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Abstract

Developing entrance flows are of interest in a large number ofapplication areas.
They have been widely studied in the past, but many aspects ofthese flows are
not yet fully understood. One of the questions concerns the stability and turbu-
lent transition in the entrance region of a channel. The present study investigates
by direct numerical simulation (DNS) the laminar-turbulent transition induced by
boundary layer interaction in a spatially developing flow near the entrance of a
channel, where the laminar flow is linearly stable. For uniform inlet flow condi-
tions and at sufficiently high Reynolds number, the turbulenttransition actually
takes place inside the boundary layers and well before the fully developed regime.
The transition of one of the two boundary layers is triggerednear the entry section
by small amplitude perturbations, such as the ones created by small isolated obsta-
cles distributed on the wall. These generate elongated streaks, and their transient
growth and breakdown lead to the turbulent transition of theboundary layer near
the entrance region. The transition of the second boundary layer is induced by
the interaction with the first further downstream. After thetransition of the sec-
ond boundary layer, turbulence occupies the whole channel width and a turbulent
channel flow develops. The transition is analyzed with the help of an orthogonal
decomposition of the solenoidal velocity field. The observed transition scenario
differs from existing simulations of streak breakdown where the perturbation is
optimized for a transition to occur in a region far away from the entry section. In
our simulations, the perturbation setup generates a significant non-linear growth
of the streaks that are pushed away from the wall. Transient varicose instabilities,
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followed by sinuous instabilities induce the development of mushroom-shaped
transitional structures in the outer region of the laminar boundary layer, that fur-
ther break down downstream. The second boundary-layer transition resembles the
one occurring under free-stream turbulence, with the generation of finite-length
streaks and turbulent spots.

Keywords: bypass transition, boundary layer, channel entrance flow, DNS,
orthogonal decomposition of solenoidal fields

1. Introduction

Despite many investigations since the famous Reynolds (1883) experiment,
stability and turbulent transition in pipe and channel flowsare still not well un-
derstood. In this context, most theoretical and numerical studies have focused on
the parabolic Poiseuille solution, which is the laminar flowthat can be observed
far from the inlet, and less attention has been paid to the flowdevelopment in the
entrance region. This question is however interesting in itself, since it has many
engineering applications and also because any experimental work on fully devel-
oped Poiseuille flow is inevitably concerned with the effects of the disturbance
of the incoming flow (Mullin [44]). At large Reynolds number, the laminar en-
trance flow in a plane channel corresponds to the developmentof two boundary
layers, which far downstream merge to form the fully developed state. As shown
by experimental, numerical and analytical studies (Shah and London [50],Durst
et al. [26],Sadri and Floryan [47]), the distance required for flow development,
also called the entry lengthLe, varies linearly with the channel Reynolds number
Re= 2U0h/ν ( h is the channel half-height andU0 the flow rate velocity). IfRe
is large enough, the value ofLe (based on 99% of the Poiseuille centerline veloc-
ity Um) is well approched byLe/h≃ 0.08Re. On the other hand, linear stability
theory predicts instabilities ifRe> RePois

c ≃ 4
3 ×5772= 7696 for the fully devel-

oped Poiseuille flow (Orszag [45],U0 = 2
3Um ) and a critical Reynolds number

ReBL
xc

≃ 75000 (based on the distancex from the leading edge) for the Blasius
boundary layer (Bertolotti et al. [6]). From this data, the distancexc at which the
flow becomes linearly unstable, is estimated byxc/Le ≃ 25ReBL

xc
/Re2, which is

smaller than unity at largeReand, in particular, forRe> RePois
c . Thus, at high

Reynolds number, the channel flow is linearly unstable in the entrance region.
Indeed, the above analysis can only give a rough estimate ofxc since the bound-
ary layers are accelerated in the entrance region and differfrom Blasius layers.
Falkner-Skan boundary layers that are evolving in presenceof streamwise pres-
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sure gradient are known to be more stable, in case of accelerated external flow
(Schmid and Henningson [49],Criminale et al. [22]). The samestabilizing effect
can be anticipated in the channel developing flow so that the previous estimation
of xc is susceptible to be pushed away from the entry of the channel. One of the
first stability analysis of the plane channel entrance flow isthe study of Chen and
Sparrow [18]. Using a basis flow solution obtained by the linearization method
of Sparrow et al. [52] and parallel flow approximation, they show that the critical
value ofRedecreases monotonically with increasing distance from thechannel
entrance, approaching the fully developed valueRePois

c as a limit. Thus, depend-
ing on the Reynolds number, a large part of the entry zone can belinearly stable
even for supercritical developed channel flow conditions. Despite this and thanks
to our knowledge of turbulence transition in the boundary layers, it can be nev-
ertheless be expected that the channel flow transition can occur for sub-critical
conditions.

Indeed, in the presence of free-stream or wall perturbations, turbulent transi-
tion in boundary layers can occur under sub-critical conditions with respect to the
linear stability theory (Durbin and Wu [25]). In this case, the mechanism involving
an exponentially growing mode is bypassed and transition isinitiated by velocity
perturbations taking the form of streaky structures elongated in the streamwise
direction and modulated in the spanwise direction. Streaksare asymptotically de-
creasing perturbations in linear theory, but during the transient phase, they can
exhibit large amplitudes capable of sustaining secondary instabilities evolving
to turbulence. From a mathematical point of view, a first analysis of transient
growth in Poiseuille flows was presented by Gustavsson [30],who invokes a res-
onance mechanism between Orr–Sommerfeld and Squire modes described in a
previous paper (Gustavsson [31]). However, the described mechanism is quite
different from that of the more recent transient growth studies (Trefethen et al.
[53], Schmid and Henningson [49]), which may be regarded as being linked to the
non-normality of the Orr–Sommerfeld operator. More recently, Zaki and Durbin
[56] again invoke the resonance of an Orr–Sommerfeld and a Squire continuous
mode to explain transient growth in the zero pressure gradient boundary layer.
However, for channel flow, the eigenvalues of the Orr–Sommerfeld operator are
countable and no continuous branch exists in the spectrum. In this case, by us-
ing the orthogonal decomposition presented in Section 3.1,Buffat and Le Penven
[14] have proved that exact resonance of Orr–Sommerfeld andSquire modes are
impossible and that transient growth results from a linear combination of a large
number of non-orthogonal eigenmodes.

To study the effects of channel flow development on linear transient growth,
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Duck [24] has performed numerical simulations employing a parabolized version
of the flow equations. Feeding the inlet flow with the growing eigenmode found
by Luchini [37] , he has shown that entry flow is susceptible tosignificant lin-
ear transient growth. For large spanwise wavelengths (comparable to the channel
width) he has also demonstrated that this transient growth develops on a stream-
wise length scale of the order ofLe. Biau et al. [8] have also studied linear stability
of the plane developping channel flow, adopting a basis flow characteristic of the
far-downstream region and similar to the one used by Asai andFloryan [3]. Their
modal analysis, conducted in the spatial framework with parallel-flow approxima-
tion, complements the temporal study made by Hifdi et al. [32]. Optimal transient
perturbations have also been determined using the parabolized equations. As in
the case of Falkner-Skan layers (Corbett and Bottaro [20],Tumin and Reshotko
[54]), the accelerated free-stream appears to have a stabilizing effect on linear
transient growth. However, it should be noted that this effect is progressive and
that a capacity for significant amplification can still remains even though modal
instability is completely suppressed by the effect of pressure gradient (Levin and
Henningson [35]).

The focus of the paper is to describe and analyze numerical simulations of
turbulent transition in a developing plane channel flow. Before undertaking such
simulations, choices must be made regarding the perturbations to be introduced
in the flow. For boundary layer flows, two methods are generally applied. One
consists in introducing the perturbations randomly but consistently with some pre-
defined spectrum (Jacobs and Durbin [34],Brandt et al. [12]),another is to select
some special disturbances than can grow enough and initiatetransition (Brandt
and Henningson [11],Zaki and Durbin [56]). One way to do thisis to select the
perturbation that, according to linear approximation, yields to maximum amplifi-
cation at certain distance downstream (Brandt and Henningson [11]). Generally,
the inlet section is chosen at the leading edge and the targetsection is located
at a relatively large distance (Luchini [38],Duck [24]). Ina few studies, the in-
let section is chosen at some distance from the entrance section, and in that case
the perturbation growth rate is found to be larger (Levin andHenningson [35]).
According to experimental studies (Fransson and Talamelli[28]), perturbations
generated by isolated irregularities on the wall can also induce turbulent transi-
tion. These perturbations, usually localized inside the boundary layers, can be
very effective in favoring earlier turbulent transition ina channel entrance flow.
This reflection has inspired the method that is used in the following to perturb the
channel flow.

To study turbulent transition at the entrance of a plane channel at high Reynolds
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number, we consider the development of boundary layers between two parallel
walls. With the chosen parameters, the linear stability analysis indicates that the
two laminar boundary layers can become exponentially unstable only in the last
third of the studied domain. Thus, even if the chosen domain length is very large,
a modal transition of the layers is unlikely to occur and turbulent transition is
sub-critical. At the inlet, the boundary layer thickness issufficiently small so
that the boundary layers can be approximated to a Blasius boundary layer. The
turbulent transition of one of the two boundary layers is triggered by a pertur-
bation that models the perturbation generated by isolated wall obstacles near the
entrance of the channel. This perturbation leads to a fast growth of stationary
elongated streaks, that further break down and turbulent transition occurs. The
transition of the second boundary layer is induced by the interaction with the first
boundary layer further downstream. Direct numerical simulations of the Navier-
Stokes equations are performed in such a configuration usinga spectrally accurate
method (Buffat et al. [15]). The configuration is elongated inthe streamwise di-
rection, so that the number of modes in the longitudinal direction is very large
compared to the amount of nodes in the other directions. The simulation of such
experiments typically requires billions of modes using a spectrally accurate ap-
proximation and should run on massively parallel high performance computers.
To analyze the transition, an orthogonal decomposition of the solenoidal veloc-
ity fields is used on the disturbance flow. The observed transition scenario of the
first boundary layer is different from previous analyses on the stability of steady
streaks in ZPG boundary layers (Andersson et al. [2], Brandt et al. [10], Cossu
et al. [21]) generated by free-stream turbulence because the chosen perturbation
generated larger non-linear steady streaks. The observed mushroom-shaped struc-
tures are similar to those obtained by Bernard [5] in his boundary layer simulations
using a hybrid vortex filament scheme.

This paper is organized as follows. In Section 2, the configuration of the flow
at the entrance of the plane channel is presented, as well as the description of the
laminar base flow and the perturbed flow. The numerical methodand the analysis
tools based on an orthogonal decomposition of solenoidal fields are described in
Section 3. The inlet disturbance generation procedure is also discussed in this
section. In Section 4, the DNS results are compared to the ZPGturbulent bound-
ary layer case and to the fully-developed turbulent channelflow, to highlight the
similarities and differences. The transition of both boundary layers are analyzed
and discussed in Section 5, and the observed transition scenario is described. The
concluding remarks are presented in Section 6.
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Figure 1: Domain of studyΩ = [x0,x0+L]× [−h,+h]× [0,W]

2. Description of the problem

We consider an incompressible flow at large Reynolds number,Re= 2U0h
ν =

20000 (U0 is the mean velocity andν is the viscosity), in the entrance region of a
plane channel of width 2h (see Figure 1). By assuming negligible perturbations at
the entrance, the considered flow corresponds to the development of two bound-
ary layers separated by a nearly inviscid core in the middle of the channel. In the
downstream region, the boundary layers merge and the velocity profile reaches
the profile of a developed channel flow. For laminar flow, the entrance lengthLe

necessary to obtain the developed profile is proportional tothe Reynolds number
Re (Le

h ≈ 0.08Re in Durst et al. [26]) and is very large at the studied Reynolds
number (Le/h≈ 1600). If the boundary layers are turbulent, the entrance length
Le is much smaller. Entrance lengths at least 10 times smaller are observed in ex-
perimental investigations of the turbulent entrance channel flow (Lien et al. [36]).

To study the interaction of the boundary layers, the computational domain,
150h×2h×3.2h, is elongated in the streamwise direction, as shown in Figure 1.
The upper boundary layer is perturbed at a distancex0 from the entrance section.
Experimental observations indicate a transition Reynolds numberRex =

xUmax
ν ,

based on the distancex from the entrance and the maximum velocityUmax in
the section ranging from 105 (Roach and Brierley [46]) to 106 (Matsubara and
Alfredsson [40]) depending on the free-stream turbulence level. A local linear
stability analysis of the Blasius boundary layer (Butler and Farrell [17]) indicates
that the maximum transient energy growth increases according toRex0 over a time
period proportional to

√

Rex0. To induce a turbulent transition by a perturbation
of small amplitude (< 1%) near the entrance,x0 is chosen equal to 4h. The corre-
sponding Reynolds numberRex0 = 4104 is the sameRex0 as in Buffat et al. [15] ,
in which the transition is observed betweenRex = 1.5105 and 2.5105 depending
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X = x−x0
h 0 10 100 140

Umax
U0

1.035 1.062 1.165 1.201
δ0.99

h 0.10 0.18 0.43 0.50
Rex =

xUmax
ν 4.1104 1.5105 1.2106 1.7106

Table 1: Characteristics of the laminar base flow atRe= 20000 andx0 = 4h

on the amplitude of the inlet perturbation, atx0. The inlet boundary layer thick-
nessδ0.99 ≈ h/10 corresponds to a Reynolds numberReδ = 200, based on the
Blasius scaleδ =

√

νx0/U0, and the inlet velocity profile corresponds to a Bla-
sius profile in each half-section. In the following sections, X = x−x0

h denotes the
non-dimensional distance from the entrance section of the computational domain.

2.1. Laminar base flow

Without inlet perturbation, the flow remains laminar. As seen in Table 1, the
Reynolds numberRex ranges from 4.1104 up to 1.7106. The velocityUmax in-
creases by 20% because of the growth of the boundary layer thicknessδ0.99 from
0.1h to 0.5h. The longitudinal pressure gradient is small and induces a slight in-
crease of the skin friction coefficientCf compared with the one of a laminar ZPG
boundary layer as seen on Figure 2. Due to this favorable pressure gradient, the
shape factor of both laminar boundary layers is lower than the Blasius one (2.5
instead of 2.59).

The small favorable pressure gradient has however a strong influence on the
linear stability of the boundary layer. Extracting velocity profiles from the calcu-
lated laminar solution, we have determined the linear neutral stability curve by a
local temporal stability analysis. A comparison with the linear neutral curve ob-
tained using Blasius profiles in each half-section is shown onFigure 2. Although
the characteristics of the boundary layers of the laminar solution are similar to the
Blasius-like profiles, the slight difference in the velocityprofiles has a strong influ-
ence on the linear stability curve. As seen on Figure 2, the laminar entrance flow
is linearly stable up tox/h≈ 80 instead ofx/h≈ 9 for the Blasius profiles. This
later position corresponds to the classical critical Reynolds numberReδ = 300 of a
Blasius boundary layer (Bertolotti et al. [7]). The exponential amplification is also
very small (the real part of the most unstable Tolmien-Schlichting mode reaches a
value of 6.10−3U0/h at x/h= 140), thus a much longer computational domain is
required for this unstable TS-wave to grow exponentially (an energy growth of 10
would require an evolution time of 200 and a computational domain at least two
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Figure 2: Base flow atRe= 20000. a) Instantaneous skin friction coefficient for the laminar and
perturbed case as a function ofRex compared to the Blasius and turbulent ZPG boundary layer
correlation. b) Linear neutral stability curve in the channel compared with the Blasius one in the
αh−x/h plane (α is the streamwise wavenumber).
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times longer). Therefore, inside the present domain, a modal transition is unlikely
to occur.

Transient energy growths have been calculated in the above configuration with
the linear stability theory and they remain as large as in theZPG boundary layer,
indicating that even if the laminar flow is more stable than the Blasius boundary
layer, bypass transition is not significantly delayed by thesmall favorable pres-
sure gradient. Using the parabolized stability equations with a Falkner-Skan base
flow at high Reynolds number, Levin and Henningson [35] also observed a large
increase of the critical Reynolds number with a favorable pressure gradient. For
a Hartree parameterβH = 0.1 similar to the estimatedβH ≈ 0.07 in the present
study, they found a critical Reynolds numberReδ = 889 which is close to the
critical Reynolds number obtained,Reδ ≈ 920. They also found that, with a fa-
vorable pressure gradient base flow, the algebraic growth ismuch larger than the
exponential growth, as in our configuration.

2.2. Perturbed flow

The upper laminar boundary layer is perturbed at the entrance of the chan-
nel by a perturbation of small amplitude (< 1%). This perturbation leads to a
fast growth of elongated streaks in the near-wall region of the boundary layer and
induces a rapid transition as seen on the instantaneous skinfriction coefficient
drawn on Figure 2. As the perturbation essentially acts inside the boundary layer,
it can be experimentally generated by small obstacles on thewall as in Fransson
and Talamelli [28]. An additional smaller random perturbation (< 0.1%) is super-
imposed on the first to trigger the breakdown of the nonlinearstreaks. Turbulent
transition of the upper boundary layer occurs near the entrance of the channel at
x/h ∼ 10. In contrast, no perturbation is imposed on the lower boundary layer,
which remains laminar in a large part of the channel as seen onthe skin fric-
tion coefficient in Figure 2. The turbulence developing in the upper boundary
layer progressively acts on the lower boundary layer and thetransition occurs
only when the channel longitudinal length is sufficiently long (> 100h). Near
x/h ∼ 80, low frequency fluctuations induced by the turbulent upper boundary
layer interact with the laminar lower boundary layer and generate streaks. Then,
non-linear breakdown of these streaks leads to a bypass transition of the lower
boundary layer. Afterwards turbulence fills the whole channel width and a turbu-
lent channel flow develops. Figure 3 depicts these main zonesof interest from the
value of the instantaneous longitudinal velocity in an arbitrary streamwise plane.
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Figure 3: Perturbed flow: instantaneous longitudinal velocity in an arbitrary streamwise plane,
with the main zones of interest: the entrance region, transition region and developed turbulent
region at the end of the domain.

3. Numerical method and analysis tool

The numerical method and analysis of the results are based ona general or-
thogonal decomposition for solenoidal vector fields expressed in terms of projec-
tions of the velocity and vorticity fields on an arbitrary direction in spaceey.

3.1. Orthogonal decomposition of solenoidal fields

For doubly-periodic flow with one direction of inhomogeneity ey (the normal
direction in Figure 1), Buffat et al. [15] derived an explicitform of this decom-
position using the Helmholtz-Hodge theorem. Thus, any solenoidal velocity field
is expanded in a Fourier series in the streamwise and spanwise directions in the
form:

u(x,y,z, t) =
∞

∑
m=−∞

∞

∑
p=−∞

ump(y, t)eııı(αx+βz) (1)

whereump is the modal vector function of Fourier coefficients associated with
wave-numbersα andβ . Then, each Fourier componentump can be decomposed
asump= ump

os +ump
sq , whereump

os andump
sq are function of the normal velocityvmp(y)

and normal vorticityωmp(y) Fourier component respectively :

ump
os =

(

ııı
α
k2∂yv

mp, vmp, ııı
β
k2∂yv

mp
)t

, ump
sq =

(

−ııı
β
k2ωmp, 0, ııı

α
k2ωmp

)t

(2)

wherek2 = α2+β 2. Both velocity and vorticity components exhibit orthogonal
properties:

ump
os .u

mp
sq = 0 and(Dmp×ump

os ) .
(

Dmp×ump
sq

)

= 0 (3)
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whereDmp is the gradient operator in Fourier space i.e.Dmp=
(

ıııα ,∂y , ıııβ
)t

.
An L2 orthogonal decomposition of the velocity field can easily bederived from
this orthogonal decomposition of the Fourier components, such that :

u = usq(v)+uos(ω) with < usq,uos>L2= 0 and∇.usq= ∇.uos= 0 (4)

Theuos velocity field has zero wall-normal vorticity, its normal velocity is equal
to the wall-normal velocityv of u and its average in planes of constanty coincide
with the average ofu. Theusq vector field has zero wall-normal velocity, its wall
normal vorticity is equal to the wall-normal vorticityω of u and its average in
planes of constanty vanishes. As the two velocity fields in the decomposition (4)
are defined by the normal component of the velocity and the normal component of
the vorticity respectively, these two fieldsuos andusq have been named in Buffat
and Le Penven [14] as the Orr-Sommerfeld velocity (OS velocity) and Squire
velocity (SQ velocity) fields, respectively.

3.2. Numerical method

The numerical method is based on the decomposition (4) applied to u, the
velocity field solution of the Navier-Stokes equations in a plane channel. The
OS and SQ velocity fields are approximated using Fourier expansions in the(x,z)
planes withM×P modes and a Chebyshev polynomial expansion of degreeN in
they-direction as described in Buffat et al. [15]. In order to use Fourier expansion
in the streamwise direction, the solution is made periodic in a larger domain using
a fringe region (Bertolotti et al. [7]), where a forcing term is added to the Navier-
Stokes equations to smoothly force the outflow to the prescribed inflow velocity
field.

Using a Galerkin formulation of the incompressible Navier-Stokes equations,
the unknown complex spectral coefficients ofump

os andump
sq are solutions ofM ×

P differential equations. They can be solved in parallel at each time step us-
ing a Crank-Nicholson/Adams-Bashforth scheme. Difficultiesin the paralleliza-
tion arise from the computation of nonlinear terms which require global data-
transposition for the fast Fourier transforms. Using efficient 2D domain decompo-
sition and hybrid parallel programming with MPI and high-level openMP threads
(Montagnier et al. [42]), the “NadiaSpectral” computer code (Buffat [13]) runs
efficiently on massively parallel computers (IBM BlueGene/P)using tens of thou-
sands of cores for simulations with billions of modes. On such high performance
parallel computers, typical simulation take 50 hours (elapsed time) using 16384
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cores. Otherwise these would have required 100 years on a mono-processor com-
puter.

Two grid resolutions are used for the simulations: a medium grid with 11520×
128× 256 modes and a refined grid with 17280× 192× 384 modes. The value
of y+ at the outlet is 0.16 for the medium grid, and 0.07 for the refined grid.
Mean flow and statistics are similar for the two simulations,as seen in Figure 9,
where the mean velocity results coincide for the two grids. Aslight difference of
0.8% exists on the location of the second transition point due to the strong non-
stationary nature of the transition, but this does not affect the main characteristics
of the transition. The simulations can thus be considered asspatially resolved.

3.3. Inlet perturbations

Due to the convective instability of the boundary layer, perturbation needs to
be continuously generated inside the computational domainto induce turbulent
transition. In simulations, the most frequently-used procedure is the so-called
recycling method, originally proposed by Lund et al. [39] and employed among
others by Simens et al. [51]. Wu and Moin [55] periodically introduce a box of
homogeneous turbulence above a laminar boundary layer atReθ = 80. Schlatter
et al. [48] use random volume forcing inside the laminar boundary layer atReθ =
180.

In our simulations, the laminar inlet profile of the upper boundary layer is al-
tered by the optimal perturbation obtained from the local linear stability theory
(Butler and Farrell [17]). The optimal perturbation is the initial disturbance expe-
riencing maximum transient energy growth, calculated using the Orr-Sommerfeld/Squire
equations and the entrance laminar profile. In experiments,this perturbation can
be produced by a spanwise periodic array of small roughness elements fixed on
the wall (Fransson et al. [27]) at a distancex0 from the leading edge. This optimal
perturbation consists of steady pairs of contra-rotating longitudinal vortices in-
side the boundary layer, with a spanwise wavenumberβ ≈ 2

δ and zero streamwise
wavenumberα. With the orthogonal decomposition (1), it can be verified that this
optimal perturbation is essentially an OS velocity field, asseen on Figure 4a. As
explained in Buffat and Le Penven [14], this OS velocity perturbation induces a
large linear transient growth and creates a large longitudinal SQ velocity field, that
corresponds to steady streaks. This is illustrated on Figure 4a, where the linear
response of this optimal mode consists mainly in an SQ velocity field.

In order to further characterize the steady streaks generated by this inlet pertur-
bation, the streamwise evolution of the amplitude of the streaks is compared to the
result obtained from the linear stability and to the result of Andersson et al. [2]. As
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Figure 4: a) Orthogonal decomposition of the optimal perturbation att0 = 0 and its linear transient
response att0 = tmax. b) Streak amplitude (as defined in Andersson et al. [2]) versusRex compared
to Andersson et al. [2] atReδ0

= 430. The circles represent the prediction using the local linear
stability analysis. The symbolN indicates the locationx= L of the output plane used in the spatial
optimization of Andersson et al. [2] and the symbolH the locationx= 2L of their stability analysis.
The symbol� corresponds to the location of the transition studied in section 5.1.

seen on Figure 4b, the inlet perturbation induces the development of fast growing
streaks, followed by a viscous decay. However, without additional perturbation,
transition is not observed. Using the laminar base flow described in section 2.1,
the linear evolution of the perturbation is also shown on thefigure, together with
the result obtained with a local temporal stability analysis. The early develop-
ment of the streaks coincides with the linear prediction, but later the non-linear
interactions with the base flow limit their growth and their maximum amplitude
reaches only half of the value of the linear streaks. The steady streaks obtained are
also compared with those used by Andersson et al. [2] and later, by other authors
(Hoepffner et al. [33] and Cossu et al. [21]) to study the stability of ZPG bound-
ary layer streaks. Those streaks were also obtained using anoptimal perturbation,
but with a different target. This corresponds to the optimalperturbation imposed
at the leading edge, that maximizes the energy growth at a specified downstream
locationx = L. This optimal perturbation has been calculated by Luchini [38]
and Andersson et al. [1] using the parabolized stability equations (PSE) at high
Reynolds number. It is similar to the present perturbation but with a spanwise
wavenumber corresponding to the boundary layer thickness at the control loca-
tion pointx= L. Andersson et al. [2] then used the resulting linear optimalstreaks
at x = 0.3L with ReL = 9105 as boundary conditions for DNS in order to study
the nonlinear development of the streaks and their stability at x = 2L. As seen
on Figure 4b, these streaks have a smaller amplitude and a much smaller local
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growth rate than in the present case because they have been obtained by a global
optimization with a large distanceL ∼ 20h, representative of the effect of leading
edge perturbations on a boundary layer at high Reynolds number. On the contrary,
we have used a local optimization to generate, near the entrance atx= 4h, streaks
with larger growth rates. This is consistent with the globallinear stability analysis
of Levin and Henningson [35], who found that the initial position of the pertur-
bation has a significant impact on the growth of the streaks calculated using PSE.
To further visualize the streaks, contours of constant streamwise perturbation are
plotted on Figure 5a and compared to the linear perturbationin the sectionX = 4,
which is the location of the maximum amplitude of the linear streaks. As seen
on this figure, large low-speed streaks are pushed away from the wall whereas
high-speed streaks are squeezed near the wall, and the non-linear disturbance is
quite different from the linear disturbance, which exhibits a symmetrical pattern
between low and high speed streaks.

3.4. Breakdown of boundary layer streaks

The boundary layer on the upper wall is perturbed at the entrance section (in-
let of the computational domain) by the optimal perturbation uopt described in
the previous paragraph. It corresponds to the following RMS values inside the
boundary layer:|uopt|rms= |wopt|rms≈ 0.02U0. The resulting streaky boundary
layer is destabilized as detailed hereafter. To trigger transition, an additional ran-
dom vector noiser(x,y,z) with a very small amplitude is superimposed on the
optimal perturbation, such that the inlet disturbance can be written:

u′(y,z, t) = uopt(y,z)+ur(x= x0−U0t,y,z) with ur(x,y,z) = P (r(x,y,z))

whereP is the projection operator in divergence-free space. Figure 5b shows
a typical profile of the spanwise inlet perturbation. In the inlet section, the tur-
bulence intensity of the optimal perturbation is equal toTuopt ≈ 0.017U0 in the
upper boundary layer and is ten times smaller elsewhere. Using a smaller box
with L = 15h, we study the breakdown of the resulting streaky boundary layer
for different small-amplitude perturbationsur . At the inlet the additional turbu-
lence intensityTur ranges from 0 (no additional perturbation) to 0.005U0 (30% of
Tuopt).

In this section, the base flowUb is the unperturbed laminar flow andU the
instantaneous velocity field. We will consider space-averaged valuesuuu(x) of the
perturbationu = U−Ub in the upper boundary layer defined as follows:
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uuu(x) =

√

1
Wδ (x)

ˆ W

0

ˆ δ

0
uuu2dzdy (5)

Figure 6 shows the evolution of the streamwise primary disturbanceu (the streaks)
in the upper boundary layer. As seen on this figure, without a secondary pertur-
bation, the streaks initially intensify downstream and then decrease by viscous
dissipation. Using the orthogonal decomposition (1) on thedisturbanceu, the
evolution of the contributionsuos and usq is also plotted on the same figure.
As explained in Buffat and Le Penven [14], in the linear phase the disturbance
mainly consists of an SQ velocityusq, which is characteristic of the linear transient
growth. A little farther downstream,usq deviates fromu due to non-linearities and
an increase in the OS velocityuos is observed. In that region, the OS velocity field
is independent of the spanwise direction and represents thenonlinear interactions
of the streaks on the base flow. Further downstream, the two contributionsuos

andusq are of the same order of magnitude, indicating that the amplitude of the
nonlinear interactions of the streaks on the base flow becomes as large as the am-
plitude of the streaks itself. In this streaky boundary layer, the sum of the laminar
base flowUb and the OS velocity fielduos represents the spanwise-averaged non-
linear mean flow and the SQ velocity fieldusq the streaky disturbance around this
nonlinear mean flow. The profile of this nonlinear mean flow is drawn on Figure
7b for different inlet amplitudes of the secondary perturbation. Compared to the
laminar profile, the mean flow accelerates the perturbationsin the near-wall region
and slows it down in the outer border of the boundary layer. Asa consequence,
the low speed streaks are pushed away from the wall, as seen onthe contour plots
of the streamwise perturbation on Figure 5. We also observe the appearance of a
strong inflection point in these mean profiles, that are linearly unstable according
to Fjortoft’s criterion (Schmid and Henningson [49]).

With random secondary perturbations (Tur 6= 0), streak breakdown is observed
even for small-amplitude perturbationsur , as denoted by the oscillations of the
streamwise disturbance observed on Figure 6 forTur = 0.1%, 0.25% and 0.5%.
In all these cases, the skin-friction coefficient increasesup to the ZPG bound-
ary layer turbulent correlation as seen on Figure 2a forTur = 0.1%, indicating
a turbulent transition of the boundary layer. The growth of these secondary dis-
turbancesu

′′
= U(ur)−U(ur = 0) is depicted on Figure 6b, where the stream-

wise evolution of its instantaneous spanwise-averaged contributionsu′′
os andu′′

sq

are plotted for different inlet perturbationsur . As expected from the inflectional
mean profiles, these secondary disturbances are initially amplified. As for the pri-
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Figure 6: a) Streamwise evolution of the instantaneous spanwise-averaged streamwise disturbance
(streaks)u(x, t) in the upper boundary layer obtained for an inlet primary perturbationuopt with
β = 2/δ , Reδ = 357 andTuopt = 1.7% and different values of the secondary inlet perturbations
Tur = 0.%, 0.1%, 0.25%, 0.5%. The dotted lines represent the two contributionsuos andusq of
the orthogonal decomposition (1) ofu (i.e. u2 = u2

os+u2
sq) without secondary inlet perturbations

(Tur = 0%). b) Streamwise evolution of the secondary instantaneous spanwise-averaged stream-

wise disturbanceu′′(x, t), decomposed using (1) asu′′2
= u′′

os
2
+u′′

sq
2
, for different values of the

secondary inlet perturbationsTur = 0.1%, 0.25%, 0.5%.

mary disturbance, the SQ velocityu
′′

sq is a streaky disturbance, whereas the OS

velocity u
′′

os models a nonlinear interaction with the mean flow. After thisfirst
growing phase, corresponding to the growth phase of the primary disturbance,u′′

os

decreases slightly like the primary disturbance. Afterwards, a large increase ofu′′

sq

is observed nearX = 5, followed by a similar increase ofu′′

os. The increase ofu′′

sq
is characterized by streamwise periodic oscillations witha wavenumber identical
to the spanwise wavenumberβ of the streaks. Then, nearX = 10, the profiles of
u′′

os andu′′

sq present a chaotic behavior, indicating a turbulent transition.
The reason for this secondary instability is an inviscid local mechanism caused

by inflection points in the instantaneous velocity profiles.In the boundary layer,
the perturbations can appear in the flow either in a spanwise symmetric (varicose)
or antisymmetric (sinuous) pattern with respect to the underlying streak. If the
instability occurs in the wall-normal direction, the secondary instability is a vari-
cose mode, whereas if it appears in the transverse direction, it is a sinuous mode.
In order to characterize the observed transition, Figure 7ashows the shape of the
secondary disturbance compared to the contour lines of the streaky primary dis-
turbance. As seen on this figure atX = 2, the secondary disturbance has initially a
varicose symmetry, which enhances the inflectional mean profile. Then, a sinuous
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Figure 7: a) Contour lines ( 0< u<U0) in the(z,y)-plane atX = 2 andX = 4 of the streamwise
velocity inside the upper streaky boundary layer obtained for a primary perturbationuopt with
β = 2/δ , Reδ = 357 andTuopt = 1.7% and without secondary perturbations (Tur = 0). The
isovalues in color represent the instantaneous values of the secondary disturbanceu

′′
with Tur =

0.5% (−0.17(blue)< u′′/U0 < +0.17(red)). b) Instantaneous spanwise averaged profiles of the
streamwise velocityu atX = 2 andX = 4 for different secondary perturbationsTur compared with
the laminar profile (dashed line).

instability occurs, characterized by spanwise oscillations of the head of the low
speed streaks in the outer border of the boundary layer as seen atX = 4 on Figure
7.

4. DNS results

Starting from an initial laminar flow, the inlet perturbation described in Section
3.3, withTuopt ≈ 0.017U0 and an additional random noise withTur ≈ 0.001U0,
is introduced at the inlet section. The turbulence level imposed at the entrance
section is substantially smaller than the previous DNS of the ZPG boundary layer
as in Wu and Moin [55] (Tu≈ 6% ) or in Brandt et al. [12] (Tu≈ 4.7%), show-
ing the effectiveness of this inlet perturbation. The simulation first runs during
a domain travel timeτL = L/U0 in order to establish the mean flow described in
Section 2.2. Then, statistical quantities are accumulatedover time during another
domain travel timeτL. The velocity fielduuu is averaged over time and space in
the spanwise direction to obtain the mean velocityUUU . The reference velocity for
the boundary layer profiles is the external velocity, chosenas the maximum mean
velocity in the section.

4.1. Integral properties
The evolution of the mean skin-friction coefficientCf is shown on Figure 8a

for both walls. On the upper wall, the coefficientCf quickly increases, then de-
creases to settle near the ZPG boundary layer turbulent correlationCf = 0.059Re−0.2

x .
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Figure 8: Perturbed flow: a) mean skin-friction coefficientCf and b) boundary layer thicknessδ/h
and shape factorH as a function of the Reynolds numberRex , compared to the laminar solution,
the Blasius solution and turbulent ZPG boundary layer correlation.

The first step is characteristic of the nonlinear growth of the streaks (up toRex =
6.104), which induces a transient secondary inflectional instability, followed by a
viscous decay of the streaks. BetweenRex = 105 and 1.6105, the large increase
of Cf characterizes the turbulent transition. The first overshoot of Cf as a result
of bypass transition, is also present in ZPG boundary layer simulations (Schlatter
et al. [48]). On the lower wall,Cf follows the laminar correlation, with a slight
increase nearRex = 105 due to the transition of the upper boundary layer. A tur-
bulent transition is observed further downstream betweenRex = 106 and 1.2106.
This transition induces an increase of the coefficient on thelower and upper wall,
and both values ofCf tend towards the fully-developed turbulent channel flow

correlationCf = 0.073
(

U0
Umax

)2
Re−0.25 (Dean [23]). On Figure 8b, the boundary

layer thicknessδ of the upper wall exhibits fast growth. It reaches 68% of the
channel width at the location of the transition of the lower boundary layer. On
the lower wall, the boundary layer thickness first follows the laminar correlation,
and then abruptly increases after transition. The evolution of the boundary layer
shape factorH = δ ∗

θ∗ is shown on the same figure and is compared to the laminar
valueH = 2.5 and the asymptotic correlation given by Monkewitz et al. [41] for
a ZPG turbulent boundary layer. As can be seen, the integral characteristics of
the turbulent upper boundary layer are close to those of a ZPGturbulent boundary
layer up to the transition of the lower boundary layer.
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Figure 9: a) Mean velocity profile in the upper boundary layerin the wall unit and outer unit at
different sectionsX (before the transition of the lower boundary layer) compared to the logarithmic
law (with κ = 0.41) and the asymptotic behavior of [41] for a ZPG boundary layer.b) Mean
velocity profile at the outlet sectionX = 140 compared to the profiles in a turbulent channel flow
at similarReτ = 590 [43]. The results obtained with the two grids are plottedon the same figure
and the curves coincide.

4.2. Mean velocity profiles
Figure 9(a) depicts the inner-scale and outer-scale mean profiles in the upper

turbulent boundary layer at different sections before the second transition point.
As can be seen, the profiles are self-similar in the viscous sublayer and log-law
region and they follow the self-similar viscous logarithmic law of the wall. In the
outer region, using the Rotta–Clauser length scale∆ = δ ∗U∞/U f , the profiles are
also self-similar, but differ significantly from the asymptotic behavior of Monke-
witz et al. [41] due to the favorable pressure gradient.

Figure 9 shows the mean profile in the outlet sectionX = 140 compared to
the DNS results in a developed turbulent channel flow at a similar Reτ (Moser
et al. [43]). As seen on this figure, the profiles are not very different from the
mean velocity profile of a fully-developed turbulent channel flow, indicating that
the domain lengthL is of the order of the entrance lengthLe.

4.3. RMS values
The RMS values are obtained from the time-averaged values andspatially-

averaged values in the transverse direction. On Figure 10, we show the evolution
of the mean turbulent intensityTu=

√

(< u2 >+< v2 >+< w2 >)/3 in three
regions of the channel: the upper boundary layer (Tuup ), the lower boundary
layer (Tulow) and in between (Tumid ). These averaged values are defined by the
following:
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W
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ˆ h−δsup
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As can be seen on this figure, the turbulent intensity,Tuup, grows very rapidly
from a low inlet value of 2% up to a large value of 12% atX = 2 and then decreases
to a nearly constant value of 6%. This reflects the fast growthof the streaks till
X = 2, followed first by a viscous decay tillX = 8, then by a destabilization that
leads to transition nearX = 10. We also observe a low level (less than 1.5%) of
the turbulent intensityTu inside the lower boundary layer and in between the two
boundary layers before the second transition point(60< X < 100).

The mean RMS values of the turbulent intensity are summarizedin table 2
before the second transition point atX ≈ 100. From these values, we observe that
the turbulent intensityTulow in the lower boundary starts to increase significantly
nearX ≈ 60, when the turbulence levelTumid in between the two boundary layers
(i.e. the free stream turbulence) reaches about 1%. Furtherdownstream near
X ≈ 100, the transition is characterized by a fast rise of the turbulence levelTulow,
that reaches the level of turbulenceTuup in the upper boundary layer, as seen on
Figure 10.
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X 40 60 80 100

Tuup 0.06 0.06 0.06 0.06
Tumid 0.006 0.009 0.012 0.019
Tulow 0.001 0.003 0.007 0.032

Table 2: Mean RMS values of the turbulent intensity in different sections before the second tran-
sition point atX ≈ 100.
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Figure 11: a) RMS profiles< u2
+ >1/2and< uv+ > in the upper turbulent boundary layer in the

wall unit y+and outer unity/∆ at different sectionsX before the transition of the lower boundary
layer, compared to the ZPG boundary layer profiles at a similar Reθ = 2000 of [48] (dotted line). b)
RMS profiles< u2

+ >1/2,< uv+ >, < v2
+ >1/2, < w2

+ >1/2 in the outlet sectionX = 140 compared
to the profiles in a turbulent channel flow at a similarReτ = 590 [43] (dotted line).

On Figure 11a, we have plotted the RMS values of the Reynolds stress<
u2
+ >1/2 and< uv+ > in the upper turbulent boundary layer in the wall unit

y+and outer unity/∆ at differentX locations before the second transition point
(X < 100). In the wall unit, the profiles are similar to those in a turbulent ZPG
boundary layer, as confirmed by comparison with profiles at a similar Reθ = 2000
from the DNS of Schlatter et al. [48]. In the outer unit, usingthe Rotta–Clauser
length scale∆, the profiles are self-similar in the outer region, but differ from the
ZPG boundary layer due to the favorable pressure gradient. On Figure 11b, the
Reynolds stresses are plotted in the outlet section (X = 140) and compared to the
classical results of Moser et al. [43] for a fully developed turbulent channel flow.
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Figure 12: a) Streamwise evolution of the instantaneous spanwise-averaged components of the
disturbance velocityuuuos anduuusq in the upper boundary layer at the entrance of the domain.

5. Analysis of the bypass transition and discussion

In this section, the disturbance is defined relative to the mean spanwise aver-
aged velocity field depicted in Section 4.2, and the disturbance velocity fields are
decomposed so thatuuu= uuuos+uuusq using the orthogonal decomposition of Section
3.1.

5.1. First bypass transition

As indicated in Section 4, a turbulent transition is first observed on the upper
wall near the inlet, characterized by a fast growth of steadystreaks, that further
experience inflectional secondary instabilities downstream. The streamwise evo-
lution of the velocity components ofuuuos anduuusq in the upper boundary layer at the
entrance of the domain is plotted on Figure 12. As can be seen,the disturbance
velocity field contains mainly an SQ streamwise componentusq before the turbu-
lent transition point nearX ≈ 8. The first instability on the upper wall corresponds
to large steady streaks generated from the inlet perturbation described in Section
3.3.

Plots of the instantaneous streamwise velocity in a plane parallel to the wall
are shown in Figure 13a where the streaks and turbulent transition are clearly
visible. On this figure, the sinuous instability is clearly seen nearX ≈ 8, whereas
the transitional varicose instability is only apparent on the streamwise planes in
Figure 13b. The classical regular oscillating structure ofthe streaks is drawn on
top atX = 1, and corresponds to the linear transient growth phase. AtX = 4, the
low speed streaks (in dark on the figure) have a two-lobed mushroom-like shape,
enhanced by transient varicose instabilities. This is characteristic of a nonlinear
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Figure 13: Streak instabilities in the upper boundary layer. Visualization of the instantaneous
streamwise velocityu in a plane parallel to the upper wall aty/h = 0.33 and 0≤ x/h ≤ 10 a)
and in 3 streamwise planes atX = 1,4,9 b). The black color corresponds to low speed streaks
(u< 0.5U0) and the white to high speed velocity (u>U0).
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interaction with the base flow. Further downstream, these mushroom shapes are
subjected to sinuous instabilities (Figure 13b atX = 9). They tilt, twist, interact
with the wall and the neighboring structures, and then develop into complex forms
as they move downstream into the fully turbulent region. .

The transition scenario observed is different from that predicted by previous
analyses (Andersson et al. [2], Hoepffner et al. [33], Cossu et al. [21]) on the
stability of steady streaks, because, as explained in Section 3.3, the streaks are
different (see Figure 4b), and the location of their stability analysis(x= 2L≈ 20h)
(symbolH on Figure 4b) is far downstream from the observed transitionpoint
(symbol� on Figure 4b). Furthermore, their streaky mean profile atX = 20 (see
Figure 13 on page 51 in Andersson et al. [2]) is very differentfrom the mean
profile in Figure 7. Thus, their stability analysis is not relevant for the present
study.

Varicose and mushroom structures have also been consideredby Brandt [9]
who studied the instability and transition of an isolated low speed streak numer-
ically, corresponding to the experiment of Asai et al. [4]. Bystudying the vari-
cose and sinuous instability separately, it was found that the varicose instability is
greater close to the location of perturbations, but its growth rate decreases faster
downstream, whereas the sinuous instability persists for alarger time. For a ran-
dom perturbation of the streaks, the two instabilities are in competition, and a first
growth of a varicose instability, that is damped further downstream, followed by
a sinuous instability can thus be expected as the present simulations shows.

5.2. Second bypass transition

The second transition observed on the lower boundary layer at X ≈ 100 re-
sults from the interaction with the upper turbulent boundary layer. It is important
to point out here that our simulation is, to the author’s knowledge, the first DNS of
boundary layer transition induced by “real” external turbulence (i.e. a turbulence
generated inside the computational domain). Previous DNS of boundary layer
transition induced by free-stream turbulence have used some sort of synthetic tur-
bulence as the inlet boundary conditions (e.g. Brandt et al. [12], Durbin and Wu
[25], Wu and Moin [55]).

As in Section 5.1, the streamwise evolution of the velocity components ofuuuos

anduuusq in the lower boundary layer is plotted near the transition point on Figure
14. Here, we observe the growth of the SQ streamwise component usq, char-
acteristic of the formation of streaks in the boundary layer. Near the transition
point, a fast growth of the streamwise componentuos is observed, indicating that
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Figure 14: Streamwise evolution of the instantaneous spanwise-averaged components of the dis-
turbance velocityuuuos and uuusq in the lower boundary layer near the second transition pointat
X ≈ 100.

the streaks are unsteady and wavy. Further downstream, turbulent transition oc-
curs characterized by the fast growth of all the velocity components ofuuuos and
uuusq. To analyze the origin of this transition, on Figure 15 we have plotted a the
normal OS velocityvos averaged along the normal direction inside the boundary
layer. As can be seen, we observe that large scale oscillations appear in the span-
wise direction before the transition (that starts atX ≈ 100). The scale of these
oscillations is in the order of the boundary layer thicknessδ ≈ 0.3h−0.4h, and
corresponds to the transverse wavenumberβ ≈ 2/δ , i.e. in the order of magnitude
of the optimal perturbation wavenumber. These oscillations of very small ampli-
tude (∼ 0.4− 0.6%) in the normal velocityvos profiles induce 10 times larger
oscillations in the streamwise velocity, which correspondto streaks, as seen in the
profiles of the SQ streamwise velocityusq plotted on Figure 15a.

The instantaneous wall pressure disturbance averaged in the spanwise direc-
tion is shown on Figure 15b. The high frequency oscillationsof the pressure
disturbance in the upper boundary layer are characteristicof near-wall turbulence.
On the lower wall, before the transition point, only low frequency oscillations
are observed. The scale is in the order of the streamwise correlation length scale
L11,1 ∼ 3h of the streamwise velocity in the planey= 0 corresponding to the outer
region of the upper turbulent boundary layer. These oscillations reflect the large
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Figure 15: Instantaneous disturbance velocity averaged along the normal direction inside the lower
boundary layers at different sections before the transition point: a) OS normal velocityvos and SQ
longitudinal velocityusq, b) wall pressure disturbance averaged in the spanwise direction

scale oscillations of the pressure disturbance in the upperturbulent boundary layer.
These low frequency oscillations induce fluctuations in thestreamwise velocity
that are apparent in theuos profile before the transition point as seen on Figure
14. This indicates that the streaks (spanwise oscillationsof the SQ streamwise ve-
locity field usq) are modulated in the streamwise direction by the OS streamwise
velocity field uos. This mechanism is similar to the formation of non-stationary
streaks initiated by two eigenmodes of the Orr-Sommerfeld equations as described
by Buffat et al. [15].

On Figure 16, we have plotted the instantaneous streamwise velocity in the
lower boundary layer near the transition point atX ≈ 100. On this figure, the
formation of low speed streaks (in black) and their sinuous instabilities are clearly
seen in the plane parallel to the wall. The breakdown of the streaks is similar to
that described in Section 5.1. As seen on Figure 16b in the plane X = 95, low
speed streak appear in the near-wall region of the boundary layer, due to the lift-
up mechanism induced by normal velocity oscillations of very small amplitude
but with a scale in the order of the boundary layer thickness.Then, non-linear
transient growth and transient varicose instabilities push these low speed streaks
away from the wall to form two-lobed mushroom-shaped structures as seen in
the planeX = 100. Further downstream, these structures are subject to sinuous
instabilities as seen in the planeX = 115.

In the plane parallel to the wall on Figure 16a, a turbulent spot is observed
inside a low speed streak downstream of the fully-turbulentboundary layer. The
development over time of this turbulent spot is shown on Figure 17. The spot
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Figure 16: Streak instabilities in the lower boundary layer. Visualization of the instantaneous
streamwise velocityw in a plane parallel to the lower wall a) aty/h= 0.15 and 80≤ X ≤ 120 and
in 3 streamwise planes b) atX = 95,100,115. The black color corresponds to low speed streaks
(u< 0.5U0) and the white to high speed velocity (u>U0).

originates initially in a low speed streak, represented by black furrows on the
figure. The rear and front part of the disturbance is convected with a mean streaks
velocity of∼ 0.6Ue and∼ 0.9Ue, respectivelu, whereUe= 1.2U0 is the outer mean
velocity.

To determine the average spacing between the streaks, spanwise correlation
functionsRuu of streamwise velocity fluctuations are evaluated inside the lower
boundary layer. According to the value of the distance of thefirst minimum (Fig-
ure 18), the average streak spacing is equal to 0.9h (double the distance of the
first minimum) and corresponds to a streamwise wavenumberβ close to the wave
number of the optimal streaksβ = 2/δ , whereδ ∼ 0.33h is the mean boundary
layer thickness in that region. On Figure 18, contour levelsof Ruu are also plotted
in the middle planey= 0, located before the second transition in the outer region
of the upper turbulent boundary layer. As can be seen, the correlation function is
highly anisotropic with a significant spatial coherence in the streamwise direction.
The spanwise width of the positive correlation region is about∼ 0.4h , which cor-
responds to the streak spacing in the lower boundary layer. The streamwise length
of the positive correlation region is about 2h, indicating the presence of large-
scale spatially coherent structures whose streamwise scales are similar to those of
the wall pressure disturbances in the lower turbulent boundary layer (Figure 15b).
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Figure 17: Snapshots of the downstream evolution of a turbulent spot near the second transition
with time intervaldt = 4.5h/U0. Levels of the instantaneous streamwise velocityu from black
(u< 0.5U0) to white (u>U0) in a plane parallel to the wall aty/h=−0.85 with 90< X < 130.

The shape of the correlation function is comparable to thosemeasured by PIV in
a ZPG turbulent boundary layer (Ganapathisubramani et al. [29]). However, the
calculated streamwise extent is much larger than that measured in the wake region
of a ZPG turbulent boundary layer, which extends a distance of only 0.6δ ≈ 0.6h.
But, as pointed out by Ganapathisubramani et al. [29], the measurements ofRuu

made by Christensen [19] in a turbulent channel flow show that the channel data
exhibit longer streamwise correlations than in a ZPG turbulent boundary layer.

6. Conclusion

To conclude, DNS of the boundary layer bypass transition at the entrance of
a plane channel has been presented and analyzed. The transition of the upper
boundary layer is triggered by a perturbation inside the boundary layer near the
entrance of the channel. In the simulations, the perturbation is imposed at the in-
let section and consists of the optimal perturbation,uopt, obtained from the local
linear stability theory, with a small turbulence intensityTuopt ≈ 1.7% and an ad-
ditional smaller random vector,ur , with Tur ≈ 0.1%. This perturbation leads to
a fast growth of steady streaks, that further break down, leading to the turbulent
transition of the upper boundary layer. The transition of the lower boundary layer
is induced by the interaction with the upper boundary layer further downstream.
This kind of simulations is, to the author’s knowledge, the first DNS of bound-
ary layer bypass transition induced by “real” external turbulence generated in-
side the computational domain. The numerical simulations of such an experiment
typically require billions of modes using spectrally accurate approximations and
have been calculated using a spectrally-accurate code “NadiaSpectral”, specially
designed to run on massively parallel high performance computers (Montagnier
et al. [42]).
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For the turbulent upper boundary layer, the self similar logarithmic law of the
wall has been recovered. In the outer region, the profiles arealso self-similar
but differ significantly from the ZPG boundary layer resultsbecause of the small
favorable pressure gradient in the channel. Further downstream, low frequency
fluctuations induced by the turbulent upper boundary layer generate streaks in the
near-wall region of the lower laminar boundary layer. Then,non-linear break-
down of these streaks induces a bypass transition of the lower boundary layer.
Afterwards, turbulence occupies the whole channel width and a turbulent channel
flow develops.

To analyze the transition, an orthogonal decomposition of solenoidal velocity
fields is used on the disturbance flow. The velocity perturbation is expressed as an
L2 orthogonal sum of an Orr Sommerfeld velocity field (functionof the perturba-
tion normal velocity) and a Squire velocity field (function of the perturbation nor-
mal vorticity). Using this orthogonal decomposition, the streaks are characterized
as an SQ velocity field, with a large streamwise componentusq, which could be
modulated in the streamwise direction by an OS velocity fieldindependent of the
spanwise direction. The SQ velocity field experiences strong non-linear growth
that pushes low speed streaks away from the wall and forms mushroom-shaped
structures that are subject to transient varicose instabilities in the wall-normal di-
rection. Further downstream, the heads of these low speed streaks are subject to
sinuous instabilities in the spanwise direction, followedby a breakdown and a
turbulent transition. This scenario has been confirmed by animated views of the
results that show the formation and breakdown of the streaks, which are provided
on video in Buffat [13]. Recent studies at lower Reynolds numberRe (Buffat
et al. [16]), corresponding to a smaller channel height, show that these varicose
instabilities can become strong enough to induce Kelvin-Helmholtz instabilities at
the top of the low speed streaks and a turbulent transition isobserved without the
development of sinuous instabilities. The transition scenario observed is different
from previous analyses on the bypass transition of steady streaks in a ZPG bound-
ary layer (Andersson et al. [2], Brandt et al. [10], Cossu et al.[21]). The transi-
tional structures observed are however similar to the mushroom-shaped structures
obtained by Bernard [5] in his simulations of ZPG transitional boundary layers.
Beyond these considerations, there may be advantages in investigating parametric
studies for different ReynoldsReh and different levels of inlet perturbation. These
and similar considerations will be pursued in further studies.
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