matrix (NA, 2 , nb )
X1 = as . matrix (X) %∗% U[ , 1 : 2 ]
f o r ( i i n 1 : nb ){

i nd = sample (nrow (X) , round ( n/nb ) )
Tx [ 1 , i ] = sum( pred ic t ( qda (X1[− ind , ] , c l s [− i nd ] ) ,

X1 [ ind , ] ) $ c l == c l s [ i nd ] ) / length ( i nd )
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Figure 4: Classification performances of the supervised classification method QDA
on two different principal subspaces.

}

X2 = as . matrix (X) %∗% U[ , c ( 2 , 3 ) ]
f o r ( i i n 1 : nb ){

i nd = sample (nrow (X) , round ( n/nb ) )
Tx [ 2 , i ] = sum( pred ic t ( qda (X2[− ind , ] , c l s [− i nd ] ) ,

X2 [ ind , ] ) $ c l == c l s [ i nd ] ) / length ( i nd )
}
boxplot ( t (Tx ) , co l =2:3 , y l im=c ( 0 , 1 ) ,

names=c ( ’QDA on PC axes 1/2 ’ , ’QDA on PC axes 2/3 ’ ) )

Results are presented on Figures 4 and 5. First, Figure 4 shows the classification
performances (cross-validated on 50 folds) of the supervised classification method
QDA (quadratic discriminant analysis) on two different principal subspaces. It turns
out that the subspace spanned by the principal axes 2 and 3 better discriminates
the 3 groups than the first principal plane. This is visually confirmed by looking
on the projection of the prostate data into those two subspaces (Figure 5). As a
summary, the reader should keep in mind that PCA may be a useful explanatory tool
to visualize the data but should not be used as a preprocessing step for clustering
or classification.

3.2 Regularization

It is also possible to see the curse of dimensionality in clustering as a numerical
problem in the inversion of the covariance matrices Σk in Γk. From this point of
view, a way to tackle the curse of dimensionality is to numerically regularize the
estimates of the covariance matrices Σk before their inversion. As we will see, most
of the regularization techniques have been proposed in the supervised classification
framework, but they can be easily used for clustering as well. A simple way to
regularize the estimation of Σk is to consider a ridge regularization which adds a
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Figure 5: Projection of the prostate data into the subspaces spanned by PC1-2
(left) and PC2-3 (right).

positive quantity σk to the diagonal of the matrix:

Σ̃k = Σ̂k + σkIp.

Notice that this regularization is often implicitly used in statistical softwares, such
as R [49] for performing a linear discriminant analysis (LDA) where, for instance,
the lda function spheres the data before analysis. Friedman [29] also proposed, for
his popular regularized discriminant analysis (RDA), the following regularization:

Σ̂k(λ, γ) = (1− γ)Σ̂k(λ) + γ

(
tr(Σ̂k(λ))

p

)
Ip,

where :

Σ̂k(λ) =
(1− λ)(nk − 1)Σ̂k + λ(n−K)Σ̂

(1− λ)(nk − 1) + λ(n−K)
.

Thus, the parameter γ controls the ridge regularization whereas λ controls the
contribution of the estimators Σ̂k and Σ̂, where Σ̂ estimates the within covariance
matrix. Finally, it is also possible to use the Moore–Penrose pseudo-inverse of Σ̂
in Γk instead of the usual inverse Σ̂−1. The reader can also refer to [38] which
provides a comprehensive overview of regularization techniques in classification.

The solution based on regularization does not have the same drawbacks than
dimension reduction and can be used with less fear. However, all regularization
techniques require the tuning of parameters which may be difficult in the unsu-
pervised context, whereas this can be done easily in the supervised context using
cross validation.
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3.3 Parsimonious models

A third way to look at the the curse of dimensionality in clustering is to consider
it as a problem of over-parameterized modeling. Indeed, the Gaussian model is
known to be highly parameterized which naturally yields inference problems in
high-dimensional spaces. Consequently, the use of constrained models is another
solution to avoid the curse of dimensionality in model-based clustering.
A traditional way to reduce the number of free parameters of Gaussian models
is to add constraints on the model through their parameters. Let us recall that
the unconstrained Gaussian model (Full-GMM hereafter) requires the estimation
of 20603 parameters when the number of components is K = 4 and the num-
ber of variables is p = 100. A first possible constraint for reducing the number
of parameters to estimate is to constraint the K covariance matrices to be the
same across all mixture components, i.e. Σk = Σ, ∀k. Notice that this model
yields the famous linear discriminant analysis (LDA) [25] method in the supervised
classification case.
In a similar spirit, Banfield & Raftery [2] and Celeux & Govaert [20] proposed,
almost simultaneously, a parameterization of the Gaussian mixture model which
yields a family of constrained models. To this end, they parametrize the covariance
matrices from their eigenvalue decomposition:

Σk = λkDkAkD
t
k,

where Dk is the matrix of eigenvectors which determines the orientation of the
cluster, Ak is a diagonal matrix proportional to the eigenvalues which explains its
shape, and λk is a scalar which controls its volume. This model is referred to by the
[λkDkAkD

t
k] model in [20] and to by VVV in [2]. By constraining the parameters

λk, Dk and Ak within and across the groups, 14 different parsimonious models
can be enumerated. Among the 14 models, 4 models are highly parametrized
as the Full-GMM model, 4 models have an intermediate level of parsimony as
the Com-GMM model and, finally, 6 models are very parsimonious. Besides, this
reformulation of the covariance matrices can be viewed as a generalization of the
constrained models, presented previously. For example, the Com-GMM model is
equivalent to the model [λDADt]. The reader can refer to [20] for more details
on these models.

The solution which introduces parsimony in the models is clearly a better solu-
tion in the context of model-based clustering since it proposes a trade-off between
the perfect modeling and what one can correctly estimate in practice. We will
see in the next sections that recent solutions for high-dimensional clustering are
partially based on the idea of constrained modeling.

4 Subspace clustering methods

Conversely to previous solutions, subspace clustering methods exploit the “empty
space” phenomenon to ease the discrimination between groups of points. To do so,
they model the data in low-dimensional subspaces and introduce some restrictions
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while keeping all dimensions. Subspace clustering methods are mostly related to
the factor analysis [42] model which assumes that the observation space is linked to
a latent space through a linear relationship. We focus here only on two models and
we refer the reader to [13] for an extensive review on subspace clustering models.

4.1 Mixture of high-dimensional Gaussian mixture models

First, Bouveyron et al. [16, 17] proposed a family of 28 parsimonious and flexible
Gaussian models to deal with high-dimensional data. Conversely to the other
approaches, this family of GMM was directly proposed in both supervised and
unsupervised classification contexts. In order to ease the designation of this family,
we propose to refer to these Gaussian models for high-dimensional data by the
acronym HD-GMM. Bouveyron et al. [16] proposed to constraint the GMM model
through the eigen-decomposition of the covariance matrix Σk of the kth group:

Σk = QkΛkQ
t
k,

where Qk is a p × p orthogonal matrix which contains the eigenvectors of Σk

and Λk is a p× p diagonal matrix containing the associated eigenvalues (sorted in
decreasing order). The key idea of the work of Bouveyron et al. is to reparametrize
the matrix Λk, such as Σk has only dk + 1 different eigenvalues:

∆k =



ak1 0
. . .

0 akdk

0

0

bk 0
. . .

. . .
0 bk



 dk

 (p− dk)

where the dk first values ak1, . . . , akdk parametrize the variance in the group-
specific subspace and the p − dk last terms, the bk’s model the variance of the
noise and dk < p. With this parametrization, these parsimonious models assume
that, conditionally to the groups, the noise variance of each cluster k is isotropic
and is contained in a subspace which is orthogonal to the subspace of the kth
group. Following the classical parsimony strategy, the authors proposed a family
of parsimonious models from a very general model, the model [akjbkQkdk], to very
simple models.

Such an approach can be viewed in two different ways: on the one hand,
these models enable to regularize the models in high-dimension. In particular, by
constraining dk such that dk = p − 1 for k = 1, ...,K, the proposed approach
can be viewed as a generalization of the works of [20, 28]. Indeed, the model
[akjbkQk (p− 1)] is equivalent to the Full-GMM model or the [λkDkAkDk] model
in [20]. In the same manner, the model [akjbkQ (p− 1)] is equivalent to the Diag-
GMM and the [ajbQ (p− 1)] is also the Com-Diag-GMM. On the other hand, this
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Figure 6: Some of the 38 400 measured spectra described on 256 wavelengths
from 0.36 to 5.2 µm.

approach can also be viewed as an extension of the mixture of principal component
analyzer (Mixt-PPCA) model [48] since it relaxes the equality assumption on dk
made in [48] and the model [akjbkQkd] is therefore equivalent to the Mixt-PPCA
model.

For 16 of the 28 HD-GMM models, the inference can be done easily using the
EM algorithm since update formula for mixture parameters are closed-form. The
estimation of the intrinsic dimensions dk, k = 1, ...,K, relies on the scree test
of Cattell [19] which looks for a break in the eigenvalue scree of the empirical
covariance matrix of each group. Let us finally notice that Bouveyron et al. [14]
have demonstrated the surprising result that the maximum likelihood estimator of
the intrinsic dimensions dk is asymptotically consistent in the case of the model
[akbkQkdk].

Here, we propose to use HDDC algorithm to segment hyperspectral images of
the Martian surface. This problem is indeed by its very nature an unsupervised clas-
sification problem. Visible and near infrared imaging spectroscopy is a key remote
sensing technique to study the system of the planets. Imaging spectrometers, which
are onboard of an increasing number of satellites, provide high-dimensional hyper-
spectral images. In March 2004, the OMEGA instrument (Mars Express, ESA) [5]
has collected 310 Gbytes of raw images. The OMEGA imaging spectrometer has
mapped the Martian surface with a spatial resolution varying between 300 to 3000
meters depending on the spacecraft altitude. It acquired for each resolved pixel
the spectrum from 0.36 to 5.2 µm in 255 contiguous spectral channels. OMEGA
is designed to characterize the composition of surface materials, discriminating be-
tween various classes of silicates, hydrated minerals, oxides and carbonates, organic

12



frosts and ices. For this experiment, a 300× 128 image of the Martian surface is
considered and a 255-dimensional spectral observation is therefore associated to
each of the 38 400 pixels. Figure 6 shows some of the 38 400 measured spectra.
According to the experts, there are K = 5 mineralogical classes to identify.

Listing 2 shows how to cluster Mars data with HDDC using the HDclassif
package [4] for R.

Listing 2: Clustering of Mars data with HDDC
# Mars data a r e s t o r e d i n X
l i b r a r y ( HDc l a s s i f )

# c l u s t e r i n g o f the data
out = hddc (X, 5 ,model=’AkBkQkDk ’ , t h r e s h o l d =0.01)

# D i s p l a y i n g model pa ramete r s
out
HIGH DIMENSIONAL DATA CLUSTERING
MODEL: AKBKQKDK
Po s t e r i o r p r o b a b i l i t i e s o f g roups

1 2 3 4 5
0 .238 0 .0892 0 .243 0 .334 0 .095

I n t r i n s i c d imens i on s o f the c l a s s e s :
1 2 3 4 5

dim : 8 6 6 11 6
1 2 3 4 5

Ak : 0 .0337 0 .0407 0 .0105 0.00933 0 .0259
1 2 3 4 5

Bk : 0 .000138 0.000239 6 .76 e−05 0.000101 9 .72 e−05
BIC : 7743641

We have here applied HDDC with a specific model and for the expected number
of groups. Notice that it is also possible to let the algorithm determine which model
and number of groups are the most adapted for the data at hand. Regarding model
parameters, one can see that HDDC estimates that the intrinsic dimensions of
groups are all around 10 whereas, for recall, the original dimension is 255. Figure 7
shows the associated segmentation of the image and allows to compare it with
an expert segmentation. Except the color shift, both segmentations look very
similar and it confirms the interest of such model-based clustering techniques in
this context.

4.2 The discriminative latent mixture models

Recently, Bouveyron & Brunet [10] proposed a family of mixture models which fit
the data into a common and discriminative subspace. This mixture model, called
the discriminative latent mixture (DLM) model, differs from the FA-based models
in the fact that the latent subspace is common to all groups and is assumed to
be the most discriminative subspace of dimension d. Indeed, roughly speaking,
the FA-based models choose the latent subspace(s) maximizing the projected vari-
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Figure 7: Segmentation of the hyperspectral image of the Martian surface using a
physical model build by experts (left) and HDDC (right).

ance whereas the DLM model chooses the latent subspace which maximizes the
separation between the groups.

Let Y ∈ Rp be the observed random vector and let Z ∈ {1, . . . ,K} be once
again the unobserved random variable to predict. The DLM model then assumes
that Y is linked to a latent random vector X ∈ E through a linear relationship of
the form:

Y = UX + ε,

where X and ε are independent, E ⊂ Rp is assumed to be the most discriminative
subspace of dimension d ≤ K−1 such that 0 ∈ E, K < p, U is a p×d orthonormal
matrix common to the K groups and satisfying U tU = Id, and ε ∼ N (0,Ψ)
models the non discriminative information. Besides, within the latent space and
conditionally to Z = k, X is assumed to be distributed as:

X|Z = k ∼ N (µk,Σk),

where µk ∈ Rd and Σk ∈ Rd×d are respectively the mean vector and the co-
variance matrix of the kth group. Given these distribution assumptions, the
marginal distribution of Y is once again a mixture of Gaussians, i.e. g(y) =∑K

k=1 πkφ(y;mk, Sk), where mk = Uµk and Sk = UΣkU
t + Ψ. Let W = [U, V ]

be the p × p matrix such that W tW = WW t = Ip and V is an orthogonal
complement of U . Finally, the noise covariance matrix Ψ is assumed to satisfy
the conditions VΨV t = βIp−d and UΨU t = 0d, such that ∆k = W tSkW is
block-diagonal:

∆k =



Σk 0

0

β 0
. . .

. . .
0 β



 d ≤ K − 1

 (p− d)
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Figure 8: Mean spectra of the 5 groups formed by Fisher-EM on Mars data.

These last conditions imply that the discriminative and the non-discriminative sub-
spaces are orthogonal, which suggests in practice that all the relevant classification
information remains in the latent subspace. This model is referred to by DLM[Σkβ]

in [10]. Following the classical strategy, several other models can be obtained from
the DLM[Σkβ] model by relaxing or adding constraints on model parameters.

Conversely to most of the models based on mixture of FA models, the inference
of the DLM models in the unsupervised context cannot be directly done using
the EM algorithm because of the specific features of its latent subspace. To
overcome this problem, an estimation procedure, called the Fisher-EM algorithm,
is also proposed in [10] for estimating both the discriminative subspace and the
parameters of the mixture model. This algorithm is based on the EM algorithm
from which an additional step is introduced, between the E and the M-step. This
additional step, named F-step, aims to compute the projection matrix U whose
columns span the discriminative latent space. This step estimates at iteration
q, the orientation matrix U (q) of the discriminative latent space by maximizing
the Fisher’s criterion [25, 30] under orthonormality constraints and conditionally
to the posterior probabilities. This optimization problem is solved in [10] using
the concept of orthonormal discriminant vector developed by [26] through a Gram-
Schmidt procedure.Two additional procedures are proposed in [7] for the estimation
of the latent subspace orientation. The convergence properties of the Fisher-EM
algorithm were also studied in [11] from both the theoretical and the practical points
of view. Let us finally notice that this modeling was also used in the context of
supervised and semi-supervised classification and leads to the probabilistic Fisher
discriminant analysis (pFDA) method [9].

We now present in Listing 3 an application of the Fisher-EM algorithm to the
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Mars data (described in the previous section). The Fisher-EM algorithm is available
in the R software through the FisherEM package [8].

Listing 3: Clustering of Mars data with Fisher-EM
# Mars data a r e s t o r e d i n X
l i b r a r y ( FisherEM )

# C l u s t e r i n g wi th F i s h e r−EM
out = fem (X,K=5,model=’AkjB ’ )

# Est imated model pa ramete r s
s t r ( out )
L i s t o f 15
$ model : ch r "AkjB"
$ c l s : i n t [ 1 : 3 8 4 0 0 ] 2 2 2 2 2 2 2 2 2 5 . . .
$ P : num [1 : 38400 , 1 : 5 ] 0 .00 1 .09 e−302 0 .00 0 .00 . . .
$ K : i n t 5
$ p : i n t 255
$ mean : num [ 1 : 5 , 1 : 4 ] −0.181 −0.144 −0.131 −0.165 . . .
$ my : num [ 1 : 5 , 1 : 2 5 5 ] 0 .47 0 .313 0 .359 0 .415 . . .
$ prop : num [ 1 : 5 ] 0 .263 0 .185 0 .145 0 .166 0 .241
$ D : num [ 1 : 5 , 1 : 255 , 1 : 2 5 5 ] 2 .61 e−05 4 .49 e−05 . . .
$ U : num [ 1 : 2 5 5 , 1 : 4 ] −0.00333 −0.00141 . . .
$ a i c : num 28156951
$ b i c : num 28147159
$ l o g l i k : num [ 1 : 5 0 ] 28160856 28160398 28160059 . . .
$ l l : num 28159240

Here also, Fisher-EM was used for a specific model and for K = 5, but the
automatic selection of the model andK is possible. The object out contains several
information which require some comments. First, cls and P contain respectively
the partition into 5 groups of the data and the posterior probabilities that each
observation belongs to the groups. The sub-object prms gathers all information
about the learned mixture model. Astrophysicists will be mostly interested in
visualizing the group means which are stored in prms$my. The estimated group
means are plotted on Figure 8. Another parameter which is useful from the practical
point of view is the loading matrix U. This matrix contains the coordinates of
the discriminative axes and allows therefore to project the original data onto the
discriminative subspace for further analyses. Figure 9 presents the projection of
the clustered data on the estimated discriminative axes with Fisher-EM.

5 Variable selection for model-based clustering

Conversely to the approaches of the previous section, several recent works have
been interested to simultaneously cluster data and reduce their dimensionality by
selecting relevant variables for the clustering task.
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Figure 9: Mean spectra of the 5 groups formed by Fisher-EM on Mars data.

5.1 Variable selection as a model selection problem

The underlying idea of the works of Raftery and Dean [41] and Maugis et al. [35] is
to find the variables which are relevant for the clustering task. The determination
of the role of each variable is in particular apprehended in [35, 41] as a model
selection problem in the GMM context. In the Raftery & Dean’s approach, the
authors define two different sets of variables: S which denotes the set of relevant
variables and Sc which is the set containing the irrelevant variables. An interesting
aspect of their approach is that they do not assume that the irrelevant variables
are independent of the clustering variables. Maugis et al. [21, 35, 36] relax some
restrictions of Raftery and Dean’s model and propose a more general variable role
modeling. They define two subsets of variables: on the one hand, the relevant
ones, which are grouped in S and, on the other hand, its complementary Sc,
which is formed by the irrelevant variables. Maugis et al. consider two types
of behaviors among these irrelevant variables: a subset U of irrelevant variables
which can be explained by a linear regression from a subset R of the clustering
variables and a subset W of irrelevant variables which are totally independent of
all relevant variables. It is referred to by the model collection SRUW. From this
characterization, the authors also recast the variable selection problem into a model
selection problem through an approximation of the integrated log-likelihood. Then
the selected model satisfies:

arg max
(K,m,r,h,V )

{
BICclust(y

S |K,m) + BICreg(yU |r,yR) + BICind(yW |h)
}
,

where V = (S,R,U ,W) stands for the variable partition. The first term of this
expression, called BICclust, corresponds to the BIC criterion [43] for a Gaussian
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mixture of K components on the relevant subset of variables S. The model m
belongs here to a collection of 28 parsimonious models which are available in
the Mixmod software [6] and include the GMM family introduced by Celeux &
Govaert [20]. The second term denoted by BICreg, is linked to the BIC criterion
for a linear regression of the irrelevant variables U on a subset of clustering variables
R. Note that the index r stands for the structure of the covariance matrix which
can be assumed to be spherical, diagonal or non-constrained. Finally, the last
term depicts the BIC criterion for a Gaussian density on the variable subset W
independent of the clustering variables. This Gaussian marginal distribution is
characterized by a variance matrix Σ which is constrained to be either diagonal or
spherical and is specified by the index h in the expression above.

Regarding the implementation, they propose an algorithm based on a backward-
stepwise selection. It implies that all the variables are considered at the beginning
of the procedure and only a block of variables is either included or excluded of
the clustering relevant set of features at each iteration. Such an approach enables
them to take into account variable block interactions, if they exist. Then a second
algorithm is executed to select both the model and the number of components for
the mixture model.

5.2 Variable selection by penalization of the loadings

An alternative approach for selecting the relevant variables through penalization is
to directly apply the lasso penalty on the loading matrix of a MFA-based model.
This has been achieved in particular in [12, 31, 52].

In the context of Fisher-EM, the direct penalization of the loading matrix
U makes particularly sense since it is not estimated by likelihood maximization.
The matrix U is indeed estimated in the F-step of the Fisher-EM algorithm by
maximizing the Fisher criterion conditionally to the current partition of the data.
To achieve the penalization of U, two solutions are proposed in [12]. The first
solution is a two stage approach which first estimate U , at each iteration, with the
F-step and then looks for its best sparse approximation as follows:

min
U

∥∥∥X(q)t − Y tU
∥∥∥2

F
+ λ

d∑
j=1

‖uj‖1 ,

where uj is the jth column vector of U , X(q) = Û (q)tY and ‖ ‖F refers to the
Frobenius norm. The solution of this penalized regression problem can be com-
puted through the LARS algorithm [24]. The second solution directly recasts the
maximization of the Fisher criterion as a regression problem and provides a sparse
loading matrix by solving the lasso problem associated to this regression problem.
However, solving this lasso problem is not direct in this case and requires the use
of an iterative algorithm. Regarding the implementation details, it is proposed
in [12] to initialize the sparseFEM algorithm with the result of the Fisher-EM al-
gorithm and to determine the value of λ by model selection through a modified
BIC criterion.
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Figure 10: Mean spectra of the 5 groups formed by sparse FEM on Mars data and
selection of the discriminative wavelengths (indicated by blue rectangles).

Listing 4 provides the R code to apply sparseFEM on the Mars data. The
sfem() function is also provided in the FisherEM package.

Listing 4: Clustering of Mars data with sparse FEM
# Mars data a r e s t o r e d i n X
l i b r a r y ( FisherEM )

# C l u s t e r i n g wi th s p a r s e FEM
out = sfem (X,K=5,model=’AkjB ’ , l 1 =0.1)

The level of sparsity is controlled here using the l1 optional parameter: the
smaller the l1 parameter is, the strongest the sparsity is. Here, a value of 0.1
therefore means that the output will be very sparse. Figure 10 allows to visualize the
wavelengths which have been selected as discriminative ones. A possible interest of
such a selection could be the measurement of only tens of wavelengths for future
acquisitions instead of the 255 current ones for a result expected to be similar.
This could reduce the acquisition time for each pixel from a few tens of seconds
to less than one second.

6 Conclusion

This work has presented a comprehensive overview of some recent model-based
methods for the unsupervised classification of data from Astrophysics. We have
emphasized the interest of using subspace clustering methods and variable selection
methods designed for clustering instead of preprocessing the data with dimension
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reduction methods. The few practical examples offered here may help astrophysi-
cists in applying recent model-based techniques to their own data. Let us finally
notice that some recent works [15, 18, 34] have extended model-based clustering
methods to functional data.
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