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Abstract—This paper aims to develop a condition monitoring
architecture for induction machines, with focus on bearing faults.
The main objective of this paper is to identify fault signatures
at an early stage by using high-resolution frequency estimation
techniques. In particular, we present two subspace methods,
which are Root-MUSIC and ESPRIT. Once the frequencies are
determined, the amplitude estimation is obtained by using the
Least Squares Estimator (LSE). Finally, the amplitude estimation
is used to derive a fault severity criterion. The experimental
results show that the proposed architecture has the ability to
measure the faults severity.

Keywords—Induction machine, bearing fault detection, stator
current analysis, subspace techniques, Root-MUSIC, ESPRIT, fault
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I. INTRODUCTION

Recently, the induction machines have become the most
popular machines used in industrial applications thanks to their
advantages such as low cost, reliability, availability, and high
robustness. Unfortunately, these machines can be subjected to
various faults. These faults can be categorized into two main
classes: electrical and mechanical faults [1]–[3]. The electrical
faults include stator winding short circuit, broken rotor bar,
and broken end-ring. Besides, the mechanical faults comprise
rotor eccentricity, bearing faults, shaft misalignment, and load
faults. in order to reduce operating and maintenance costs,
it is desirable to develop and search for reliable techniques
allowing fault detection at an early stage [4]. Many condition
monitoring techniques for induction machines can be exploited
to detect the presence of faults such as vibration monitoring,
temperature monitoring, oil monitoring, etc. However, these
techniques are expensive and require additional sensors to be
fitted to the machines. A solution to this problem is to use the
stator current analysis. In fact, these techniques allow to use
additional sensors in induction machine drives. Moreover, the
stator currents are usually available for other purposes such as
protection and control. In addition of that, the use of stator
current presents other advantages such as its accessibility,
the ease of implementation, the information richness, and the
ability to detect electrical and mechanical faults [5].

Induction machines failures have an impact over intrinsic
parameters such as magnetomotive forces, self and mutual
inductances and stator currents. Consequently, the motor cur-
rents signature analysis (MCSA) have been widely investigated
by researchers and engineers [6]. Several induction machines

studies using the stator current prove that faults in induction
machines introduce additional frequency components in the
stator current spectrum [5]. Furthermore, the majority of me-
chanical or electrical faults are manifested by amplitude and/or
frequency modulation of the stator current signal [7], [8].
The challenge of condition monitoring in induction machine
using stator currents is to extract fault frequencies. Among
the proposed techniques in the literature for stator current
analysis, we can find techniques based on the Fourier Trans-
form (FT), Fast Fourier Transform (FFT) and periodogram
for stationary environments and time-frequency, time-scale,
and demodulation techniques for non-stationary environments
[8], [9]. A general review of induction machines monitoring
and faults diagnosis techniques can be found in [5], [10].
If an a priori signal model is assumed, parametric methods
can be employed to improve the frequency resolution. These
techniques are generally called high-resolution methods and in-
clude two sub-classes: linear prediction methods and subspace
techniques. The linear prediction class contains algorithms
such as autoregressive-moving-average (ARMA) methods. The
subspace methods include MUSIC and ESPRIT approaches
[3], [11]–[13].

In the present paper, we consider the bearing faults detec-
tion based on stator currents analysis. The bearing faults are
due to several reasons such as vibrations, internal stress, power
electronic devices, and inherent eccentricity. The bearing faults
has received a great deal of attention [7], [9]. Two main
contributions can be listed herein. The first one considers
the introduction of additional frequency components due to
the presence of the fault [9], [14]. The second contribution
demonstrates that bearing faults introduce both eccentricity and
load oscillations which leads to amplitude and frequency mod-
ulation of the stator currents [2], [7]. This paper proposes to use
subspace techniques in order to overcome the poor resolution
of the FFT-based approaches [1], [3]. They are concerned
with estimating unknown signal parameters from stator current
measurements. These approaches require a priori knowledge
about the signal to be processed. In fact, a stator model is
used in order to develop a frequency estimators. Moreover,
the proposed methods require to estimate the number of
frequency components known in signal processing community
as model order selection. This model order is determined
using information criteria rules [15]. Furthermore, we present
frequencies amplitude estimation by using the Least Squares
Estimator (LSE). Finally a fault severity is proposed in order



to measure the fault degree using the algorithm introduced in
[16].

II. PROBLEM FORMULATION

In this section, we present bearing faults effects over the
stator current. Moreover, the stator current model is proposed
in order to develop a fault detection technique.

A. Bearing Faults

We consider the problem of rolling-element bearings.
These faults are the most frequent faults in induction machines
[7]. The bearing consists mainly of outer raceway, inner race-
way, balls, and the cage which assures equidistance between
the balls. The bearing faults can be classified according to the
affected element

− Outer raceway defect,
− Inner raceway defect,
− Balls defect,
− Cage defect.

For each type of bearing faults, a characteristic frequency
fc can be associated [7]. Their expressions for the four
considered fault types are given by

fo = Nb
2 fr

(
1− Db

Dc
cosβ

)
fi = Nb

2 fr

(
1 + Db

Dc
cosβ

)
fb = Dc

Db
fr

(
1− D2

b

D2
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cos2 β
)

fca = 1
2fr

(
1− Db

Dc
cosβ

) , (1)

where fo is the outer raceway fault frequency, fi the inner
raceway fault frequency, fb the ball fault frequency, fca the
cage fault frequency, Nb the number of balls, fr the mechanical
rotor speed in Hertz, Db the ball diameter, Dc the bearing pitch
diameter, and β the contact angle of the balls on the races.

The characteristic bearing fault frequencies can be reflected
on stator currents. The relationship between these frequencies
and current frequency can be described by

fbf = |fs ± kfc| , (2)

where fs is the supply fundamental frequency, fc is the bearing
fault characteristic frequency, and k ∈ N∗.

B. Stator Current Model

Induction machine stator current in presence of bearing
faults can be expressed by a model, characterized by fun-
damental component, harmonics and faults. In this type of
modeling, the observed model can be seen as a sum of a
deterministic signal and noise. In this case, the stator current
can be described by the following model

x[n] =

L−1∑
k=0

ake
j(2πfk× n

Fs
+φk) + b[n], (3)

where

− x[n] denotes the stator current samples,

− b[n] ∼ Nc(0, σ2)is a complex circular white Gaussian
noise i.e.:

E [b(n)] = E [b(n)b(n+ τ)] = 0,

E [b(n)b∗(n+ τ)] = σ2δ(τ),
(4)

where E[.], (.)∗, and δ(.) correspond to the statistical
expectation, the complex conjugate, and the Dirac
delta, respectively,

− L represents the model order,

− Fs is the sampling frequency,

− ak, fk, and φk are the signal parameters (amplitude,
frequency, and initial phase, respectively) of the kth
component.

At time n = 0, 1, 2, 3, ... the observed stator current vector
x(n), defined as x(n) = [x(n) . . . x(n+M − 1)]

T , can
be expressed as

x(n) = A(fk)v + b(n), (5)

where

− M is the length of the time window vector,
− (.)T refers to transpose,
− x[n] = [x[n] . . . x[n+M − 1]]

T is a M × 1
column vector containing the stator current samples,

− b(n) = [b[n] . . . b[n+M − 1]]
T is a M × 1

column vector containing the noise samples,
− v is a L×1 column vector containing the amplitudes

and phases of the frequencies. This vector is given
by

v =
[
a0e

jφ0 a1e
jφ1 . . . aL−1e

jφL−1
]
, (6)

− A(fk) is a M × L Vandermonde matrix given by

A(fk) =


1 1 . . . 1

ej2πf0×
1
Fs ej2πf1×

1
Fs . . . ej2πfL−1× 1

Fs

...
...

...
...

ej2πf0×
M−1
Fs ej2πf1×

M−1
Fs . . . ej2πfL−1×M−1

Fs

 .
(7)

The main objective of the remaining sections is to propose
parameters estimation techniques which will allow to extract
the fault characteristic frequencies and to measure the fault
severity based on the stator current observations. The proposed
architecture is described by Fig. 1.

III. SUBSPACE TECHNIQUES

Many signal processing applications use methods called
high-resolution techniques for frequency estimation, such ap-
plications include electrical signal processing [11]–[13]. These
techniques are mainly based on the eigendecomposition of the
covariance matrix and knowledge of the model order. These
methods are presented in the following subsections.

A. Covariance Matrix

Subspace techniques are based on the covariance eigen-
value decomposition. In fact, the covariance matrix is decom-
posed in two orthogonal subspaces: signal subspace and noise
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Fig. 1. Frequency estimation by using subspace techniques.

subspace. It can be written in the form of two covariances

Rx = E
[
x[n]xH [n]

]
= Rs + Rn, (8)

where Rs denotes the signal covariance matrix, Rn is the
noise covariance matrix, and (.)H refers to Hermitian matrix
transpose.

The covariance matrix eigenvalues decomposition can be
written as follows

Rx = UΛUH =
[

S G
] [ Λs 0

0 Λn

] [
S G

]H
,

(9)
where Λs and Λn are the diagonal matrix containing eigen-
values of signal and noise subspaces arranged in descending
order, respectively (S and G are the associated orthonormal
eigenvectors, respectively).

The orthogonality between signal and noise subspaces
(SHS = I and GHG = I), can be explained by the following
expressions

PGS = 0,

PSG = 0,
(10)

where PS = SSH and PG = GGH are the projection
operators onto signal and noise subspaces, respectively.

In practice, the theoretical covariance matrix Rx and its
eigendecomposition are not known but can be estimated from
observations as follows

R̂x(n) =
1

G

G∑
n=1

x(n)xH(n), (11)

where x(n) = [x(n) . . . x(n+M − 1)]
T has length M .

Since we have N observations of x[n], G = N −M + 1.

The purpose of eigendecomposition analysis is to define the
signal and the noise subspaces. In practice, we estimate them
by using eigenvectors and eigenvalues of the sample correla-
tion matrix. In fact, the greatest eigenvalues L of the covariance
matrix in (11) are associated with the signal subspace. The
corresponding eigenvectors span the signal subspace whereas,
the remaining eigenvectors span the noise subspace. It appears
then that the knowledge of the model order is indispensable.
That’s why, the following subsection deal with model order
estimation.

B. Model Order Estimation

The knowledge of the sinusoids number in the stator
current samples is mandatory in order to perform stator current
spectral analysis. The model order estimation is obtained by
minimizing the Akaike Information Criterion (AIC) or the

Minimum Description Length (MDL) described in [15]. In
this approach, the model order is determined by the eigenvalue
decomposition of the covariance matrix. Criteria are given by
the following expressions

AIC(k) = −2 log


p∏

i=k+1

λ̂
1

p−k
i

1
p−k

p∑
i=k+1

λ̂i


(p−k)N

+ 2k(2p− k),

(12a)

MDL(k) = − log


p∏

i=k+1

λ̂
1

p−k
i

1
p−k

p∑
i=k+1

λ̂i


(p−k)N

+
1

2
k(2p−k) log(N),

(12b)
where λ̂i and p denote the ordered eigenvalues and the
eigenvectors number of the covariance matrix R̂x, respectively.

The model order of signal is determined as the value of k ∈
{0, 1, ....., p− 1}, that minimizes the AIC or MDL criterion.

C. Root-MUSIC

MUSIC (MUltiple SIgnal Classification or MUltiple SIgnal
Characterization) method is a technique in statistical estimation
theory based on the use of subspace concept. This frequency
estimation technique exploits the orthogonality between signal
and noise subspaces [6], [17], [18]. After these subspaces
are identified, a frequency estimation function is used to find
the component frequencies by using eigenvectors of the noise
subspace. This frequency estimation is obtained by finding the
highest local maxima L of the following cost function

f̂k = argmax
{f}

1∥∥∥aH(f)Ĝ
∥∥∥2
F

, (13)

where Ĝ is formed of the orthonormal eigenvectors spanning
the noise subspace, ‖.‖F denotes the Frobenius norm, and
aH(f) denotes the row vector given by

aH(f) =
[

1, e
j2πf
Fs , e

j2π2f
Fs , ........., e

j2π(M−1)f
Fs

]
. (14)

To avoid searching for the peaks of the cost function given
by (13), Root-MUSIC seems to be a solution. In fact, Root-
MUSIC method is a polynomial-rooting technique, that con-
verts the pseudo-spectrum function in (13) into a polynomial
function given by (15). The L roots of Q(z) have amplitude
< 1 and are close to the unit circle [18]. In this case, we can



use a polynomial representation as follows

Q(z) = aT (
1

z
)ĜĜHa(z), (15)

where z = e
j2πf
Fs and aT (z) =

[
1, z−1, z−2, ........., zM−1

]
.

Finally, finding ẑk roots of Q(z) is equivalent to find
frequencies according to the following equation

f̂k =
arg(ẑk)

2π
× Fs. (16)

D. ESPRIT

ESPRIT (Estimation of Signal Parameters via Rotational
Invariance Techniques) is a parametric method of signal pro-
cessing based on the notion of subspaces [19]. Indeed the
separation between two subspaces in the ESPRIT technique
is based on singular value decomposition of the covariance
matrix Rx. It exploits the invariance property by rotation of
the signal subspace to estimate frequencies of the sinusoidal
model [18]. Furthermore, ESPRIT has significant performance
compared to MUSIC in terms of cost calculation and data
storage [19]. Another advantage of ESPRIT, is the fact that, it
does not need to find peaks of pseudo-spectrum function. In
fact, due to the characteristics mentioned, ESPRIT is the first
method recommended in applications of frequency estimation
[18].

The objective of ESPRIT method is to solve the following
rotation equation

S = A(fk)T. (17)

Let A1 =
[

IM−1 0
]

A and A2 =
[

0 IM−1
]

A

be unstaggered and staggered components of the matrix A,
respectively.

So, we can demonstrate the following equality

A2 = A1Ω, (18)

where Ω = diag
(
ej2πf0 , ej2πf1 , ..., ej2πfL−1

)
contains the

unknown parameters.

Let S1 =
[

IM−1 0
]

S and S2 =
[

0 IM−1
]

S be
unstaggered and staggered signal subspaces, respectively.

According to the previous equations, we can write{
S1 = A1T,

S2 = A2T.
(19)

From equations (18) and (19), we obtain

S2 = S1T−1ΩT = S1Φ, (20)

where Φ = T−1ΩT is the relation between the two subspaces
rotations. Indeed, eigenvalues of Φ must be equal to diagonal
elements of Ω and columns of T are eigenvectors of Φ.

Using the Least-squares method [20], Φ is given by

Φ =
(
SH1 S1

)−1
SH1 S2. (21)

In practice, we can estimate frequencies of signal according
to the following expression

f̂k =
arg(vk)

2π
× Fs, (22)

where vk are eigenvalues of Φ estimate given by

Φ̂ =
(
ŜH1 Ŝ1

)−1
ŜH1 Ŝ2. (23)

IV. PROPOSED FAULT DETECTION APPROACH

This section presents the proposed fault detection approach.
First, an amplitude estimator is proposed based on LSE. Then,
a fault detection criterion is described. Finally, the proposed
algorithm for bearing fault detection is described.

A. Amplitude Estimation

The amplitude estimation for each frequency component is
realized by the Least Squares Estimator (LSE). In practice, the
LSE is widely used due to its ease of implementation [21]. This
estimator is based on the minimization of the square deviation
between observations and supposed model of the signal. The
difference is given by the following expression

v̂ = argmin
{v}

∥∥∥x(n)−A(f̂k)v
∥∥∥2 . (24)

Once frequencies are estimated based on the proposed
approaches in the above section, the corresponding solution
of the previous cost function is given by

v̂ =
(
AH(f̂k)A(f̂k)

)−1
AH(f̂k)x(n). (25)

Finally, the amplitudes estimation is given by

âk = |v̂k|, (26)

where v̂k the kth component of v̂ and |.| denotes the complex
modulus.

B. Fault Severity Criterion

In order to detect the fault severity, we propose a criterion
based on the evaluation of frequency component amplitudes
previously estimated. The fault severity criterion is expressed
mathematically as follows

C =

∑
k∈θ1

a2k∑
l∈θ2

a2l
, (27)

where

− θ1 corresponds to the integers k that belong to
[0, L− 1] for which |fk − nfs| > ∆f (n ∈ N),

− θ2 corresponds to the integers l that belong to
[0, L− 1] for which |fl − nfs| < ∆f (n ∈ N),

− ∆f = 10−2fs is the authorized variation of frequency
values.

The fault severity criterion is inspired from the total har-
monic distortion (THD) of a signal [22]. This criterion allows
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Fig. 3. The stator current for healthy and faulty induction motors.

to measure the fault severity. It can be implemented for real-
time monitoring of an induction machine as described in Fig
2.

V. EXPERIMENTAL RESULTS

The efficiency of the proposed approach is demonstrated on
experimental stator currents issued from an induction machine
with bearing faults. Several fault degrees are considered which
shows the ability of the proposed criterion to track fault
severity.

A. Experimental Setup Description

The above signal processing methods are tested on experi-
mental data recorded from an induction machine with bearing
fault. The machine under test is a 230/400 V, 0.75-kW, three
phases induction motor with pole pairs number p = 1 and
2780 rpm rated speed. Bearing faults are obtained by simply
drilling holes in the bearing. The stator currents acquisition is
performed by a 24 bits acquisition card with 10 kHz sampling
frequency. These stator currents have been processed offline to
reveal the presence of the fault using the proposed approaches.
For all the experiments, the stator fundamental frequency was
almost equal to fs = 50 Hz.

B. Bearing Faults Detection

The stator currents for healthy and faulty induction motors
are given by Fig. 3. Figure 4 gives the corresponding peri-
odogram using Hanning window. This figure shows that the
periodogram does not allow to clearly distinguish frequencies.
Thus, the periodogram can be used as an estimator of the
spectrum, but it suffers the poor frequency resolution.

Figures 5 and 6 display high-resolution spectrum for
healthy and faulty induction motors. For each representation,
we can observe a difference between the periodogram and
the high-resolution methods. This difference is explained by
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Fig. 5. The frequency estimations for a healthy and faulty induction motors
are obtained with the Root-MUSIC for L=20. The model order estimation is
obtained thanks to two proposed information criteria (AIC and MDL).

the readability and the resolution capacity of high-resolution
techniques compare to the periodogram. Indeed these figures
show that it is possible to detect bearing fault signatures by
high-resolution techniques. Moreover, faults in the induction
machine are manifested by increased amplitudes associated to
fault frequencies.

Several experiments have been conducted with various fault
degrees. The evolution of fault detection criterion is given by
Fig.7. This figure shows that the value of the fault severity
criterion increases when the fault severity increases. This figure
shows that it is possible to detect the fault severity in induction
machine using the proposed criterion.

VI. CONCLUSION

In this paper, we have proposed a new condition monitoring
architecture for induction machines based on subspace meth-
ods for frequency estimation and the least squares estimator for
amplitude estimation. These techniques offer better frequency
resolution than periodogram applications for short data signals
with stator current analysis. The major advantage of the
proposed architecture is the ability to extract automatically
the fault signature as well as giving the fault severity. The
usefulness of the proposed condition monitoring architecture
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have been demonstrated for bearing faults detection on an
actual induction machine.

The proposed approaches can be easily implemented at
a reasonable computational cost in real-world industry appli-
cations such as variable speed drives and renewable energy
applications.
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