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Abstract—Underuse of the regulated radio spectrum is being
addressed using a cognitive radio network approach termed
dynamic spectrum access. Primary users have priority over the
regulated radio spectrum. Secondary users may use the residual
air time. We focus on the problem of meeting on a common
channel by a group of secondary users. Under the asymmetric
model, the secondary users have different sets of available
channels. If the sets are not disjoint, they can eventually make
rendezvous. The goal is to make the secondary users rendezvous
on a common channel in a minimum amount of time. The jump-
stay rendezvous algorithm has been created by Lin et al. to solve
this problem. We develop a new analysis for the two-user expected
time to rendezvous in the jump-stay rendezvous algorithm, under
the asymmetric model, that better reflects its performance.

Keywords—Channel selection, cognitive radio network, cogni-
tive wireless network, dynamic spectrum access, jump-stay algo-
rithm, rendezvous.

I. INTRODUCTION

While the non regulated radio spectrum is too crowded, the
regulated radio spectrum is not fully used. It has more potential
than is currently being utilized. This issue is being addressed
using a cognitive radio network approach named dynamic
spectrum access. There are primary users, having priority over
the regulated radio spectrum. Secondary users may use the
residual air time. They can communicate over idle channels of
the regulated radio spectrum as long as they do not create
interference to the primary users. Meeting and establishing
a multipoint network on a common channel by a group of
secondary users is a challenging and intricate question.

We address the problem of selecting a common com-
munication channel, among m possible channels, between
secondary users in a cognitive radio network, where m is
a positive integer. The issue has been addressed either by
using a central controller, a distributed approach with dedicated
common control channel or a distributed blind rendezvous
approach. In this paper, the focus is on the distributed blind
rendezvous approach. Each participant hops over a set of
channels attempting to make rendezvous with other secondary
users. Secondary users may have a common channel set (the
symmetric model) or different, but non disjoint channel sets
(the asymmetric model).

There are two conditions for a successful rendezvous: a
successful protocol handshake and being on the same channel
during a time slot. These two aspects can be considered
separately. Probability-wise, they can be modelled individually
and independently. The probability of a successful rendezvous
is the product of the probability of a successful protocol
handshake and probability of being on the same channel during
a time slot. In this paper, the focus is on the latter aspect.

Lin et al. have introduced the jump-stay rendezvous al-
gorithm that establishes rendezvous on a common channel
between an arbitrary number of secondary users [1]–[3].
Rendezvous is achieved when all users meet on a common
channel, if such a channel exists. The goal is to make the users
rendezvous on a common channel in a minimum number of
time slots. The algorithm of Lin et al. makes abstraction of any
handshake communication protocol actually needed to make
rendezvous.

We revisit the work of Lin et al. Since it does better
than the previous version, we solely refer to the enhanced
jump-stay rendezvous algorithm [1]. For the sake of simplicity,
we omit the enhanced qualifier and refer to it as the jump-
stay rendezvous algorithm. While the original logic remains
the same, we develop a new analysis for the expected time
to rendezvous (TTR) in the jump-stay rendezvous algorithm
that better reflects its performance. The new analysis provides
significantly lower numbers. They are more consistent with the
simulation results of Lin et al. and ours.

In Section II, we review background and related work.
The new analysis of the jump-stay rendezvous algorithm,
under the asymmetric model, is developed in Section III.
Simulation results are presented in Section IV. We conclude
with Section V.

II. BACKGROUND AND RELATED WORK

The problem of finding and selecting a common channel,
by secondary users, can be approached using either a central
controller, a dedicated common control channel or a distributed
blind rendezvous technique. A blind rendezvous technique may
use channel hopping. Each secondary user hops over a set of
channels looking to make rendezvous with a peer. Participating
users may have a common channel set, under the symmetric



model, or a different, but non disjoint channel set, under the
asymmetric model.

A. The Jump-Stay Rendezvous Algorithm

Our work leverages the work of Lin et al. They authored the
enhanced jump-stay rendezvous algorithm [1], hereafter called
the jump-stay rendezvous algorithm. It works for multiple
users with guaranteed rendezvous. We illustrate the principle
with two users. Time is divided in slots of equal length. A
rendezvous takes place within one time slot. It is assumed
that the secondary users are synchronous. Each secondary user
implements a cyclic behavior. It consists of four phases of the
same length, in time slots. The first three phases are identical.
The secondary user hops from channel to channel. All channels
are visited. Each hop lasts for the duration of one time slot.
During the last phase, the secondary user stays on the same
channel for the whole phase duration.

Channel hopping is performed according to a pattern de-
termined by the following procedure. Let m be the number of
channels (a positive integer). Channel indices are 0, . . . ,m−1.
Let p be the smallest prime number greater than m. For
instance, if there are four channels, then p is five. Hopping
is performed in steps of r units, with r ∈ {1, . . . ,m} and
starting index i ∈ {0, . . . , p − 1}. Each phase consists of p
time slots. In the first phase, hopping is performed for p time
slots. The same thing is done in the second and third phases.
During the fourth phase, the secondary user stays on channel
r for p time slots. The total length of a cycle, called a round,
is therefore 4p time slots. Let us index the time slots with
variable t = 0, 1, 2, . . . , 4p− 1. As a function of p, r, i and t,
a number pattern is generated according to

j = (i+ tr) mod p.

The sequence of generated pattern numbers is such that any
window of length p time slots is a permutation of the numbers
0, . . . , p − 1. The indices of the corresponding channels are
produced as

c = j mod m.

Every channel is visited at least once during any interval of p
time slots.

Two example jump-stay rendezvous patterns follow:

0 1 2 3 0 0 1 2 3 0 0 1 2 3 0 1 1 1 1 1
0 2 0 1 3 0 2 0 1 3 0 2 0 1 3 2 2 2 2 2

In both examples, m is equal to four and p is equal to five. Each
line represents a cyclic behavior. Each number corresponds to
a channel visited during a time slot. Each phase consists of
five time slots. The channels of the three hopping phases are
listed first. The constant channel of the stay phase follows. In
the first example, r is equal to one. It is equal to two in the
second example. The start index (i) is zero in both examples.

The initial value of the step increment r is selected at
random. The initial value of the start index i is also selected
at random. It is incremented to the successor value, modulo p,
after each round. Given a sequence generated with r = r1 and
another sequence generated with r = r2, with r1 #= r2, then
any jump pattern window of p time slots of the first sequence
has a common channel time slot with an overlapping jump

pattern window of p time slots of the second sequence [1].
The performance of the algorithm is evaluated in reference
to a metric termed the Time-To-Rendezvous (TTR). From the
moment both users are running, it is the number of time slots
required to achieve rendezvous. Under the two-user symmetric
model, the expected TTR of the jump-stay rendezvous algo-
rithm is lower than or equal to 3p

2 + 3 [1]. Under the two-
user symmetric model, the maximum TTR of the jump-stay
rendezvous algorithm is 4p [1].1 An algorithm with a finite
maximum TTR is said to be guaranteed rendezvous.

Lin et al. address the followings cases:

1) Two symmetric users: Both users have a common set
of available channels (as in the precedent discussion).

2) Two asymmetric users: The users have different sets
of available channels. Rendezvous is possible if the
sets are not disjoint. While hopping, if a channel de-
termined by the algorithm happens to be unavailable,
then an available channel is selected for the hop.

3) Multiple-users multiple-hops (asymmetric or sym-
metric): Pair-wise rendezvous is repeatedly applied
to make global rendezvous between multiple users.

When two users succeed to rendezvous, they exchange their
parameters (r1, i1, t1) and (r2, i2, t2). An order on the triples
is defined. We have (r1, i1, t1) < (r2, i2, t2) if r1 < r2, or
r1 = r2 and i1 < i2, or r1 = r2 and i1 = i2 and t1 < t2. The
largest parameter triple is adopted by both users. In the sequel,
the two users hop the same way. In the multiple-user case,
this is done repeatedly, pairwise, until all secondary users have
adopted the largest parameter triple. In a companion paper [4],
we have improved the analysis of the jump-stay rendezvous
algorithm under the symmetric model. Hereafter, we develop
an analysis for the asymmetric model.

Corollary 1: Let g be the number of channels common to
two users, with 1 < g ≤ m. Under the asymmetric model, the
jump-stay rendezvous algorithm achieves two-user rendezvous
in an expected number of rounds lower than or equal to

R =
g

m2
· 1 +

(
1− g

m2

)
· (p+ 1− g).

Proof: The proof is structured into two cases, according to
whether or not the two users select an equal step increment (r).
Let r1 be the step increment of the first user and r2 be the one
of the second user. When r1 is equal to r2, their step increment
corresponds to a common channel index. The two users have
g common channels among the m channels. They select the
same channel with probability g

m2 . According to Theorem 1
in [1], the users make rendezvous in one round (left term of
the sum). The two users select different step increments with
probability 1 − g

m2 . When r1 and r2 are different, the step
increments may or may not correspond to common a channel.
According to Theorem 3 in [1], the users make rendezvous in
a maximum of p+ 1− g rounds (right term of the sum).

B. Related Work

Related work includes the random channel, orthogonal-
sequence-based and modular clock algorithms of Theis et

1Note that the original non enhanced jump-stay rendezvous algorithm has
a slightly better maximum TTR under the symmetric model, i.e., 3p, and a
slightly worst expected TTR, i.e., 5p

3 + 3.



al. [5], [6]. The random channel algorithm visits all channels
in a random order. For each time slot, a channel is picked
among the m channels with uniform probability. Under the
symmetric model, the expected TTR is m time slots. Under
the asymmetric model, the expected TTR is m2/g. In both
models, rendezvous is not guaranteed.

0 0 1 2 1 0 1 2 2 0 1 2

0 0 1 2 1 0 1 2 2 0 1 2

Fig. 1. Orthogonal-sequence-based channel hopping.

With the orthogonal-sequence-based algorithm, channels
are visited according to the same pattern by all nodes. By
construction, two hopping users are eventually on the same
channel. Rendezvous is guaranteed. Let s0, s1, . . . , sm−1 be a
permutation of the m channels, the hopping pattern is

s0, s0, s1, . . . , sm−1, s1, s0, s1, . . . , sm−1 . . . sm−1, s0, s1, . . . , sm−1.

Two hopping users are illustrated in Figure 1. In that example,
m is three. The nodes make rendezvous in the third time slot,
from the start of the second user. Rendezvous is guaranteed
within m(m+ 1) time slots.

The modular clock algorithm is analogous to the jump-stay
rendezvous algorithm, but the stay pattern is not performed.
Two-node rendezvous is guaranteed when they hop using
different step increments, i.e., different values for r. Because
of the absence of the stay pattern, rendezvous never occurs
when they start hopping on different channels with identical
step increments. To deal with this case, when a node fails to
rendezvous for 2p time slots, it switches to a different step
increment.

Shin et al. have proposed the channel rendezvous sequence
algorithm [7]. Rendezvous is guaranteed to take place. Blind
rendezvous approaches can be classified into two different
groups according to whether the secondary users are asyn-
chronous or synchronous. The asynchronous user ring-walk
algorithm has been proposed by Lin et al. [8], [9]. Preference
is given to channels with low interference to primary users.
Rendezvous is not guaranteed to take place. The orthogo-
nal sequence and modular clock algorithms do not require
synchronization [5], [6]. Asynchronous user algorithms may
also work with synchronous users, a special case. Algorithms
designed specially for synchronous users include the jump-stay
rendezvous algorithm [1]–[3]. Bahl et al. proposed an approach
for WiFi/802.11 networks [10]. Rendezvous is guaranteed to
take place under the symmetric model. Krishnamurthy et al.
proposed a two-phase algorithm [11]. The first phase is for
neighbor discovery. It is conducted on common local channels.
In the second phase, a global common channel is determined
among the participating users. Bian et al. use a quorum princi-
ple [12]. They also address the asynchronous case [13], [14].
Rendezvous is guaranteed. They have a solution for a two-
channel case. Yang et al. have proposed an algorithm based on
the k-shift-invariant concept that guarantees rendezvous [15].
Evaluations of the modular clock and random algorithms have
been conducted by Robertson et al. using the GNU radio
framework [16].

III. NEW ANALYSIS UNDER THE ASYMMETRIC MODEL

We derive a new analysis for the expected TTR of the
jump-stay rendezvous algorithm that better reflects its per-
formance, for the two-user asymmetric model. Our analysis
improves on the results of Lin et al. [1]. The original algorithm
remains the same. As a prelude to the analysis of the jump-
stay rendezvous algorithm under the asymmetric model, we
consider and study a problem that we call k failures in n
trials.

A. The Problem of k failures in n trials

Let us consider an array of n trials, labelled 1 to n. Exactly
k of them are faulty. The faults are placed in the array indepen-
dently according to the uniform probability distribution. Let X
be the random variable that counts the number of trials until
success. Clearly, X can only assume the values 1 to k + 1.
At least one trial is required. A maximum of k consecutive
failures are possible before a success. We compute Pr[X = i],
for i = 1, . . . , k + 1.

Lemma 1: The probability mass function of random vari-
able X , i.e., the probability of success on the i-th trial, is given
by the following equation

Pr[X = i] =

( k
i−1

)
(n
i

) · n− k

i
. (1)

Proof: Let i be any integer lower than or equal to k.
Observe that the first i trials 1, 2, . . . , i are faulty if and only if
there are exactly k−i faults among the trials i+1, i+2, . . . , n.
It follows that

Pr[X > i] = Pr[trials 1..i are faulty] =

(n−i
k−i

)
(n
k

) . (2)

It follows that

Pr[X = i] = Pr[X > i− 1]− Pr[X > i]

=

(n−i+1
k−i+1

)
(n
k

) −
(n−i
k−i

)
(n
k

)

=

(n−i
k−i

)
(n
k

) · n− k

k − i+ 1

=

( k
i−1

)
(n
k

) · n− k

i
. (3)

This proves the lemma.

In the following theorem, we compute the expected number
of trials until the trial at which the first success occurs.

Theorem 1: The expected value of random variable X , i.e.,
the expected number of trials until the trial at which the first
success occurs, is given by the formula

E[X] =
n+ 1

n+ 1− k
. (4)



Proof: Using Identity (1), we conclude that

E[X] =
k+1∑

i=1

i · Pr[X = i]

= (n− k)
k+1∑

i=1

( k
i−1

)
(n
i

) . (5)

Next we use the Identity (5) and a technique described by
Graham et al. [17] [Problem 1, page 173] for computing a sum
of quotients of binomial coefficients.

First of all observe that in Identity (5) we can reduce the
dependency on i in the denominator of the fraction occurring in
the summand by using a simple transformation of the binomial
coefficients. Namely, Identity (5) for the expectation can be
transformed as follows.

E[X] = (n− k)
k+1∑

i=1

( k
i−1

)
(n
i

)

= (n− k)
k+1∑

i=1

(k
i

)
(n
i

) · i

k − i+ 1

= (n− k)
k+1∑

i=1

(n−i
k−i

)
(n
k

) · i

k − i+ 1

=
n− k(n

k

)
k+1∑

i=1

(
n− i

k − i

)
· i

k − i+ 1

=
1(n
k

)
k+1∑

i=1

(
n− i

k + 1− i

)
· i. (6)

Observe that Identity (6) is sufficient to conclude the proof
of the theorem, if we could prove the following claim.

a) Claim.: The identity
k+1∑

i=1

(
n− i

k + 1− i

)
· i =

(
n+ 1

k

)
(7)

is valid.
b) Proof of Identity (7).: First of all, observe the

validity of the identity
(

n− i

k + 1− i

)
· (n+ 1− i) =

(
n+ 1− i

n− k

)
· (n− k), (8)

which after multiplying out and collecting terms can be used
to derive the identity
(

n− i

k + 1− i

)
·i =

(
n− i

k + 1− i

)
·(n+1)−

(
n+ 1− i

n− k

)
·(n−k).

(9)
If we replace the summand in Identity (7) with the formula
derived in Identity (9) we see that
k+1∑

i=1

(
n− i

k + 1− i

)
· i =

(n+ 1) ·
k+1∑

i=1

(
n− i

k + 1− i

)
− (n− k) ·

k+1∑

i=1

(
n+ 1− i

n− k

)
.

(10)

Next we use the well-known identity
∑

k≤m

(
n−m+ k

k

)
=

(
n+ 1

m

)
, (11)

which can be found in [17] [page 173] so as to replace the
two sums of binomial coefficients in the righthand side of
Identity (10) with simpler binomial coefficients. Indeed, using
elementary calculations we derive the following identity
k+1∑

i=1

(
n− i

k + 1− i

)
· i = (n+1) ·

(
n+ 1

k + 1

)
− (n−k) ·

(
n+ 2

k + 1

)
.

(12)
Finally, the righthand side of Identity (12) is trivially shown
to satisfy

(n+ 1) ·
(
n+ 1

k + 1

)
− (n− k) ·

(
n+ 2

k + 1

)
=

(
n+ 1

k

)
,

which completes the proof of the claim made in Identity (7).
Because, (n+1

k

)
(n
k

) =
n+ 1

n+ 1− k

the proof of the theorem is complete.

We investigate the concentration of the random variable X .
Using Identity (2), we see that

Pr[X > i] =

(n−i
k−i

)
(n
k

)

=
k(k − 1) · · · (k − i+ 1)

n(n− 1) · · · (n− i+ 1)

≤
(
k − i+ 1

n− i+ 1

)i

, (13)

where the last inequality holds since k−j+1
n−j+1 is monotone

increasing in j. Also, in view of Identity (4), we have

E[X] =
n+ 1

n+ 1− k
=

1

1− k
n+1

. (14)

Notice that the previously discussed model resembles the
model of independent Bernoulli trials. Assume that a trial fails
randomly and independently with probability q, for some 0 <
q < 1. Let X be a random variable that counts the number
of trials until the trial at which the first success occurs. It is
well-known that

Pr[X > t] = qt (15)
Pr[X = t] = qt−1(1− q). (16)

Moreover,

E[X] =
nqn+1 − (n+ 1)qn + 1

1− q
=

1− qn

1− q
− nqn,

and therefore

E[X]→ 1

1− q
, as n→∞. (17)

From this, one can see the similarity of Identities (13) and (14)
with Identities (15) and (17), respectively.



B. Expected Number of Rounds Under the Asymmetric Model

Corollary 2: Let g be the number of channels common to
two users, with 1 < g ≤ m. Under the two-user asymmetric
model, the expected number of rounds R required to make
two-user rendezvous with the jump-stay rendezvous algorithm
is

R =
g

m2
· 1 +

(
1− g

m2

)
· p+ 1

1 + g
.

Proof: If r1 and r2 are equal, then one round is required
(Theorem 3 in [1]). This case probability is g

m2 . If r1 and
r2 are different, then there is a possibility of p − g failures
in p trials, or rounds. This case probability is 1 − g

m2 . This
can be seen as an instance of the problem of k failures among
n trials (Subsection III-A), placed independently according to
the uniform probability distribution, where n is equal to p and
k is equal to p − g. According to Theorem 1, the expected
value of p trials with p− g failures is

n+ 1

n+ 1− k
=

p+ 1

p+ 1− p+ g
=

p+ 1

1 + g
.

Theorem 2: Under the two-user asymmetric model, the
expected TTR of the jump-stay rendezvous algorithm is lower
than or equal to R · 4p, with R as defined in Corollary 2.

Proof: It follows from Corollary 2 and the fact that a
round is 4p time slots.

For the two-user asymmetric case, note that the expected TTR
derived in Corollary 2 is lower than or equal to the one derived
in Lin et al. [1], i.e., 4p(p+1−g)− [4pg(p−g)+g/2]/(m2),
see the plots in the next section.

IV. SIMULATIONS

Simulations were conducted using the OMNeT++ frame-
work [18]. Under the two-user symmetric model, we evaluate
the performance of the jump-stay rendezvous algorithm. Re-
sults are compared with the analysis of Section III. Each sim-
ulation consists of 10 to 100-channel scenarios. Two-user and
multiple-user rendezvous scenarios are included. The TTRs are
measured using 500 runs and 95% confidence intervals.

Figure 2 plots the expected TTR according to the equation
of Corollary 1 for two-user rendezvous in 10 to 100-channel
scenarios. 10% to 90% of the available channels are common
to both users. Figure 3 plots the expected TTR under the same
conditions, but according to the equation of Theorem 2.

Figure 4 depicts the jump-stay rendezvous algorithm sim-
ulation results, under the asymmetric model for two, 10 and
20-user scenarios. Comparing with Figure 2, we can see that
the expected TTR of Lin et al. for the asymmetric case
is highly over estimated. The 95% confidence intervals of
the OMNeT++ simulation results, especially in the two-user
scenarios, show the low stability of the jump-stay rendezvous
algorithm in the asymmetric case when the number of common
channels decreases.
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Fig. 2. Expected TTR for asymmetric two-user rendezvous in 10 to 100-
channel scenarios according to Corollary 1.
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Fig. 3. Expected TTR for asymmetric two-user rendezvous in 10 to 100-
channel scenarios according to the analytic model of Theorem 2.

V. CONCLUSION

We developed a new analysis for the expected TTR of
the jump-stay rendezvous algorithm of Lin et al. [1], under
the asymmetric two-user model. Their original algorithm is
unchanged. The new analysis is more consistent with the
simulation results, the ones of Lin et al. and ours.
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(a) Two users.
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(b) 10 users.

 0

 100

 200

 300

 400

 500

 600

 700

 800

m=10
p=11

m=20
p=23

m=30
p=31

m=40
p=41

m=50
p=53

m=60
p=61

m=70
p=71

m=80
p=83

m=90
p=97

m=100
p=101

Ti
m

e-
To

-R
en

de
zv

ou
s 

(ti
m

e 
sl

ot
s)

g=10% of m
g=20% of m
g=30% of m
g=40% of m
g=50% of m
g=60% of m
g=70% of m
g=80% of m
g=90% of m

(c) 20 users.

Fig. 4. Average TTR for asymmetric two, 10 and 20 users executing the
jump-stay rendezvous algorithm in 10 to 100-channel scenarios obtained with
the OMNeT++ simulations.
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