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Introduction

The cognitive radio network approach aims at a more intense use of the radio spectrum. Indeed, segments of radio spectrum allocated to communications services are often underused. Dynamic spectrum access has been proposed to address this issue. For instance two classes of users, primary and secondary, may be defined and have simultaneous access to a shared segment of radio spectrum. Priority is granted to the primary users. They may access and use their allocated radio spectrum segment anytime. Secondary users may be active and use the residual air time left when primary users are not active.

We assume that the radio spectrum segment is channelized. Secondary users can communicate over idle channels of the radio spectrum segment as long as they do not create interference to the primary users. Primary users may jump in anytime. Secondary users know what the channels are, but they do not know which ones among them are available. For a group of secondary users, dynamically finding idle channels and making rendezvous on a common channel, available to all, are challenging issues.

Assuming a number of possible channels, how can a group of secondary users make rendezvous on a communication channel? The problem can be addressed using a central controller, a distributed approach with a dedicated common control channel or a distributed blind rendezvous approach. We focus on the latter. Secondary users hop over a set of channels attempting to make rendezvous. Secondary users may have a common channel set (the symmetric model) or different, but non disjoint, channel sets (the asymmetric model).

Time is divided into equal length intervals called time slots. There are two conditions for a successful rendezvous: being on the same channel during a time slot and a successful protocol handshake. These two conditions can be modeled individually and independently. The probability of a successful rendezvous is the product of the probability of being on the same channel during a time slot and a successful protocol handshake. In this paper, the focus is on achieving the condition being on the same channel during a time slot.

We are interested in minimizing the time required by two secondary users to make rendezvous. To achieve the condition being on the same channel during a time slot, we consider the modular clock rendezvous algorithm [START_REF] Theis | Rendezvous for cognitive radios[END_REF]. It inspired the authors of the jump-stay rendezvous algorithm [START_REF] Lin | Jump-stay based channel-hopping algorithm with guaranteed rendezvous for cognitive radio networks[END_REF][START_REF] Liu | Jump-stay rendezvous algorithm for cognitive radio networks[END_REF][START_REF] Lin | Enhanced jump-stay rendezvous algorithm for cognitive radio networks[END_REF], augmenting modular clock with a stay-on-one-channel pattern. This addition guarantees rendezvous in one round, in the symmetric case. We make the following observation. In these algorithms, channel hopping is done according to a randomized step increment. As the number of channels increases, the probability that two different users generate different step increments grows, a requirement to make rendezvous happen during hopping. The significance of the stay-on-one-channel pattern in the jump-stay rendezvous algorithm drops.

Let m denote the number of channels (a positive integer). Let p be the smallest prime number greater than m. The modular clock rendezvous algorithm proceeds in rounds consisting of two hopping phases of p time slots each. It generates blocks of p channels in accordance with the jump-stay rendezvous algorithm (stay-on-one-channel pattern omitted). After each round, a new block of p channels is generated. We revisit the performance analysis of the modular clock algorithm. The expected time-to-rendezvous (TTR) of the random and jump-stay algorithms are m and p time slots, respectively. Theis et al.'s analysis of the modular clock algorithm concludes a maximum expected TTR slightly larger than 2p time slots [START_REF] Theis | Rendezvous for cognitive radios[END_REF]. Our analysis shows that the expected TTR of the modular clock algorithm is no more than 3p/4 time slots.

In Section 2, we review related work. The modular clock rendezvous algorithm used for our analysis is described in Section 3. The estimation of the expected TTR is done in Section 4. Simulation results are presented in Section 5. We conclude with Section 6.

The performance of the channel hopping algorithms is evaluated using the TTR metric. In the two users case, from the moment both users are running, it is the number of time slots required to achieve rendezvous. An algorithm with a finite maximum TTR is said to be guaranteed rendezvous.

Related works include the random channel and orthogonal-sequence-based algorithms of Theis et al. [START_REF] Theis | Rendezvous for cognitive radios[END_REF][START_REF] Dasilva | Sequence-based rendezvous for dynamic spectrum access[END_REF]. The random channel algorithm visits all channels in a random order. For each time slot, a channel is selected among the m channels with uniform probability. The user is tuned to that channel for the whole time slot. Under the symmetric model, the expected TTR is m time slots. Under the asymmetric model, the expected TTR is m 2 /g time slots. In both models, rendezvous is not guaranteed. With the orthogonal-sequence-based algorithm, channels are visited according to the same pattern by all nodes. By construction, two hopping users are eventually on the same channel. Rendezvous is guaranteed. Let s 0 , s 1 , . . . , s m-1 be a permutation of the m channels, the hopping pattern is s 0 , s 0 , s 1 , . . . , s m-1 , s 1 , s 0 , s 1 , . . . , s m-1 . . . s m-1 , s 0 , s 1 , . . . , s m-1 .
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Two hopping users are illustrated in Figure 1. In that example, m is three. The nodes make rendezvous in the third time slot, from the start of the second user. Rendezvous is guaranteed within m(m + 1) time slots.

Shin et al. have proposed the channel rendezvous sequence algorithm [START_REF] Shin | A channel rendezvous scheme for cognitive radio networks[END_REF]. Rendezvous is guaranteed to take place. The asynchronous user ring-walk algorithm has been proposed by Lin et al. [START_REF] Lin | Ring-walk rendezvous algorithms for cognitive radio networks[END_REF][START_REF] Liu | Ring-walk based channel-hopping algorithms with guaranteed rendezvous for cognitive radio networks[END_REF]. Preference is given to channels with low interference to primary users. Rendezvous is not guaranteed to take place.

Bahl et al. proposed an approach for WiFi/802.11 networks [START_REF] Bahl | SSCH: slotted seeded channel hopping for capacity improvement in IEEE 802.11 ad-hoc wireless networks[END_REF]. Rendezvous is guaranteed to take place under the symmetric model. Krishnamurthy et al. proposed a two-phase algorithm [START_REF] Krishnamurthy | Time-efficient distributed layer-2 autoconfiguration for cognitive radio networks[END_REF]. The first phase is for neighbor discovery. It is conducted on common local channels. In the second phase, a global common channel is determined among the participating users. Bian et al. use a quorum principle [START_REF] Bian | A quorum-based framework for establishing control channels in dynamic spectrum access networks[END_REF][START_REF] Bian | Asynchronous channel hopping for establishing rendezvous in cognitive radio networks[END_REF][START_REF] Bian | Maximizing rendezvous diversity in rendezvous protocols for decentralized cognitive radio networks[END_REF]. Rendezvous is guaranteed. They have a solution for a two-channel case. Yang et al. have proposed an algorithm based on the k-shiftinvariant concept that guarantees rendezvous [START_REF] Yang | Deterministic rendezvous scheme in multichannel access networks[END_REF].

Lin et al. authored the enhanced jump-stay rendezvous algorithm [START_REF] Lin | Jump-stay based channel-hopping algorithm with guaranteed rendezvous for cognitive radio networks[END_REF][START_REF] Liu | Jump-stay rendezvous algorithm for cognitive radio networks[END_REF][START_REF] Lin | Enhanced jump-stay rendezvous algorithm for cognitive radio networks[END_REF], hereafter called the jump-stay rendezvous algorithm. It is designed for multiple synchronous users with guaranteed rendezvous. We illustrate the principle with two users. Each secondary user implements a cyclic behavior consisting of four equal length phases. The first three are identical. The secondary user hops from channel-to-channel. All channels are visited. Each hop lasts for the duration of one time slot. During the last phase, the secondary user stays on the same channel for the whole duration.

Channel hopping is performed according to a pattern determined by the following procedure. Let p be the smallest prime number greater than m (the number of channels). For instance, if there are four channels, then p is five. Hopping is performed in steps of r units, with r ∈ {1, . . . , m}, and starting index i ∈ {0, . . . , p -1}. Each phase consists of p time slots. In the first three phases, hopping is performed for p time slots. During the fourth phase, the secondary user stays on channel r for p time slots. The total length of a cycle, called a round, is therefore 4p time slots. Let us index the time slots with variable t = 0, 1, 2, . . . , 4p -1. As a function of p, r, i and t; a channel number pattern is generated according to the formulae

j = (i + tr) mod p for t = 0, 1, 2, . . . , 3p -1, (1) 
j = r for t = 3p, 3p + 1, . . . , 4p -1. (2) 
In the hopping phases, defined by Equation 1, the sequence of generated channel numbers is such that any window of length p time slots is a permutation of the numbers 0, . . . , p -1. Channel indices range from zero to m -1. The indices of the corresponding channels are obtained as c = j mod m. Every channel is visited at least once during any interval of p time slots. Two example jump-stay rendezvous patterns are shown in Figure 2. Let us say, the upper sequence is performed by User 1 and the lower one by User 2. In both examples, m is equal to four and p is equal to five. Each line represents a cyclic behavior. Each number corresponds to a channel visited during a time slot. Each phase consists of five time slots. The channels of the three hopping phases are listed first. The constant channel of the stay phase follows. In the first example, r is equal to one. It is equal to two in the second example. The start index (i) is zero in both examples. The users make rendezvous when they are on a common channel number during the same time slot, which occurs in the first time slot in the example of Figure 2. The TTR is one. Note that in this example, users are round synchronized. Figure 3 shows another example where the sequences 0 1 2 3 0 0 1 2 3 0 0 1 2 3 0 1 1 1 1 1 0 2 0 1 3 0 2 0 1 3 0 2 0 1 3 2 2 2 2 2 0 1 2 3 0 0 1 2 3 0 0 1 2 3 0 1 1 1 1 are the same as in Figure 2, but users are not round synchronized. With respect to User 1, User 2 starts in the fourth time slot. They make rendezvous in the third time slot time from the start of User 2. The TTR is three.
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The initial values of the step increment r and start index i are selected at random. The index is incremented to the successor value, modulo p, after each round. Given a sequence generated with r = r 1 and another sequence generated with r = r 2 , with r 1 = r 2 , then any jump pattern window of p time slots of the first sequence has a common channel time slot with an overlapping jump pattern window of p time slots of the second sequence [START_REF] Lin | Enhanced jump-stay rendezvous algorithm for cognitive radio networks[END_REF].

Lin et al. address the followings cases: two symmetric users, two asymmetric users and multiple-users. In companion papers, we have improved the analysis of the jump-stay rendezvous algorithm under the symmetric model [START_REF] Barbeau | A new analytic model for the cognitive radio jump-stay algorithm[END_REF] and developed a new analysis for the asymmetric model in [START_REF] Barbeau | A new analysis of the cognitive radio jump-stay algorithm under the asymmetric model[END_REF]. Under the two-user symmetric model, the expected TTR of the jump-stay rendezvous algorithm is equal to p time slots [START_REF] Barbeau | A new analytic model for the cognitive radio jump-stay algorithm[END_REF]. Under the two-user asymmetric model, assuming that g is the number of common channels (less than or equal to m), the expected TTR of the jump-stay rendezvous algorithm is [START_REF] Barbeau | A new analysis of the cognitive radio jump-stay algorithm under the asymmetric model[END_REF] p + 1 1 + g time slots.

(

The modular clock algorithm has been originally proposed by Theis et al. [START_REF] Theis | Rendezvous for cognitive radios[END_REF]. It is based on ideas initially introduced by DaSilva and Guerreiro [START_REF] Dasilva | Sequence-based rendezvous for dynamic spectrum access[END_REF]. It is analogous to the jump-stay rendezvous algorithm, but the stay pattern is not performed. Two-node rendezvous is guaranteed when they hop using different step increments, i.e., different values for r. Because of the absence of the stay pattern, rendezvous does not occur when they start hopping on different channels with identical step increments. When a node fails to rendezvous for 2p time slots, it switches to a different step increment. In the modular clock algorithm, described by Theis et al. [START_REF] Theis | Rendezvous for cognitive radios[END_REF], the step increment r is in {0, . . . , p -1}. In the jump-stay rendezvous algorithm it is in {1, . . . , m}. In both cases, the generated sequences of p channels share the same aforementioned mathematical properties. Practical evaluations of the modular clock and random algorithms have been conducted by Robertson et al. using the GNU radio framework [START_REF] Robertson | Experimental comparison of blind rendezvous algorithms for tactical networks[END_REF].

The Modular Clock Algorithm

The modular clock rendezvous algorithm proceeds in rounds. Each round consists of two phases, of p time slots each. In the sequel, we use the channel number pattern formula of the jump-stay rendezvous algorithm, i.e., Equation 1. It is mathematically equivalent to the formula used for the original presentation of the modular clock algorithm. In other words, every user generates blocks of p channels, following the jump-stay algorithm, but the stay pattern is omitted. Each round consists of two times p jumps (a block of p channels). After each round, each user randomly generates a new starting index i and step length r. 0 1 2 3 0 0 1 2 3 0 0 1 2 3 0 1 1 1 1 1 0 2 0 1 3 0 2 0 1 3 0 2 0 1 3 2 2 2 2 2 0 1 2 3 0 0 1 2 3 0 0 1 2 3 0 1 1 1 1 1 0 2 0 1 3 0 2 0 1 3 0 2 0 1 3 2 2 2 2 2 0 1 2 3 0 0 1 2 3 0 0 2 0 1 3 0 2 0 1 3 0 2 0 1 3 0 2 0 1 3 An example is shown in Figure 4. The upper band represents the sequence of channels visited by User 1, the lower band the ones scanned by User 2. The sequences are as in Figures 2 and3. The users are not round synchronized. In this example, User 2 starts after User 1 has started. Two rounds for User 1 are shown and one round for User 2. The first round of User 2 overlaps the first and second rounds of User 1. User 1 uses different step increments (r) for each round. The TTR is one.

The following can be observed. In the jump-stay rendezvous algorithm, for each round the probability that two users generate different step increments (their r) is proportional to the number of channels, i.e., m. The larger m is, the more likely that two users pick different step increments. As a consequence, the usage of the stay pattern becomes less significant in the performance of the algorithm. This is confirmed by the upcoming analysis and simulation results.

Estimation of the Expected TTR

We assume that there are two users: User 1 and User 2. They respectively use step increments r 1 and r 2 . Without loss of generality, we assume that User 2 starts when or after User 1 has started. A round is made of two modular clock sequences performed by User 2. We start counting the TTR from the time slot when User 2 starts. We first state the main result this work.

Theorem 1. The expected TTR of the modular clock rendezvous algorithm is at most 3p 4 time slots. Proof. In the upcoming Lemma 2, it is shown that the expected number of rounds is equal to one. This is because the probability of success P of a round is the parameter of a geometric random variable with mean 1/P . 1/P is equal to one asymptotically in m. Furthermore, asymptotically in m there are only two cases with non-null probability (Cases 1.1 and 2.2). Their expected number of time slots required to make rendezvous are p+1 2 and 2p+1 2 , respectively. Using their respective probability these translate to

p + 1 2p • m -1 m • p + 1 2 + p -1 2p • m -1 m • 2p + 1 2 time slots.
Asymptotically in m, this is equal to 3p/4 time slots. We make this statement mathematically precise in the following two Lemmas.

We define the following function that is used in several mathematical expressions in the sequel:

S m (k) := k l=1 1 - m -1 m l (4) 
Lemma 1. For any m, let p be the smallest prime number bigger than m. Then

S m (2p) 2p ≈ 1 2 - 1 2e 2 , (5) 
asymptotically in m.

Proof. Elementary calculations on the function S m (k) yield the following identity

m (k) = k -(m -1) + (m -1) m -1 m k . (6) 
We are interested in deriving the asymptotic of S m (k) when k = 2p. Recall that p was chosen to be the smallest prime number greater than m. Using well-known results in number theory concerning the difference between consecutive primes, it is easily seen that p is lower than m + m 6/11 (see [START_REF] Guy | Unsolved problems in number theory[END_REF], Section A9 for additional bounds and discussion). Therefore, since m-1 m m → 1 e , as m → ∞, we have

S m (2p) ≈ p - m -1 e 2 , (7) 
asymptotically in m, where e denotes Euler's constant. Since m p → 1 as m → ∞, Lemma 1 follows.

Lemma 2. The probability of success of a round is:

P ≥ p + 1 2p • m -1 m + p -1 2p • m -1 m
Proof. The analysis is structured into two main cases, with respect to the overlap, in time slots, between the current rounds of two users. In the first case, it is assumed that the overlap is greater than or equal to p. In the second case, it is assumed that the overlap is less than p.
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r 2 User 2 <p Fig. 5. Overlap is greater than or equal to p.

Case 1 (overlap is greater than or equal to p): The overlap is greater than or equal to p time slots, but lower than or equal to 2p time slots. This case occurs with probability

p + 1 2p (8) 
because User 2 starts from the first to the p + 1-th time slot from the beginning of User 1. This case is illustrated in Figure 7. The round of User 2 partially overlaps over the first and second rounds of User 1. In the first round of User 1, the step increment is r 1 . In the second round, it is r 1 . The step increment of User 2 is r 2 . There are four subcases. Case 1.1 (r 1 = r 2 ): In their current round, both users select different step increments, i.e., (r 1 = r 2 ). The users make rendezvous in a maximum of p time slots. On average, they make rendezvous in 1 p

p i i = p + 1 2 time slots.
The probability of this subcase is p+1 2p • m-1 m , because two users pick different step increments with that probability. Case 1.2 (r 1 = r 2 ) and (r 1 = r 2 ): Both users select the same step increment. Rendezvous is not guaranteed to happen. However, in User 1's round each hop with index i in 1, . . . , 2p can be seen as a Bernoulli trial with probability of success, i.e., rendezvous, 1/m (the two users pick the same channel) and probability of failure m-1 m (the two users pick different channels). The two users meet with probability Sm(2p) 2p . This subcase occurs with probability p+1 2p • 1 m 2 . Case 1.3 (r 1 = r 2 ) and (r 1 = r 2 ) and overlap is equal to p: This subcase is illustrated in Figure 6. Rendezvous is guaranteed to occur during the second half of User 1's round, i.e., in a maximum of 2p time slots. We may assume that they are equally probable. Rendezvous is made with an average of 2p+1 2 time slots. This subcase occurs with probability

1 2p • 1 m • m-1 m = 1 2p • m-1 m 2 .
r Case 1.4 (r 1 = r 2 ) and (r 1 = r 2 ) and overlap is greater than p: If (r 1 = r 2 ) and (r 1 = r 2 ), then rendezvous is not guaranteed to happen. In User 1's round each hop with index i in 1, . . . , 2p can be seen as a Bernoulli trial with probability of success 1/m and probability of failure m-1 m . The two users meet with probability

Sm(2p)
2p . This subcase occurs with probability

p 2p • p m • m-1 m = p 2p • m-1 m 2 .
r 

because User 2 starts from the first to the p + 2-th time slot from the start of User 1. There are two subcases.

Case 2.1 (r 1 = r 2 ): Rendezvous is guaranteed to occur during the second half of User 1's round, i.e., in a maximum of 2p time slots. We may assume that they are equally probable. Rendezvous is made with an average of 2p+1 2p time slots. This subcase occurs with probability p-1 2p • m-1 m . Case 2.2 (r 1 = r 2 ): In User 1's round, each hop with index i in 1, . . . , 2p can be seen as a Bernoulli trial with probability of success 1/m and probability of failure m-1 m . The two users meet with probability Sm(2p) 2p .

The probability of success of a round is:

P = p + 1 2p m -1 m + 1 m 2 • S m (2p) 2p + m -1 m 2 1 2p + p 2p • S m (2p) 2p + p -1 2p m -1 m + 1 m • S m (2p) 2p 
Asymptotically in m, only Cases 1.1 and 2.2 are significant. We can therefore derive the following lower bound on P :

P ≥ p + 1 2p • m -1 m + p -1 2p • m -1 m

Evaluation

Figure 8 plots the TTRs obtained with an OMNeT++ [START_REF] Varga | An overview of the OMNeT++ simulation environment[END_REF] simulation of the jump-stay, random and modular clock algorithms, for two-user scenarios. 95% confidence intervals are shown as small horizontal bars. On the x-axis, the number of channels m ranges from 10 to 100 channels. On the y-axis, the mean TTR is plotted as a function of the number of channels for two users. Numbers obtained through simulations are labelled Jump-stay (simulations), Random (simulations) and Modular clock (simulations). The expected TTR (ETTR), calculated using the analytical models, is also plotted for the jump-stay, random and modular clock algorithms. The analytical expected TTR for the jump-stay algorithm is labelled Jump-stay (ETTR). It is calculated using expression 

Conclusion

We have revisited the performance of the modular clock rendezvous algorithm. We compared with the performance of the jump-stay rendezvous algorithm. In contrast, the modular clock algorithm does only two hopping phases, of p time slots each. Each round consists of two phases. Rendezvous is not guaranteed. However, our analysis and simulation confirm that as the number of channels increases, the relevance of the stay pattern in the jump-stay rendezvous algorithm drops. Better performance can be expected with the modular clock algorithm. Theis et al.'s analysis of the modular clock algorithm concludes a maximum expected TTR slightly larger than 2p. Our analysis concludes that the expected TTR of the modular clock algorithm is no more than 3p/4. This has been confirmed through simulation. 
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 1 Fig. 1. Orthogonal-sequence-based channel hopping.
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 2 Fig. 2. Two jump-stay rendezvous sequences, round synchronized users.
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 3 Fig. 3. Two jump-stay rendezvous sequences, non round synchronized users.
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 4 Fig. 4. Two modular clock rendezvous sequences, non round synchronized users.
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 6 Fig. 6. Overlap is equal to p, r1 and r2 are equal, and r 1 and r2 are different.
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 8 Fig. 8. Mean and expected TTR for the jump-stay, random and modular clock algorithms (with two users, 10 to 100 channels).

  Simulations results are slightly better. The analytic expected TTR for the random algorithm, i.e., m time slots (Section 2), is labelled Random (ETTR). The analytical expected TTR for the modular clock algorithm is labelled Modular clock (ETTR). It is calculated using equation 3p 4 time slots, i.e., Theorem 1. The simulations results are slightly better than the analytic model. For the jump-stay and modular clock algorithms, simulations yield better results than the analytic models. It means that there are slightly more rendezvous opportunities than what the analytical models can capture. Analytical models provide upper bounds. Our simulation confirms that the expected TTR of the modular clock algorithm is no more than 3p/4 time slots. Simulations performance from worst to best are with random, jump-stay and modular clock algorithms.

p+1 1+g time slots, i.e., Equation 3.
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