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Abstract

Developing entrance flows are of interest in a large numbeappfication areas.
They have been widely studied in the past, but many aspedtsesé flows are
not yet fully understood. One of the questions concerns tdgilgy and turbu-

lent transition in the entrance region of a channel. Thegmestudy investigates
by direct numerical simulation (DNS) the laminar-turbuleansition induced by
boundary layer interaction in a spatially developing flovanthe entrance of a
channel, where the laminar flow is linearly stable. For umifanlet flow condi-

tions and at sufficiently high Reynolds number, the turbuteantsition actually

takes place inside the boundary layers and well before thedeveloped regime.
The transition of one of the two boundary layers is triggaredr the entry section
by small amplitude perturbations, such as the ones cregtshall isolated obsta-
cles distributed on the wall. These generate elongatedksty@and their transient
growth and breakdown lead to the turbulent transition ofitbendary layer near
the entrance region. The transition of the second boundamr lis induced by
the interaction with the first further downstream. After thensition of the sec-
ond boundary layer, turbulence occupies the whole chanigéhwand a turbulent
channel flow develops. The transition is analyzed with tHp béan orthogonal

decomposition of the solenoidal velocity field. The obsdrtransition scenario
differs from existing simulations of streak breakdown whére perturbation is
optimized for a transition to occur in a region far away frdre entry section. In
our simulations, the perturbation setup generates a signifinon-linear growth
of the streaks that are pushed away from the wall. Transemtase instabilities,

*corresponding author
Email addressmar c. buf f at @ini v-1yonl. fr (Marc Buffat)

Preprint submitted to Elsevier June 3, 2013



followed by sinuous instabilities induce the developmehimashroom-shaped
transitional structures in the outer region of the laminauridary layer, that fur-
ther break down downstream. The second boundary-layesiti@mresembles the
one occurring under free-stream turbulence, with the geiver of finite-length

streaks and turbulent spots.

Keywords: bypass transition, boundary layer, channel entrance floNg D
orthogonal decomposition of solenoidal fields

1. Introduction

Despite many investigations since the famous Reynolds (1883eriment,
stability and turbulent transition in pipe and channel flaws still not well un-
derstood. In this context, most theoretical and numericalies have focused on
the parabolic Poiseuille solution, which is the laminar fiitnat can be observed
far from the inlet, and less attention has been paid to the dievelopment in the
entrance region. This question is however interestingsifit since it has many
engineering applications and also because any experihveoita on fully devel-
oped Poiseuille flow is inevitably concerned with the efect the disturbance
of the incoming flow (Mullin [44]). At large Reynolds numbehet laminar en-
trance flow in a plane channel corresponds to the developafénio boundary
layers, which far downstream merge to form the fully devetbptate. As shown
by experimental, numerical and analytical studies (ShahlLaimdon [50],Durst
et al. [26],Sadri and Floryan [47]), the distance requiredffow development,
also called the entry lenglh, varies linearly with the channel Reynolds number
Re= 2Uph/v ( his the channel half-height and the flow rate velocity). I1Re
is large enough, the value bf (based on 99% of the Poiseuille centerline veloc-
ity Unm) is well approched bye/h ~ 0.08Re On the other hand, linear stability
theory predicts instabilities Re> R&'S ~ § x 5772= 7696 for the fully devel-
oped Poiseulille flow (Orszag [49o = %Um ) and a critical Reynolds number
RQL ~ 75000 (based on the distangedrom the leading edge) for the Blasius
boundary layer (Bertolotti et al.[[6]). From this data, thetdncex; at which the
flow becomes linearly unstable, is estimatedxgyle ~ 25R&-/R€, which is
smaller than unity at largReand, in particular, foRe> RS, Thus, at high
Reynolds number, the channel flow is linearly unstable in thieaace region.
Indeed, the above analysis can only give a rough estimatg ©hce the bound-
ary layers are accelerated in the entrance region and ditfer Blasius layers.
Falkner-Skan boundary layers that are evolving in presefstreamwise pres-
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sure gradient are known to be more stable, in case of actedeeaternal flow
(Schmid and Henningson [49],Criminale et al.|[22]). The satadilizing effect
can be anticipated in the channel developing flow so that teéiqus estimation
of x¢ is susceptible to be pushed away from the entry of the cha@mt of the
first stability analysis of the plane channel entrance flothésstudy of Chen and
Sparrow [18]. Using a basis flow solution obtained by thedimation method
of Sparrow et al.[[52] and parallel flow approximation, thepw that the critical
value of Redecreases monotonically with increasing distance fronctiannel
entrance, approaching the fully developed vaRe's as a limit. Thus, depend-
ing on the Reynolds number, a large part of the entry zone cdindsrly stable
even for supercritical developed channel flow conditionssiiite this and thanks
to our knowledge of turbulence transition in the boundawgets, it can be nev-
ertheless be expected that the channel flow transition cenr dor sub-critical
conditions.

Indeed, in the presence of free-stream or wall perturbatitmbulent transi-
tion in boundary layers can occur under sub-critical cood# with respect to the
linear stability theory (Durbin and WU [25]). In this cadegtmechanism involving
an exponentially growing mode is bypassed and transitiamtiated by velocity
perturbations taking the form of streaky structures eltedjan the streamwise
direction and modulated in the spanwise direction. Streassymptotically de-
creasing perturbations in linear theory, but during thedrent phase, they can
exhibit large amplitudes capable of sustaining secondastabilities evolving
to turbulence. From a mathematical point of view, a first gsial of transient
growth in Poiseuille flows was presented by Gustavssan {80¢, invokes a res-
onance mechanism between Orr—Sommerfeld and Squire medeshkd in a
previous paper (Gustavssaon [31]). However, the describechamism is quite
different from that of the more recent transient growth ssdqTrefethen et al.
[53], Schmid and Henningson [49]), which may be regardeceasdinked to the
non-normality of the Orr—Sommerfeld operator. More relye@iaki and Durbin
[56] again invoke the resonance of an Orr—Sommerfeld anduré&Sqontinuous
mode to explain transient growth in the zero pressure gnadieundary layer.
However, for channel flow, the eigenvalues of the Orr—Sonfeleeoperator are
countable and no continuous branch exists in the spectranthig case, by us-
ing the orthogonal decomposition presented in Se¢tignBuffat and Le Penven
[14] have proved that exact resonance of Orr—SommerfeldSgite modes are
impossible and that transient growth results from a lineanlzination of a large
number of non-orthogonal eigenmodes.

To study the effects of channel flow development on linearsient growth,
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Duck [24] has performed numerical simulations employingeapolized version
of the flow equations. Feeding the inlet flow with the growingeemode found
by Luchini [37] , he has shown that entry flow is susceptibleigmificant lin-
ear transient growth. For large spanwise wavelengths (ecaiyte to the channel
width) he has also demonstrated that this transient groewkldps on a stream-
wise length scale of the order bf. Biau et al.[8] have also studied linear stability
of the plane developping channel flow, adopting a basis flaavastteristic of the
far-downstream region and similar to the one used by AsaFmyan [3]. Their
modal analysis, conducted in the spatial framework witkalbelrflow approxima-
tion, complements the temporal study made by Hifdi et al].[@&timal transient
perturbations have also been determined using the pazaldadiquations. As in
the case of Falkner-Skan layers (Corbett and Bottaro [20]ifwand Reshotko
[54]), the accelerated free-stream appears to have aistapikeffect on linear
transient growth. However, it should be noted that thisatffe progressive and
that a capacity for significant amplification can still remsaeven though modal
instability is completely suppressed by the effect of puesgradient (Levin and
Henningson/[35]).

The focus of the paper is to describe and analyze numericallations of
turbulent transition in a developing plane channel flow. Befandertaking such
simulations, choices must be made regarding the pertorisatd be introduced
in the flow. For boundary layer flows, two methods are geneaglplied. One
consists in introducing the perturbations randomly buststently with some pre-
defined spectrum (Jacobs and Durhin [34],Brandt et al. [B2ipther is to select
some special disturbances than can grow enough and initéisition (Brandt
and Henningson [11],Zaki and Durbin [56]). One way to do tkito select the
perturbation that, according to linear approximation|dge¢o maximum amplifi-
cation at certain distance downstream (Brandt and Hennmfisld). Generally,
the inlet section is chosen at the leading edge and the taegtibn is located
at a relatively large distance (Luchini [38],Duck [24]). #&nfew studies, the in-
let section is chosen at some distance from the entranderseand in that case
the perturbation growth rate is found to be larger (Levin &&hningson|[35]).
According to experimental studies (Fransson and Talarf#dl), perturbations
generated by isolated irregularities on the wall can alsluge turbulent transi-
tion. These perturbations, usually localized inside thendary layers, can be
very effective in favoring earlier turbulent transition @anchannel entrance flow.
This reflection has inspired the method that is used in tHeviihg to perturb the
channel flow.

To study turbulent transition at the entrance of a plane ciat high Reynolds
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number, we consider the development of boundary layersdstviwo parallel
walls. With the chosen parameters, the linear stabilityymmaindicates that the
two laminar boundary layers can become exponentially bfestanly in the last
third of the studied domain. Thus, even if the chosen doneaigth is very large,
a modal transition of the layers is unlikely to occur and tlebt transition is
sub-critical. At the inlet, the boundary layer thicknessidficiently small so
that the boundary layers can be approximated to a Blasiusdaoytayer. The
turbulent transition of one of the two boundary layers iggered by a pertur-
bation that models the perturbation generated by isolatdtolstacles near the
entrance of the channel. This perturbation leads to a fasttgrof stationary
elongated streaks, that further break down and turbulansition occurs. The
transition of the second boundary layer is induced by therauation with the first
boundary layer further downstream. Direct numerical satiahs of the Navier-
Stokes equations are performed in such a configuration asspgctrally accurate
method (Buffat et al. [15]). The configuration is elongatedha streamwise di-
rection, so that the number of modes in the longitudinaldiioa is very large
compared to the amount of nodes in the other directions. ifhelation of such
experiments typically requires billions of modes using acsgally accurate ap-
proximation and should run on massively parallel high pennce computers.
To analyze the transition, an orthogonal decompositiorhefdolenoidal veloc-
ity fields is used on the disturbance flow. The observed tiansscenario of the
first boundary layer is different from previous analysestmdtability of steady
streaks in ZPG boundary layers (Andersson et al. [2], Brahdt.410], Cossu
et al. [21]) generated by free-stream turbulence becawsehbsen perturbation
generated larger non-linear steady streaks. The obsemslroom-shaped struc-
tures are similar to those obtained by Bernard [5] in his bampthyer simulations
using a hybrid vortex filament scheme.

This paper is organized as follows. In Secfion 2, the condityom of the flow
at the entrance of the plane channel is presented, as wékk aescription of the
laminar base flow and the perturbed flow. The numerical metimothe analysis
tools based on an orthogonal decomposition of solenoiddkfare described in
Section[B. The inlet disturbance generation proceduresis discussed in this
section. In Sectiohl4, the DNS results are compared to the tdRalent bound-
ary layer case and to the fully-developed turbulent chafioel to highlight the
similarities and differences. The transition of both boanydayers are analyzed
and discussed in Sectibh 5, and the observed transitiomsoés described. The
concluding remarks are presented in Sedtion 6.
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Figure 1: Domain of studf = [Xo,Xo +L] x [~h, +h] x [0,W]

2. Description of the problem

We consider an incompressible flow at large Reynolds nunites %‘)h =
20000 g is the mean velocity and is the viscosity), in the entrance region of a
plane channel of widtht2(see Figuréll). By assuming negligible perturbations at
the entrance, the considered flow corresponds to the dewelapof two bound-
ary layers separated by a nearly inviscid core in the midtiteechannel. In the
downstream region, the boundary layers merge and the velpfile reaches
the profile of a developed channel flow. For laminar flow, thigaarte length_e
necessary to obtain the developed profile is proportiontiédReynolds number
Re(L—kf ~ 0.08Rein Durst et al. |[[26]) and is very large at the studied Reynolds
number [e/h ~ 1600). If the boundary layers are turbulent, the entrancgtlte
Le is much smaller. Entrance lengths at least 10 times smabestzserved in ex-
perimental investigations of the turbulent entrance ckafiow (Lien et al. [36]).

To study the interaction of the boundary layers, the contmutal domain,
15Ch x 2h x 3.2h, is elongated in the streamwise direction, as shown in Eidur
The upper boundary layer is perturbed at a distaggdeom the entrance section.
Experimental observations indicate a transition Reynoladsiber Rg, = %max
based on the distancefrom the entrance and the maximum velodilyay in
the section ranging from 2QRoach and Brierley [46]) to fO(Matsubara and
Alfredsson [40]) depending on the free-stream turbulemeell A local linear
stability analysis of the Blasius boundary layer (Butler aadr&ll [17]) indicates
that the maximum transient energy growth increases acuptdRg, over a time
period proportional tq /Reg,. To induce a turbulent transition by a perturbation
of small amplitude € 1%) near the entrance; is chosen equal toh4 The corre-
sponding Reynolds numb&sg,, = 410%is the samdrg, as in Buffat et al.|[15] ,
in which the transition is observed betweRg, = 1.51% and 2510 depending



X =X 0 | 10 | 100 | 140 |
e 1.035 | 1.062 | 1.165 | 1.201
D 0.10 | 018 | 043 | 0.50

Rg = Xtma | 4110% | 1.51¢ | 1.210° | 1710

Table 1: Characteristics of the laminar base flolRat 20000 andky = 4h

on the amplitude of the inlet perturbation,xat The inlet boundary layer thick-
nessdp o9 ~ h/10 corresponds to a Reynolds numistgs = 200, based on the
Blasius scal& = /vXp/Up, and the inlet velocity profile corresponds to a Bla-
sius profile in each half-section. In the following sectiods= % denotes the
non-dimensional distance from the entrance section ofdhgatational domain.

2.1. Laminar base flow

Without inlet perturbation, the flow remains laminar. Asrsée Tablel1, the
Reynolds numbeRg, ranges from 4.10* up to 171. The velocityUmay in-
creases by 20% because of the growth of the boundary layngssdy gg from
0.1h to 0.5h. The longitudinal pressure gradient is small and inducdgyhtsn-
crease of the skin friction coefficie@% compared with the one of a laminar ZPG
boundary layer as seen on Figlte 2. Due to this favorablespregradient, the
shape factor of both laminar boundary layers is lower thanBlasius one (B
instead of 259).

The small favorable pressure gradient has however a strdhgmnce on the
linear stability of the boundary layer. Extracting velgqurofiles from the calcu-
lated laminar solution, we have determined the linear a¢stability curve by a
local temporal stability analysis. A comparison with theelar neutral curve ob-
tained using Blasius profiles in each half-section is showRigare[2. Although
the characteristics of the boundary layers of the laminkutism are similar to the
Blasius-like profiles, the slight difference in the velogitpfiles has a strong influ-
ence on the linear stability curve. As seen on Fidure 2, tménar entrance flow
is linearly stable up ta/h ~ 80 instead ok/h ~ 9 for the Blasius profiles. This
later position corresponds to the classical critical RegsaumbeRes = 300 of a
Blasius boundary layer (Bertolotti et all [7]). The exponakdimplification is also
very small (the real part of the most unstable Tolmien-Sthing mode reaches a
value of 610~3Up/h atx/h = 140), thus a much longer computational domain is
required for this unstable TS-wave to grow exponentialtyéaergy growth of 10
would require an evolution time of 200 and a computationahdim at least two
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times longer). Therefore, inside the present domain, a hadssition is unlikely
to occur.

Transient energy growths have been calculated in the almmfegaration with
the linear stability theory and they remain as large as irZth& boundary layer,
indicating that even if the laminar flow is more stable thag Btasius boundary
layer, bypass transition is not significantly delayed by shell favorable pres-
sure gradient. Using the parabolized stability equatioitis &vFalkner-Skan base
flow at high Reynolds number, Levin and Henningson [35] alsseoled a large
increase of the critical Reynolds number with a favorablesguee gradient. For
a Hartree parametgdy = 0.1 similar to the estimatefly ~ 0.07 in the present
study, they found a critical Reynolds numid@es = 889 which is close to the
critical Reynolds number obtaineRgs ~ 920. They also found that, with a fa-
vorable pressure gradient base flow, the algebraic growtiuh larger than the
exponential growth, as in our configuration.

2.2. Perturbed flow

The upper laminar boundary layer is perturbed at the engrafche chan-
nel by a perturbation of small amplitude: 1%). This perturbation leads to a
fast growth of elongated streaks in the near-wall regiomeftioundary layer and
induces a rapid transition as seen on the instantaneoudrakion coefficient
drawn on Figurél2. As the perturbation essentially actslenie boundary layer,
it can be experimentally generated by small obstacles ow#fieas in Fransson
and Talamellil[28]. An additional smaller random perturbat(< 0.1%) is super-
imposed on the first to trigger the breakdown of the nonlirsti@aks. Turbulent
transition of the upper boundary layer occurs near the eograf the channel at
x/h ~ 10. In contrast, no perturbation is imposed on the lower damnlayer,
which remains laminar in a large part of the channel as seetherskin fric-
tion coefficient in Figuré 2. The turbulence developing ie thpper boundary
layer progressively acts on the lower boundary layer andirdesition occurs
only when the channel longitudinal length is sufficientiypdo(> 100h). Near
x/h ~ 80, low frequency fluctuations induced by the turbulent ugpsundary
layer interact with the laminar lower boundary layer andegate streaks. Then,
non-linear breakdown of these streaks leads to a bypasstioanof the lower
boundary layer. Afterwards turbulence fills the whole chemwidth and a turbu-
lent channel flow develops. Figure 3 depicts these main zoinegerest from the
value of the instantaneous longitudinal velocity in an &by streamwise plane.
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Figure 3: Perturbed flow: instantaneous longitudinal vigfoin an arbitrary streamwise plane,
with the main zones of interest: the entrance region, tt@nsregion and developed turbulent
region at the end of the domain.

3. Numerical method and analysistool

The numerical method and analysis of the results are basedgemeral or-
thogonal decomposition for solenoidal vector fields exgedsn terms of projec-
tions of the velocity and vorticity fields on an arbitraryetition in space.

3.1. Orthogonal decomposition of solenoidal fields

For doubly-periodic flow with one direction of inhomogeyes, (the normal
direction in Figuré 1), Buffat et al. [15] derived an expliéirm of this decom-
position using the Helmholtz-Hodge theorem. Thus, anyrsntal velocity field
is expanded in a Fourier series in the streamwise and spamlivisctions in the
form:

00 (29

U(X,y,Z,t): Z Z ump<y7t)e|(ax+l32) (1)

M=—00 p=—00

whereu™P is the modal vector function of Fourier coefficients ass@ciavith
wave-numberssx and[i Then each Fourier componantP can be decomposed
asu™P =gy +usq , whereugy andus are function of the normal velocity"P(y)
and normal vorticityw™P(y) Fourier component respectively :

t
- (1. L) g (2 Bamontom)

wherek? = a?+ 2. Both velocity and vorticity components exhibit orthogonal
properties:

U uge = 0 and (Zmp x Ugy) - (Zmpx udf) =0 (3)
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whereZnpis the gradient operator in Fourier space #gp=( 1a .9y 18 )t.
An L, orthogonal decomposition of the velocity field can easilydeeved from

this orthogonal decomposition of the Fourier componenish shat :

U = Usq(V) + Uos(w) With < Usg,Uos >1,= 0 and0.usg= O.Uos=0  (4)

The ues velocity field has zero wall-normal vorticity, its normallgeity is equal

to the wall-normal velocity of u and its average in planes of constgmbincide
with the average ofi. Theusq vector field has zero wall-normal velocity, its walll
normal vorticity is equal to the wall-normal vorticity of u and its average in
planes of constantvanishes. As the two velocity fields in the decompositidn (4)
are defined by the normal component of the velocity and themabcomponent of
the vorticity respectively, these two fieldss andusq have been named in Buffat
and Le Penven [14] as the Orr-Sommerfeld velocity (OS vep@and Squire
velocity (SQ velocity) fields, respectively.

3.2. Numerical method

The numerical method is based on the decompositibn (4) eppdiu, the
velocity field solution of the Navier-Stokes equations inlang channel. The
OS and SQ velocity fields are approximated using Fouriermsipas in thex, z)
planes withM x P modes and a Chebyshev polynomial expansion of ddgriee
they-direction as described in Buffat et al. [15]. In order to usefer expansion
in the streamwise direction, the solution is made periade larger domain using
a fringe region (Bertolotti et al. [7]), where a forcing tersnadded to the Navier-
Stokes equations to smoothly force the outflow to the priesdrinflow velocity
field.

Using a Galerkin formulation of the incompressible Navi@okes equations,
the unknown complex spectral coefficientsug’ andugy are solutions oM x
P differential equations. They can be solved in parallel atheame step us-
ing a Crank-Nicholson/Adams-Bashforth scheme. Difficulirethe paralleliza-
tion arise from the computation of nonlinear terms whichuieg) global data-
transposition for the fast Fourier transforms. Using edfiti2D domain decompo-
sition and hybrid parallel programming with MPI and highdeopenMP threads
(Montagnier et al.[[42]), the “NadiaSpectral” computer eq@uffat [13]) runs
efficiently on massively parallel computers (IBM BlueGenealBihg tens of thou-
sands of cores for simulations with billions of modes. Onhsluigh performance
parallel computers, typical simulation take 50 hours (&d&ptime) using 16384
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cores. Otherwise these would have required 100 years on a-pregessor com-
puter.

Two grid resolutions are used for the simulations: a meditithwith 11520x
128x 256 modes and a refined grid with 1728092 x 384 modes. The value
of y© at the outlet is A6 for the medium grid, and.07 for the refined grid.
Mean flow and statistics are similar for the two simulaticess seen in Figure 9,
where the mean velocity results coincide for the two gridslight difference of
0.8% exists on the location of the second transition point dudé¢ strong non-
stationary nature of the transition, but this does not affee main characteristics
of the transition. The simulations can thus be considerespasally resolved.

3.3. Inlet perturbations

Due to the convective instability of the boundary layer tpdration needs to
be continuously generated inside the computational dot@ainduce turbulent
transition. In simulations, the most frequently-used prhae is the so-called
recycling method, originally proposed by Lund et al./[39Hamployed among
others by Simens et al. [51]. Wu and Moln [55] periodicallyraduce a box of
homogeneous turbulence above a laminar boundary layReat 80. Schlatter
et al. [48] use random volume forcing inside the laminar luzuy layer aRey =
180.

In our simulations, the laminar inlet profile of the upper bdary layer is al-
tered by the optimal perturbation obtained from the loaa¢dir stability theory
(Butler and Farrell [17]). The optimal perturbation is théial disturbance expe-
riencing maximum transient energy growth, calculatedgiiie Orr-Sommerfeld/Squire
equations and the entrance laminar profile. In experimémitsperturbation can
be produced by a spanwise periodic array of small roughrieaseats fixed on
the wall (Fransson et al. [27]) at a distangdrom the leading edge. This optimal
perturbation consists of steady pairs of contra-rotatorggitudinal vortices in-
side the boundary layer, with a spanwise wavenurﬁber% and zero streamwise
wavenumben. With the orthogonal decompositidd (1), it can be verifieat this
optimal perturbation is essentially an OS velocity fieldsasn on Figurgl4a. As
explained in Buffat and Le Penven [14], this OS velocity pdyation induces a
large linear transient growth and creates a large longial@Q velocity field, that
corresponds to steady streaks. This is illustrated on Eidar where the linear
response of this optimal mode consists mainly in an SQ ugidieid.

In order to further characterize the steady streaks gesgbbgtthis inlet pertur-
bation, the streamwise evolution of the amplitude of theadts is compared to the
result obtained from the linear stability and to the restiiiedersson et all [2]. As
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Figure 4: a) Orthogonal decomposition of the optimal péxation aty, = 0 and its linear transient
response ap = tmax. b) Streak amplitude (as defined in Andersson et al. [2])usfRs compared
to Andersson et all [2] dRes, = 430. The circles represent the prediction using the looakl
stability analysis. The symbal indicates the locatior = L of the output plane used in the spatial
optimization of Andersson et al. [2] and the symiahe locationx = 2L of their stability analysis.
The symboM corresponds to the location of the transition studied itice&.1.

seen on Figurgl4b, the inlet perturbation induces the dpuaat of fast growing
streaks, followed by a viscous decay. However, without tmithl perturbation,
transition is not observed. Using the laminar base flow dlesdrin sectiorn 211,
the linear evolution of the perturbation is also shown onfidpere, together with
the result obtained with a local temporal stability anaysihe early develop-
ment of the streaks coincides with the linear predictiort,later the non-linear
interactions with the base flow limit their growth and theiaximum amplitude
reaches only half of the value of the linear streaks. Thalgtetieaks obtained are
also compared with those used by Andersson et al. [2] and latether authors
(Hoepffner et al.|[33] and Cossu et al. [21]) to study the $itsttof ZPG bound-
ary layer streaks. Those streaks were also obtained usiogtamnal perturbation,
but with a different target. This corresponds to the optipeturbation imposed
at the leading edge, that maximizes the energy growth atafgeedownstream
locationx = L. This optimal perturbation has been calculated by Lucl@gi [
and Andersson et al./[1] using the parabolized stabilityatigns (PSE) at high
Reynolds number. It is similar to the present perturbationwith a spanwise
wavenumber corresponding to the boundary layer thickneiseacontrol loca-
tion pointx = L. Andersson et al. [2] then used the resulting linear optstralaks
atx = 0.3L with Rg = 91 as boundary conditions for DNS in order to study
the nonlinear development of the streaks and their stalatix = 2L. As seen
on Figurel 4b, these streaks have a smaller amplitude and b smoaller local
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growth rate than in the present case because they have begmeobby a global
optimization with a large distande~ 20h, representative of the effect of leading
edge perturbations on a boundary layer at high Reynolds nui@ipehe contrary,
we have used a local optimization to generate, near thereeti@x = 4h, streaks
with larger growth rates. This is consistent with the gldivaar stability analysis
of Levin and Henningson [35], who found that the initial gasi of the pertur-
bation has a significant impact on the growth of the streaksitzded using PSE.
To further visualize the streaks, contours of constantastkgise perturbation are
plotted on Figurélsa and compared to the linear perturbatitime sectiorX =4,
which is the location of the maximum amplitude of the lineieaks. As seen
on this figure, large low-speed streaks are pushed away fnemvall whereas
high-speed streaks are squeezed near the wall, and thenean-tlisturbance is
quite different from the linear disturbance, which exhskat symmetrical pattern
between low and high speed streaks.

3.4. Breakdown of boundary layer streaks

The boundary layer on the upper wall is perturbed at the Bograection (in-
let of the computational domain) by the optimal perturbati@® described in
the previous paragraph. It corresponds to the following RMBies inside the
boundary layer:|u°Pims = [W°P!;ms ~ 0.02Up. The resulting streaky boundary
layer is destabilized as detailed hereafter. To triggersiteon, an additional ran-
dom vector noise (X,y,z) with a very small amplitude is superimposed on the
optimal perturbation, such that the inlet disturbance cawbtten:

u'(y,z,t) = uCPY(y,z) + u" (x = X0 — Uot, Y, 2) with U"(x,y,2) = 2 (r(x,Y,2))

where & is the projection operator in divergence-free space. Eiglr shows
a typical profile of the spanwise inlet perturbation. In thiei section, the tur-
bulence intensity of the optimal perturbation is equalt®P ~ 0.017g in the
upper boundary layer and is ten times smaller elsewherengUsismaller box
with L = 15h, we study the breakdown of the resulting streaky boundargrla
for different small-amplitude perturbations. At the inlet the additional turbu-
lence intensityT U ranges from 0 (no additional perturbation) t603J, (30% of
TPy,

In this section, the base floWy, is the unperturbed laminar flow and the
instantaneous velocity field. We will consider space-ayedavaluedi(x) of the
perturbatioru = U — Uy, in the upper boundary layer defined as follows:
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Figure 5: a) Comparison of the steady streak structure médaivith the optimal perturbation at

X = 4 from non-linear (top) and linear (bottom) simulation. Time display streamwise velocity
perturbation with contour spacingly. Dashed lines are used for negative values. b) Instanta-
neous spanwise inlet primary perturbatieP* and secondary perturbatiovi aty = 0.9h versus

the spanwise coordinah.
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U(X):\/V%(X)/O /Ouzdzdy (5)

Figure[6 shows the evolution of the streamwise primary distncel (the streaks)
in the upper boundary layer. As seen on this figure, withowdcsdary pertur-
bation, the streaks initially intensify downstream andntldecrease by viscous
dissipation. Using the orthogonal decompositibh (1) ondtsturbanceq, the
evolution of the contributionsl,s and Usg is also plotted on the same figure.
As explained in Buffat and Le Penven [14], in the linear phdmedisturbance
mainly consists of an SQ velocitig, which is characteristic of the linear transient
growth. Alittle farther downstreantlsq deviates fronu due to non-linearities and
an increase in the OS velocitljs is observed. In that region, the OS velocity field
is independent of the spanwise direction and representsthieear interactions
of the streaks on the base flow. Further downstream, the twtribotionstgs
andUsq are of the same order of magnitude, indicating that the aougiof the
nonlinear interactions of the streaks on the base flow bes@®éarge as the am-
plitude of the streaks itself. In this streaky boundary fatfee sum of the laminar
base flonJ, and the OS velocity fieldys represents the spanwise-averaged non-
linear mean flow and the SQ velocity fieligy the streaky disturbance around this
nonlinear mean flow. The profile of this nonlinear mean flowresath on Figure
[7b for different inlet amplitudes of the secondary perttidva Compared to the
laminar profile, the mean flow accelerates the perturbatrothe near-wall region
and slows it down in the outer border of the boundary layeraAsnsequence,
the low speed streaks are pushed away from the wall, as seéee oantour plots
of the streamwise perturbation on Figlie 5. We also obsée@ppearance of a
strong inflection point in these mean profiles, that are ligaanstable according
to Fjortoft’s criterion (Schmid and Henningson [49]).

With random secondary perturbatiofiaf +# 0), streak breakdown is observed
even for small-amplitude perturbation$, as denoted by the oscillations of the
streamwise disturbance observed on Fidurre 6Tfidr= 0.1%, 0.25% and (6%.

In all these cases, the skin-friction coefficient increaggdo the ZPG bound-
ary layer turbulent correlation as seen on Fidure 2aTfdr= 0.1%, indicating

a turbulent transition of the boundary layer. The growthhafse secondary dis-
turbancesu” = U(U") — U(U" = 0) is depicted on FigurEl 6b, where the stream-
wise evolution of its instantaneous spanwise-averagettibationsu’ os andu’sq
are plotted for different inlet perturbations$. As expected from the inflectional
mean profiles, these secondary disturbances are initiaptifed. As for the pri-
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Figure 6: a) Streamwise evolution of the instantaneouswisaraveraged streamwise disturbance
(streaks)i(x,t) in the upper boundary layer obtained for an inlet primantyéationu®Pt with

B =2/d, Res = 357 andTW*P' = 1.7% and different values of the secondary inlet perturbation
Tu = 0.%, 0.1%, 0.25% 0.5%. The dotted lines represent the two contributitgsand Usq of
the orthogonal decompositionl (1) of(i.e. U = U§S+U§q) without secondary inlet perturbations
(TU = 0%). b) Streamwise evolution of the secondary instantasiepanwise-averaged stream-

_ —2 2 —2
wise disturbance’(x,t), decomposed usin@l(1) @ = ugs + Ugq , for different values of the
secondary inlet perturbatioffaf = 0.1%, 0.25% 0.5%.

mary disturbance, the SQ velociq{éq is a streaky disturbance, whereas the OS
velocity us models a nonlinear interaction with the mean flow. After tfiist
growing phase, corresponding to the growth phase of theewyiluiisturbanceuT;S
decreases slightly like the primary disturbance. Aftedsan large increase u_iq

is observed neaX = 5, followed by a similar increase of .. The increase oji’s'q
is characterized by streamwise periodic oscillations witkavenumber identical
to the spanwise wavenumbg@rof the streaks. Then, neXr= 10, the profiles of
Ups andug, present a chaotic behavior, indicating a turbulent tréovsit

The reason for this secondary instability is an inviscicleuechanism caused
by inflection points in the instantaneous velocity profilasthe boundary layer,
the perturbations can appear in the flow either in a spanwise®tric (varicose)
or antisymmetric (sinuous) pattern with respect to the dgohg streak. If the
instability occurs in the wall-normal direction, the sedary instability is a vari-
cose mode, whereas if it appears in the transverse diredtisra sinuous mode.
In order to characterize the observed transition, Figurehtavs the shape of the
secondary disturbance compared to the contour lines ofttbaky primary dis-
turbance. As seen on this figureXat 2, the secondary disturbance has initially a
varicose symmetry, which enhances the inflectional meaiiigrdhen, a sinuous
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Figure 7: a) Contour lines (& u < Up) in the(z y)-plane atX = 2 andX = 4 of the streamwise
velocity inside the upper streaky boundary layer obtairedaf primary perturbatiom®?* with

B =2/5, Res = 357 andTWPP! = 1.7% and without secondary perturbatiofau( = 0). The
isovalues in color represent the instantaneous valueseddbondary disturbance with Ty =
0.5% (—0.17(blue)< u”/Ug < +0.17(red)). b) Instantaneous spanwise averaged profileseof th
streamwise velocity at X = 2 andX = 4 for different secondary perturbations, compared with
the laminar profile (dashed line).

instability occurs, characterized by spanwise oscillaiof the head of the low
speed streaks in the outer border of the boundary layer asas¥e= 4 on Figure
[7.

4. DNSreaults

Starting from an initial laminar flow, the inlet perturbatidescribed in Section
3.3, with TwPPt ~ 0.017U, and an additional random noise withi’ ~ 0.001Uo,
is introduced at the inlet section. The turbulence levelosgal at the entrance
section is substantially smaller than the previous DNS ef2RG boundary layer
as in Wu and Moin([55] Tu~ 6% ) or in Brandt et al. [12] Tu ~ 4.7%), show-
ing the effectiveness of this inlet perturbation. The simtioh first runs during
a domain travel tima. = L/Up in order to establish the mean flow described in
Sectior 2.2. Then, statistical quantities are accumulatedtime during another
domain travel timer.. The velocity fieldu is averaged over time and space in
the spanwise direction to obtain the mean velotityThe reference velocity for
the boundary layer profiles is the external velocity, cha®the maximum mean
velocity in the section.

4.1. Integral properties

The evolution of the mean skin-friction coefficiedf is shown on Figurg|8a
for both walls. On the upper wall, the coefficigdt quickly increases, then de-
creases to settle near the ZPG boundary layer turbulerglatonCs = 0.059Re %2
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Figure 8: Perturbed flow: a) mean skin-friction coeffici€atand b) boundary layer thicknedgh
and shape factdd as a function of the Reynolds nhumbRe, , compared to the laminar solution,
the Blasius solution and turbulent ZPG boundary layer ¢atigan.

The first step is characteristic of the nonlinear growth efslreaks (up t&Rg, =
6.10%), which induces a transient secondary inflectional instgpibllowed by a
viscous decay of the streaks. Betwdrg = 10° and 16 1(°, the large increase
of Ct characterizes the turbulent transition. The first overslod€; as a result
of bypass transition, is also present in ZPG boundary laypaulations (Schlatter
et al. [48]). On the lower wallC¢ follows the laminar correlation, with a slight
increase neaRg = 10° due to the transition of the upper boundary layer. A tur-
bulent transition is observed further downstream betwRgr= 10f and 121C°.
This transition induces an increase of the coefficient orldwer and upper wall,
and both values of; tend towards the fully-developed turbulent channel flow

2
correlationC; = 0.073( 22 ) Re %25 (Dean [23]). On FigurEl8b, the boundary
Umax

layer thicknes of the upper wall exhibits fast growth. It reaches 68% of the
channel width at the location of the transition of the loweubdary layer. On
the lower wall, the boundary layer thickness first follows thminar correlation,
and then abruptly increases after transition. The evailutiothe boundary layer
shape factoH = % is shown on the same figure and is compared to the laminar
valueH = 2.5 and the asymptotic correlation given by Monkewitz et|al] [tbr

a ZPG turbulent boundary layer. As can be seen, the inteeahcteristics of
the turbulent upper boundary layer are close to those of atdRlent boundary
layer up to the transition of the lower boundary layer.
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Figure 9: a) Mean velocity profile in the upper boundary laypethe wall unit and outer unit at
different sectionX (before the transition of the lower boundary layer) comgaoghe logarithmic
law (with k = 0.41) and the asymptotic behavior of [41] for a ZPG boundary laygrMean

velocity profile at the outlet sectiak = 140 compared to the profiles in a turbulent channel flow

at similarRe; = 590 [43]. The results obtained with the two grids are plotiadhe same figure
and the curves coincide.

4.2. Mean velocity profiles

Figure[9(a) depicts the inner-scale and outer-scale mesitggrin the upper
turbulent boundary layer at different sections before #mad transition point.
As can be seen, the profiles are self-similar in the viscobtagar and log-law
region and they follow the self-similar viscous logaritlertaw of the wall. In the
outer region, using the Rotta—Clauser length sfate*U., /Us, the profiles are
also self-similar, but differ significantly from the asyrpt behavior of Monke-
witz et al. [41] due to the favorable pressure gradient.

Figure[9 shows the mean profile in the outlet sectfoa 140 compared to
the DNS results in a developed turbulent channel flow at alairRie, (Moser
et al. [43]). As seen on this figure, the profiles are not veffedint from the
mean velocity profile of a fully-developed turbulent charfit@v, indicating that
the domain lengtlh is of the order of the entrance lendth

4.3. RMS values

The RMS values are obtained from the time-averaged valuesgatthlly-
averaged values in the transverse direction. On Figure @&how the evolution
of the mean turbulent intensifju= /(< U2 > + < V2 > + < w2 >)/3 in three
regions of the channel: the upper boundary layew, ), the lower boundary

layer (Tuow) and in between Tuniq ). These averaged values are defined by the

following:
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Figure 10: Streamwise evolution of the mean turbulent itgrT u,, in the upper and ugy in
the lower boundary layers, afitliyig in between.
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As can be seen on this figure, the turbulent inten3ity,,, grows very rapidly
from a low inlet value of 2% up to a large value of 12%xat 2 and then decreases
to a nearly constant value of 6%. This reflects the fast graftine streaks till
X = 2, followed first by a viscous decay t = 8, then by a destabilization that
leads to transition neat = 10. We also observe a low level (less thak%,) of
the turbulent intensity uinside the lower boundary layer and in between the two
boundary layers before the second transition p@0t< X < 100).

The mean RMS values of the turbulent intensity are summaiizéable[2
before the second transition poinbéat: 100. From these values, we observe that
the turbulent intensity ue,, in the lower boundary starts to increase significantly
nearX = 60, when the turbulence lev&lLy,q in between the two boundary layers
(i.e. the free stream turbulence) reaches about 1%. Fudidwwnstream near
X ~ 100, the transition is characterized by a fast rise of thaulence leveT U,
that reaches the level of turbulen€eyp in the upper boundary layer, as seen on
Figure[10.
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| X | 40 | 60 | 80 | 100 |
Tup [ 0.06 | 0.06 [ 0.06 | 0.06

TUnig | 0.006 | 0.009 | 0.012| 0.019
Tuew | 0.001| 0.003 | 0.007 | 0.032

Table 2: Mean RMS values of the turbulent intensity in défgrsections before the second tran-
sition point atX ~ 100.

wall unit y* . outer unit y/A . wall unit y* . wall unit y*
3 3 3

— upper — <u'>
— lower <v'>

—1==" 0
0 200 400 0.0 02 0.4 0 250 500 0 250 500

Figure 11: a) RMS profiles uz'+ >1/2and < uv; > in the upper turbulent boundary layer in the
wall unit y"and outer uniy/A at different sectionX before the transition of the lower boundary
layer, compared to the ZPG boundary layer profiles at a sifRiga = 2000 of [48] (dotted line). b)
RMS profiles< 12 >%2,< uv; >, <2 >¥2 <w? >1/2in the outlet sectioiX = 140 compared
to the profiles in a turbulent channel flow at a simie = 590 [43] (dotted line).

On Figure[1la, we have plotted the RMS values of the Reynoldssstr

ui >1/2 and < uv, > in the upper turbulent boundary layer in the wall unit
ytand outer unity/A at differentX locations before the second transition point
(X < 100). In the wall unit, the profiles are similar to those in a tugnilZPG
boundary layer, as confirmed by comparison with profiles andas Rey = 2000
from the DNS of Schlatter et al. [48]. In the outer unit, usthg Rotta—Clauser
length scal&\, the profiles are self-similar in the outer region, but diffem the
ZPG boundary layer due to the favorable pressure gradientFiQure 11b, the
Reynolds stresses are plotted in the outlet secos (L40) and compared to the
classical results of Moser et al. [43] for a fully developatbulent channel flow.
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Figure 12: a) Streamwise evolution of the instantaneouswisa-averaged components of the
disturbance velocit§i,s andUsq in the upper boundary layer at the entrance of the domain.

5. Analysis of the bypasstransition and discussion

In this section, the disturbance is defined relative to thamspanwise aver-
aged velocity field depicted in Sectibn 4.2, and the distocbarelocity fields are
decomposed so that= uys+ Usq Using the orthogonal decomposition of Section

B.1.

5.1. First bypass transition

As indicated in Sectiohl4, a turbulent transition is firsteryed on the upper
wall near the inlet, characterized by a fast growth of stestdyaks, that further
experience inflectional secondary instabilities dowrstre The streamwise evo-
lution of the velocity components @fs andusq in the upper boundary layer at the
entrance of the domain is plotted on Figlré 12. As can be skerdisturbance
velocity field contains mainly an SQ streamwise compomggbefore the turbu-
lent transition point neaX ~ 8. The first instability on the upper wall corresponds
to large steady streaks generated from the inlet pertaratiscribed in Section
B.3.
Plots of the instantaneous streamwise velocity in a plamallpato the wall
are shown in Figuré_13a where the streaks and turbulentiticanare clearly
visible. On this figure, the sinuous instability is clearbes neaX ~ 8, whereas
the transitional varicose instability is only apparent ba streamwise planes in
Figure[13b. The classical regular oscillating structuré¢hefstreaks is drawn on
top atX = 1, and corresponds to the linear transient growth phas -A#, the
low speed streaks (in dark on the figure) have a two-lobed rosirlike shape,
enhanced by transient varicose instabilities. This isattaristic of a nonlinear
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Figure 13: Streak instabilities in the upper boundary layéisualization of the instantaneous
streamwise velocity in a plane parallel to the upper wall gth = 0.33 and 0< x/h < 10 a)
and in 3 streamwise planes ¥t= 1,4,9 b). The black color corresponds to low speed streaks
(u < 0.5Up) and the white to high speed velocity £ Up).

24



interaction with the base flow. Further downstream, thesehmuom shapes are
subjected to sinuous instabilities (Figlrd 13Xat 9). They tilt, twist, interact
with the wall and the neighboring structures, and then agvigito complex forms
as they move downstream into the fully turbulent region. .

The transition scenario observed is different from thatjmted by previous
analyses (Andersson et al. [2], Hoepffner et al. [33], Codsal.g21]) on the
stability of steady streaks, because, as explained in @e8iB, the streaks are
different (see Figuriel4b), and the location of their stabdnalysisx = 2L ~ 20h)
(symbol v on Figure[4b) is far downstream from the observed transipioimt
(symbol® on Figure 4b). Furthermore, their streaky mean profil¥ at 20 (see
Figure 13 on page 51 in Andersson et al. [2]) is very diffefeatn the mean
profile in Figure[ Y. Thus, their stability analysis is notengnt for the present
study.

Varicose and mushroom structures have also been considgrBdandt [9]
who studied the instability and transition of an isolated kpeed streak numer-
ically, corresponding to the experiment of Asai et al. [4]. 8udying the vari-
cose and sinuous instability separately, it was found tiavaricose instability is
greater close to the location of perturbations, but its gnowate decreases faster
downstream, whereas the sinuous instability persists Farger time. For a ran-
dom perturbation of the streaks, the two instabilities areompetition, and a first
growth of a varicose instability, that is damped further detveam, followed by
a sinuous instability can thus be expected as the preseualagions shows.

5.2. Second bypass transition

The second transition observed on the lower boundary lay¥r=a 100 re-
sults from the interaction with the upper turbulent bougdayer. It is important
to point out here that our simulation is, to the author’s klealge, the first DNS of
boundary layer transition induced by “real” external tudmee (i.e. a turbulence
generated inside the computational domain). Previous DN$ondary layer
transition induced by free-stream turbulence have use@ sam of synthetic tur-
bulence as the inlet boundary conditions (e.g. Brandt eflél, Purbin and Wu
[25], Wu and Moin [55]).

As in Section 5.1, the streamwise evolution of the velocitgnponents ofips
andUsq in the lower boundary layer is plotted near the transitiompon Figure
[I14. Here, we observe the growth of the SQ streamwise compaggnchar-
acteristic of the formation of streaks in the boundary laydear the transition
point, a fast growth of the streamwise compongjtis observed, indicating that
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Figure 14: Streamwise evolution of the instantaneous sp&raveraged components of the dis-
turbance velocitytlos and Usq in the lower boundary layer near the second transition paint
X =~ 100.

the streaks are unsteady and wavy. Further downstreanuléuatliransition oc-
curs characterized by the fast growth of all the velocity porments oftys and
Usq. To analyze the origin of this transition, on Figlré 15 weéalotted a the
normal OS velocity,s averaged along the normal direction inside the boundary
layer. As can be seen, we observe that large scale osaiagippear in the span-
wise direction before the transition (that startsXadz 100). The scale of these
oscillations is in the order of the boundary layer thicknéss 0.3h — 0.4h, and
corresponds to the transverse wavenunfber2/49, i.e. in the order of magnitude
of the optimal perturbation wavenumber. These oscillatiohvery small ampli-
tude ¢~ 0.4 —0.6%) in the normal velocitys profiles induce 10 times larger
oscillations in the streamwise velocity, which corresptmsireaks, as seen in the
profiles of the SQ streamwise velocity, plotted on Figuré T5a.

The instantaneous wall pressure disturbance averagee spdmwise direc-
tion is shown on Figuré_15b. The high frequency oscillatiohshe pressure
disturbance in the upper boundary layer are characteastiear-wall turbulence.
On the lower wall, before the transition point, only low ftespcy oscillations
are observed. The scale is in the order of the streamwiselation length scale
L1211 ~ 3hof the streamwise velocity in the plage- 0 corresponding to the outer
region of the upper turbulent boundary layer. These osiaiia reflect the large
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Figure 15: Instantaneous disturbance velocity averageajahe normal direction inside the lower
boundary layers at different sections before the transtimint: a) OS normal velocity,s and SQ
longitudinal velocityusg, b) wall pressure disturbance averaged in the spanwisetidine

scale oscillations of the pressure disturbance in the uppaulent boundary layer.
These low frequency oscillations induce fluctuations ingtreamwise velocity
that are apparent in th@g profile before the transition point as seen on Figure
[14. This indicates that the streaks (spanwise oscillatibtise SQ streamwise ve-
locity field usg) are modulated in the streamwise direction by the OS stresenw
velocity field ugs. This mechanism is similar to the formation of non-statigna
streaks initiated by two eigenmodes of the Orr-Sommerfglciéons as described
by Buffat et al. [13].

On Figure 16, we have plotted the instantaneous streamwiseity in the
lower boundary layer near the transition point@t: 100. On this figure, the
formation of low speed streaks (in black) and their sinuogsabilities are clearly
seen in the plane parallel to the wall. The breakdown of tresaks is similar to
that described in Sectidn 5.1. As seen on Fiduie 16b in theepla= 95, low
speed streak appear in the near-wall region of the boundsgey,ldue to the lift-
up mechanism induced by normal velocity oscillations ofyvemall amplitude
but with a scale in the order of the boundary layer thicknédsen, non-linear
transient growth and transient varicose instabilitieshptir@se low speed streaks
away from the wall to form two-lobed mushroom-shaped stmag as seen in
the planeX = 100. Further downstream, these structures are subjeattoss
instabilities as seen in the plaXe= 115.

In the plane parallel to the wall on Figure]16a, a turbulemt $p observed
inside a low speed streak downstream of the fully-turbulbentindary layer. The
development over time of this turbulent spot is shown on Eflii. The spot

27



Figure 16: Streak instabilities in the lower boundary lay¥fsualization of the instantaneous
streamwise velocity in a plane parallel to the lower wall a) gth = 0.15 and 80< X < 120 and

in 3 streamwise planes b) At= 95,100,115. The black color corresponds to low speed streaks
(u < 0.5Up) and the white to high speed velocity £ Up).

originates initially in a low speed streak, represented kaclb furrows on the

figure. The rear and front part of the disturbance is condewith a mean streaks
velocity of~ 0.6Ug and~ 0.9Ug, respectivelu, wherde = 1.2Ug is the outer mean
velocity.

To determine the average spacing between the streaks, isgacovrelation
functionsR,, of streamwise velocity fluctuations are evaluated insidelthver
boundary layer. According to the value of the distance offitis¢ minimum (Fig-
ure[18), the average streak spacing is equal.®h (double the distance of the
first minimum) and corresponds to a streamwise wavenuifiloéose to the wave
number of the optimal strea3= 2/J, whered ~ 0.33h is the mean boundary
layer thickness in that region. On Figlird 18, contour legéR,, are also plotted
in the middle plang = 0, located before the second transition in the outer region
of the upper turbulent boundary layer. As can be seen, thelation function is
highly anisotropic with a significant spatial coherencene streamwise direction.
The spanwise width of the positive correlation region istabo0.4h , which cor-
responds to the streak spacing in the lower boundary layersireamwise length
of the positive correlation region is about,2ndicating the presence of large-
scale spatially coherent structures whose streamwisessaes similar to those of
the wall pressure disturbances in the lower turbulent bagnkhyer (Figuré 15b).
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Figure 17: Snapshots of the downstream evolution of a taertidpot near the second transition
with time intervaldt = 4.5h/Ug. Levels of the instantaneous streamwise veloaifyom black
(u < 0.5Up) to white U > Up) in a plane parallel to the wall a/h = —0.85 with 90< X < 130.

The shape of the correlation function is comparable to thesasured by PIV in
a ZPG turbulent boundary layer (Ganapathisubramani e24]).[ However, the
calculated streamwise extent is much larger than that medguthe wake region
of a ZPG turbulent boundary layer, which extends a distahoaly 0.6 ~ 0.6h.
But, as pointed out by Ganapathisubramani et al. [29], thesareanents oR,
made by Christensen [19] in a turbulent channel flow show tieathannel data
exhibit longer streamwise correlations than in a ZPG twbuboundary layer.

6. Conclusion

To conclude, DNS of the boundary layer bypass transitioh@entrance of
a plane channel has been presented and analyzed. Theitradithe upper
boundary layer is triggered by a perturbation inside thenblawy layer near the
entrance of the channel. In the simulations, the pertwbas imposed at the in-
let section and consists of the optimal perturbatig®!, obtained from the local
linear stability theory, with a small turbulence intensiy®?' ~ 1.7% and an ad-
ditional smaller random vectou', with TU ~ 0.1%. This perturbation leads to
a fast growth of steady streaks, that further break dowmlitggto the turbulent
transition of the upper boundary layer. The transition efltwer boundary layer
is induced by the interaction with the upper boundary layethier downstream.
This kind of simulations is, to the author’s knowledge, thietfDNS of bound-
ary layer bypass transition induced by “real” external tlebce generated in-
side the computational domain. The numerical simulatidrssioh an experiment
typically require billions of modes using spectrally acterapproximations and
have been calculated using a spectrally-accurate codeidSpdctral”, specially
designed to run on massively parallel high performance ctenp (Montagnier
et al. [42]).
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Figure 18: Spanwise correlation functidRg, of the streamwise velocity fluctuations. a) Spanwise
profiles of Ry inside the lower boundary layer at different sections X. bhtour levels oR, in
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to 1.0 with spacing of QL. Zero contours are not shown.
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For the turbulent upper boundary layer, the self similaatit@mic law of the
wall has been recovered. In the outer region, the profilesaks@ self-similar
but differ significantly from the ZPG boundary layer resdtecause of the small
favorable pressure gradient in the channel. Further doeerst, low frequency
fluctuations induced by the turbulent upper boundary lagaegate streaks in the
near-wall region of the lower laminar boundary layer. Theon-linear break-
down of these streaks induces a bypass transition of ther Ioagndary layer.
Afterwards, turbulence occupies the whole channel widthaturbulent channel
flow develops.

To analyze the transition, an orthogonal decompositiorot#rsidal velocity
fields is used on the disturbance flow. The velocity pertiobas expressed as an
L, orthogonal sum of an Orr Sommerfeld velocity field (functadrihe perturba-
tion normal velocity) and a Squire velocity field (functiohtbe perturbation nor-
mal vorticity). Using this orthogonal decomposition, theeaks are characterized
as an SQ velocity field, with a large streamwise compoggtwhich could be
modulated in the streamwise direction by an OS velocity fielttpendent of the
spanwise direction. The SQ velocity field experiences gtmoon-linear growth
that pushes low speed streaks away from the wall and forménoos-shaped
structures that are subject to transient varicose ingiabiin the wall-normal di-
rection. Further downstream, the heads of these low spesakstare subject to
sinuous instabilities in the spanwise direction, follow®da breakdown and a
turbulent transition. This scenario has been confirmed lpated views of the
results that show the formation and breakdown of the streatkieh are provided
on video in Buffat [13]. Recent studies at lower Reynolds nunfbe(Buffat
et al. [16]), corresponding to a smaller channel heightywstiat these varicose
instabilities can become strong enough to induce Kelvifirteltz instabilities at
the top of the low speed streaks and a turbulent transitiobserved without the
development of sinuous instabilities. The transition scenobserved is different
from previous analyses on the bypass transition of steadglst in a ZPG bound-
ary layer (Andersson et al.|[2], Brandt et al.|[10], Cossu ef2dl]). The transi-
tional structures observed are however similar to the nashrshaped structures
obtained by Bernard [5] in his simulations of ZPG transitidnaundary layers.
Beyond these considerations, there may be advantages stigateng parametric
studies for different Reynold3g, and different levels of inlet perturbation. These
and similar considerations will be pursued in further stsdi
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