
HAL Id: hal-01264752
https://hal.science/hal-01264752

Submitted on 29 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Relationships between Generative Encodings,
Regularity, and Learning Abilities when Evolving Plastic

Artificial Neural Networks
Paul Tonelli, Jean-Baptiste Mouret

To cite this version:
Paul Tonelli, Jean-Baptiste Mouret. On the Relationships between Generative Encodings, Regularity,
and Learning Abilities when Evolving Plastic Artificial Neural Networks. PLoS ONE, 2013, 8 (11),
pp.e79138. �10.1371/journal.pone.0079138�. �hal-01264752�

https://hal.science/hal-01264752
https://hal.archives-ouvertes.fr

Mouret and Tonelli, 2013

On the Relationships between Generative
Encodings, Regularity, and Learning Abilities when
Evolving Plastic Artificial Neural Networks
Paul Tonelli, Jean-Baptiste Mouret∗

ISIR, Université Pierre et Marie Curie-Paris 6, CNRS UMR 7222, Paris, France

A major goal of bio-inspired artificial intelligence is to design artificial neural networks with abilities that resemble those of
animal nervous systems. It is commonly believed that two keys for evolving nature-like artificial neural networks are (1) the
developmental process that links genes to nervous systems, which enables the evolution of large, regular neural networks,
and (2) synaptic plasticity, which allows neural networks to change during their lifetime. So far, these two topics have been
mainly studied separately. The present paper shows that they are actually deeply connected.
Using a simple operant conditioning task and a classic evolutionary algorithm, we compare three ways to encode plastic neural
networks: a direct encoding, a developmental encoding inspired by computational neuroscience models, and a developmental
encoding inspired by morphogen gradients (similar to HyperNEAT). Our results suggest that using a developmental encoding
could improve the learning abilities of evolved, plastic neural networks. Complementary experiments reveal that this result
is likely the consequence of the bias of developmental encodings towards regular structures: (1) in our, experimental setup,
encodings that tend to produce more regular networks yield networks with better general learning abilities; (2) whatever the
encoding is, networks that are the more regular are statistically those that have the best learning abilities.

Citation: Tonelli P, Mouret J-B (2013) On the Relationships between Generative Encodings, Regularity, and Learning Abilities when Evolving
Plastic Artificial Neural Networks. PLoS ONE 8(11): e79138. doi:10.1371/journal.pone.0079138

Editor: Josh Bongard, University of Vermont, United States of America

Received:June 17, 2013; Accepted September 18, 2013; Published November 13, 2013

Copyright: 2013 Tonelli, Mouret. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by the Agence Nationale de la Recherche (http://www.agence-nationale-recherche.fr/) by the grants Creadapt
(ANR-12-JS03-0009) and EvoNeuro (ANR-09-EMER-005). The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

∗ E-mail: mouret@isir.upmc.fr

Introduction

A major goal of bio-inspired artificial intelligence is to design
artificial neural networks (ANNs) with abilities that resemble
those of animal nervous systems [1–4]. A promising approach
to design such “artificial nervous systems” is to use evolution-
inspired algorithms, in particular because Darwinian evolution
is regarded as the primary process responsible for shaping their
natural counterparts. Despite the large amount of work in
this direction, striking differences still separate most artificially-
evolved networks from biological ones: biological nervous sys-
tems are much larger [5], much more organized [6], much more plas-
tic [7] and, overall, much more complex [8].

It is commonly believed that the key for understanding the
evolution of large and organized neural networks is the devel-
opmental process that links genes to nervous systems [1, 9–11].
The genotype of animals does not encode each synapse indi-
vidually, it instead describes rules of development that are ex-
ecuted multiple times to give birth to networks with regular
patterns of connection. Influenced by this concept, many re-
searchers proposed artificial developmental systems with diverse
inspirations including chemical gradients [11, 12], gene regula-
tory networks [13, 14], cell divisions [15], computational neuro-
science models [16] and L-systems [9].

Fig. 1. Main hypothesis. Using developmental encodings should facil-
itate the evolution of plastic ANNs with high learning abilities.

PLOS ONE | www.plosone.org 1 November 2013 | Volume 8 | Issue 11 | e79138

Mouret and Tonelli, 2013

Fig. 2. A. Concept of the “Skinner box”. A caged animal must learn to associate stimuli (here lights) to actions (here pushing a lever).
The experimenter selects a stimulus/action association, presents it to the animal, record the action, and gives the reward to the animal. The
experimenter then chooses another association in the association set and starts the cycle again. The association set is learned once the animal
associates the right action to each stimulus. B. Formalization of the Skinner box as a task for an artificial neural network. Each stimulus is
an input of the neural network. Positive and negative rewards are two additional inputs. The output is selected according to a softmax function
(Methods) and the result of the softmax is looped back to the input layer.

Nonetheless, most networks evolved with developmental
systems cannot change during the “lifetime” of the con-
trolled agent, whereas animal nervous systems are continu-
ously changing to enable on-line behavioral adaptation and
learning [7]. The basis of most of these changes seems to be
provided by synaptic plasticity, that is, by the ability of synapses
to strengthen or weaken over time [7,17]. Several papers report
experiments in which neural networks with synaptic plasticity
are evolved [2,15,18–24]. Yet, only a handful of them use devel-
opmental systems [15, 20, 24].

The present paper shows that these two topics–
developmental systems and synaptic plasticity–are actually
deeply connected1.

One of the main challenge when designing ANNs with learn-
ing abilities is to make them capable of learning in a large class
of situations, that is, designing them so they can adapt their be-
havior to maximize a reward signal (or minimize an error) in as
many situations as possible. For instance, it has been famously
shown that single layer perceptrons are only capable of learn-
ing linearly separable patterns [26], whereas multi-layer percep-
trons can learn any non-linear function (provided enough neu-
rons are available) [27]. Single-layer perceptrons therefore pos-
sess lower learning abilities than multi-layer perceptrons: their
architecture critically constrains what they can learn. When ar-
tificial evolution is used to design a plastic ANN, the topology
of the networks is the result of the interactions between the fit-
ness function, the encoding and the associated variation oper-
ators. As a consequence, the encoding and the fitness function
have to be carefully crafted so that plastic neural networks are
able to learn in as many situations as possible and, specifically,
in situations that are not explicitly tested in the fitness function.

The most classic approach is to design a fitness function that
tests each neural network in several test cases and rewards indi-
viduals that successfully adapt their behavior to each of them.
To ensure that networks possess general learning abilities, it is
then required to assess their abilities to learn in a new set of test
cases, that is, test cases that have never been encountered by the
evolutionary process [28]. The success of this “episodic fitness”
approach relies on the assumption that if enough test cases are
used, then it should become easier for the evolutionary process
to design a generic structure than a specialized one.

Unfortunately, even in simplistic and constrained toy prob-
lems, the reported experiments show that many test cases need
to be included in the fitness function to obtain general learning

1This paper extends some of the preliminary results published in a conference
paper [25], which first suggested the existence of a link between developmen-
tal systems and plastic ANNs.

abilities2 (e.g. 10 to 20 test cases in [28]). For more complex
problems, one can expect an exponential growth in the number
of required test cases, because the number of possible test cases
grows exponentially with the number of inputs/outputs. This
approach is, therefore, unlikely to scale-up to life-like neural-
networks.

This is where developmental systems have a role to play.
These systems evolve short descriptions of large structures by
exploiting regularities observed in Nature, such as repetition
of useful sub-parts, symmetries, and symmetries with varia-
tion [12, 30]. They more easily describe regular structures than
irregular ones, because the former can be described by a few
general rules whereas the latter require describing either each
element, or a list of exceptions to general rules. As a conse-
quence, developmental systems bias the search space towards
regular structures [11]. We here propose that this bias towards reg-
ularity is critical to evolve plastic neural networks that can learn in
a large variety of situations. Intuitively, this bias makes it more
likely to obtain generic networks that apply the same learning
rules to whole sets of inputs instead of networks that are finely-
tuned to only solve the test cases used in the fitness function.
A direct consequence is that using developmental systems to evolve
plastic neural networks should facilitate the evolution of plastic ANNs
with general learning abilities.

Experimental setup

This hypothesis is tested using a simulated “Skinner box” (Fig-
ure 2), a classic experimental setup for operant conditioning
in which a caged animal must learn to associate stimuli (e.g.
lights) to actions (e.g. pushing a lever). If the animal exe-
cutes the correct action, it is rewarded (e.g. by some food); if
it chooses the wrong one, it is punished (e.g. by an electric
shock). There is no delay in the reward, so there is no credit
assignement problem [31]. We consider only one-to-one asso-
ciations so that, for each simple stimulus (each light), there is
a different action to perform. Four stimuli and four actions are
used; there are therefore 256 possible sets of stimulus/action
(44 = 256; see Appendix S1 for the list of possible association
sets). We formalize the stimulus/action associations using the
concept of association sets:

2It should be emphasized that many authors do not test whether the plastic
ANNs they evolve can learn in test cases that have not been encountered dur-
ing the evolutionary process. For instance, [21, 23, 29] don’t assess how evolved
neural networks can cope with an unknown situation; counter-examples are
[19] and [28].

PLOS ONE | www.plosone.org 2 November 2013 | Volume 8 | Issue 11 | e79138

Mouret and Tonelli, 2013

Fig. 3. A. Principle of the map-based, developmental encoding. The neural network is encoded as a labeled graph (left), which is developped
to a graph of maps according to the labels (right). (Methods). B. Principle of the HNN encoding (minimal HyperNEAT). Neurons are placed in a
3D substrate (top). To know whether two neurons are connected and the synaptic weight of each connection, a Compositional Pattern Producing
Network (CPPN) is queried using the 3D coordinates of the two neurons (Methods). This CPPN is evolved using a direct encoding. To know the
parameters of each node (neuron type and threshold value), a second CPPN is queried with the 3D coordinates of the neuron (Methods).

Definition 1 (Association) An association is a pair (I,O) of in-
put/output that leads to the maximum positive reward. In our system
(n = 4: 4 inputs, 4 outputs), (1, B) is an association that means that
the agent must push the B lever when light 1 is on.

Definition 2 (Association set) An association set A ={
(I1,K1), · · · , (In,Kn)

}
is a list of associations that covers

all the n possible inputs. For instance, the list of associations
{(1, B), (2, C), (3, D), (4, A)} is an association set in our sys-
tem (n = 4: 4 inputs, 4 outputs). Several inputs can be
associated to the same output. For instance, the association set
{(1, A), (2, A), (3, A), (4, A)} is also valid in our system.

Definition 3 (Global training set) The global training set, called
G, is the the set of all the possible association sets of an experimental
setup. In our system, there are 4 possible outputs and 4 possible inputs
(n = 4), therefore the size of G is 256 (|G| = 44 = 256; the complete
list of assotiation sets is available in Appendix S1). The ideal plastic
network should be able to learn every association sets of G.

The fitness function (Methods) assesses the ability to learn a
subset of the global training set, called the evolutionary training
set:

Definition 4 (Evolutionary training set) The evolutionary train-
ing set, called E, is the set of the association sets used in the fitness
function.

E is included in G; it does not change during an experi-
ment. Depending of the experiment, the size of E varies be-
tween 1 and 7. The elements of E have been chosen at random.

The fitness function is normalized by the size of E, so that it
actually corresponds to the the number of successfully learned
sets divided by |E|. After each evolution experiment, we assess
the ability of the network with the best fitness score to learn ev-
ery possible association set, that is, we evaluate the fitness func-
tion on the global training set. We call the success rate of this
test the General Learning Abilities score (GLA score). This score re-
flects how well networks that are selected for their capacity to
learn a few association sets are able to learn association sets that
have not been encountered during evolution.

The evolved ANNs (Figure 2, B) have one input for each pos-
sible stimulus (i.e., 4 stimuli inputs), one input for positive re-
wards and one input for negative rewards. They have 4 outputs,
each of them representing the probability of choosing each ac-
tion. The final action is selected thanks to a “softmax” function
that randomly selects an action according to a distribution that
gives a higher probability to actions that corresponds to high

output values distribution [31] (Methods). In effect, the neural
network can activate any combination of the four available out-
puts and the softmax function makes sure that only one action is
chosen at a time (Figure 2, B). Only one light (input) is activated
at a time.

Plasticity is implemented in the neural networks using neuro-
modulated Hebbian plasticity [2,7,21,23] (Methods). In this model,
neurons are of two kinds, “standard” and “modulatory”; the
strength of connection between each pair of neurons is modified
using a classic Hebbian rule that is activated only if the sum of
inputs from modulatory neurons is above an evolved threshold.

For each association of E, the fitness function first presents
the stimuli to the neural network for a few time-steps (Meth-
ods). Once the final output is computed by the softmax, it is
copied to the input layer (feedback inputs). The reward in-
put (positive or negative) is set at the same time. Such feed-
back loops are often present in computational models of cortex-
basal ganglia-thalamus-cortex loops for action selection [32–34]
and are implicit in actor-critic models of reinforcement learn-
ing [31]. The neural network is then simulated for a few more
time-steps (Methods). It is expected that the evolutionary pro-
cess will connect one or several modulatory neurons to the re-
ward input and that the ANNs will exploit the copied outputs
to strengthen/weaken the connections that correspond to the
action that has actually been performed. Nonetheless, it must
be emphasized that weight changes can occur at any time, in-
cluding during the first step of the evaluation of the ANN. Only
the topology and the synaptic weights of the ANNs, which
are designed by evolution, determine when and how synaptic
weights change.

The ANNs that solve this task may seem trivial at first sight.
However, the evolutionary process needs to add at least one
modulatory neuron (inputs cannot be modulatory in our sys-
tem) and we never found any solution with less than two hid-
den neurons (one of them being modulatory). Essentially, the
challenge raised by this task is to discover learning rules that
allow the ANN to exploit a reward to strengthen and weaken
the right connections. Typical solutions require three main “dis-
coveries”: (1) identifying and correctly connecting the reward
inputs, (2) gating the reward with the softmax choice to modify
only the connections corresponding to the chosen action, and
(3) applying the resulting reinforcement to a link between the
inputs and the output.

The topology and the parameters of evolved ANNs are en-
coded with three encodings [2], with three different levels of ex-
pected regularity (Figure 3). The first encoding, called the map-

PLOS ONE | www.plosone.org 3 November 2013 | Volume 8 | Issue 11 | e79138

Mouret and Tonelli, 2013

based encoding [16] (Methods), is inspired by computational
neuroscience models in which ANNs are described as graph
of single neurons and neural maps (spatially-organized identi-
cal neurons) that are connected with a few possible connection
schemes (usually only one-to-one and one-to-all) [34–36]. This
encoding produces very regular neural networks because it has
to treat each neuron in a map in the exact same way as the other
neurons of the same map. The second encoding is a simpli-
fied version HyperNEAT [12], called HNN, for Hyper Neural
Network (Methods). HyperNEAT-like encodings are develop-
mental encodings in which morphogen gradients are described
as feed-forward networks of mathematical functions that oper-
ate in a Cartesian space. This indirect approach allows them
to encode large networks with Nature-like connection patterns
(symmetry, symmetry with variations, repetition, etc.). The last
encoding is a classic direct encoding in which evolution directly
acts on the structure and the parameters of the ANN (Methods).
This encoding has no bias to produce regular networks.

To understand the relationship between encodings, regular-
ity and learning abilities, we have to assess the regularity of
evolved ANNs. According to Lipson [37], regularity is the com-
pressibility of the description of the structure. Regrettably, this
value is not computable [38] and, to our knowledge, there ex-
ists no well-recognized approximation for weighted, directed
graphs. The few algorithms designed to compress the graph
structure are greedy approximations that only work well for
sparse, undirected labeled graphs [39, 40]. We follow another
method to estimate the regularity of networks: counting the
number of symmetry axes [41–43]. A graph has an axis of sym-
metry when two groups of nodes can be swapped without mod-
ifying the graph, that is, when there is a repetitive, structural
pattern. More axes of symmetry means a better compression be-
cause the two groups need to be described only once [41–43]. In
graph theory, this kind of symmetry is called an automorphism
and fast algorithms exist to count them [44–46] (Methods).

Networks are evolved using the classic multi-objective evo-
lutionary algorithm NSGA-II [47, 48]. Two objectives are op-
timized: the fitness of networks (Methods) and a behavioral
novelty objective [4, 22, 23, 49, 50], to mitigate premature con-
vergence (Methods). These two objectives are optimized dur-
ing a maximum of 4000 generations of 400 individuals. Experi-
ment are stopped as soon as the best individual of the popula-
tion reaches a perfect fitness value on the evolutionary training
set. At the end of each experiment, the novelty objective is dis-
carded and we consider that the best individual is the one with
the best fitness value.

We perform 7 series of independent experiments by vary-
ing the size of the evolutionary learning set from 1 to 7 (i.e.,
|E = 1, · · · , 7|). For each series, the three investigated encod-
ings are tested (direct encoding, map-based encoding and HNN
encoding). Each experiment is replicated 30 times to obtain
statistics. We therefore launch a total of 3 × 7 × 30 = 630 ex-
periments, each one lasting between 1 and 8 hours on our com-
puters (Intel Xeon E5520@2.27GHz) depending on the time re-
quired to converge and the size of the evolutionary training set.
Because of this large computational time, we were not able to
extend our experiments to harder problems, for instance with
more inputs/outputs.

Results

For each encoding, we compute the GLA score of networks with
a perfect fitness on the evolutionary training set and we plot it
as a function of the size of the evolutionary training set.

The results show a clear difference in the GLA scores ob-
tained with each encoding (Figure 4, A). With a direct encoding,

0.0

0.2

0.4

0.6

0.8

1.0

GL
A

sc
or

e

Map-based HNN direct encoding

1 2 3 4 5 6 7
size of the evolutionary training set

0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n
of

 n
et

w
or

ks
w

ith
 a

t l
ea

st
 o

ne
 s

ym
m

et
ry

 a
xi

s

A

B

Fig. 4. Relationship between encodings, general learning abilities
and the size of the evolutionary training set (|E|). A. Generative
encodings yield plastic ANNs with better general learning abilities than
those evolved with a direct encoding. Morever, increasing the size of
E increases the general learning abilities. Each box extends from the
lower to upper quartile values of the data, with a symbol at the median.
Whiskers extend to the most extreme data point within 1.5×IQR, where
IQR is the interquartile range. Flier points (outliers) are those past the
end of the whiskers. X-values are shifted for the map-based encoding
and the direct encoding in order to make the figure readable. B. Gener-
ative encodings yield more regular networks than a direct encoding, and
increasing the size of E increases the regularity of evolved networks.

the GLA score grows linearly with the size of the evolutionary
training set, which is consistent with previous results [28], and
the GLA scores obtained with small values of |E| are statisti-
cally different from those obtained with larger values (e.g., 1
versus 7: p = 4 × 10−4; 4 versus 7, p = 2 × 10−3, 3 versus 6,
p = 2 × 10−3; unless otherwise specified, the statistical test in
this paper is the Mann-Whitney U-test). With the direct encod-
ing, using a fitness that tests at least 6 associations sets (|E| > 5)
is required to obtain networks with a GLA-score similar to the
one reached with the map-based encoding with only 2 associa-
tion tests (p = 0.8). The HNN encoding appears as a trade-off
between the direct encoding and the map-based encoding: for
each value of |E|, the GLA score obtained with HNN is consis-
tently higher than the one obtained with the direct encoding,
yet it is lower than the one reached with the map-based encod-
ing (for 2, 3 or 4 association sets, HNN versus direct encoding,
p < 0.03; for 1, 2, 3 or 5 association sets, HNN versus map-based
encoding, p < 6× 10−3)3.

As expected, each encoding leads to different levels of reg-
ularity, and increasing the number of association sets used in
the fitness function increases the regularity of evolved neural
networks (Figure 4, B). All the networks evolved with the map-
based encoding are regular: they all have at least one symmetry
axis. The HNN encoding also leads to many networks with at
least one symmetry axis (from 80% to 100%), whereas the direct
encoding leads to substantially fewer regular networks (from
20% to 70%, depending on |E|). These numbers vary with the
size of E. With the HNN encoding, three association sets are
needed to obtain 100% of regular networks; with the direct en-

3With 4 association sets and the HNN encoding, there are not enough networks
with a perfect fitness score to perform a statistical analysis.

PLOS ONE | www.plosone.org 4 November 2013 | Volume 8 | Issue 11 | e79138

Mouret and Tonelli, 2013

0.0

0.2

0.4

0.6

0.8

1.0

GL
A

sc
or

e
Map-based encoding HNN direct encoding

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 ... 200
minimum number of automorphisms

0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n
of

 n
et

w
or

ks
A

B

Fig. 5. Relationship between regularity and general learning abilities. Data are from the same experiments as Figure 4. The “minimum
number of automorphims” means that if, for example, a network has 4 automorphisms, it is included in columns 1,2,3 and 4. X-values are shifted
for the map-based encoding and the direct encoding in order to make the figure readable. A. The more automorphisms a network has, the more
likely it is to have good general learning abilities (GLA score). Each box extends from the lower to upper quartile values of the data, with a symbol
at the median. Whiskers extend to the most extreme data point within 1.5 × IQR, where IQR is the interquartile range. Flier points (outliers) are
those past the end of the whiskers. B. 7% of networks evolved with a direct encoding have more than 3 autormorphisms. 72% of those evolved
with HNN have more than 3 automorphisms. 86% of networks evolved with the map-based encoding have more than 200 autmorphisms; 100% of
them have at least 10 automorphisms.

coding, the number of regular networks grows from 20%, when
one association set is used during evolution (|E| = 1), to 60-70%
when more than 6 association sets are used (|E| > 5).

To further understand this result, we plot the network with
the best learning abilities for each encoding and each size of
the evolutionary learning set (figure 6). We observe the same
overall link between learning abilities and regularity as on fig-
ure 4, but some networks have good learning abilities with only
a few automorphisms, like the network evolved with a direct
encoding and 6 association sets (GLA score of 0.99, 2 automor-
phisms). This result is possible because nothing encourages a
directly encoded network to duplicate the same sub-structure
several times: it may be sometimes easier to either re-invent 4
times the same function but with slight changes, or to design
an integrated solution that relies on only one complex struc-
ture. This particular network seems to use a centralized struc-
ture with only one modulatory neuron that modulates all the
plastic connections of the network. Conversely, some regular
networks have a low GLA score, such as the network evolved
with HNN and one association set (GLA score of 0.70, 24 auto-
morphisms). There is no paradox in this result: the regularities
can be at the wrong place to lead to high-learning abilities.

Whatever the encoding and the size of E are, networks with
the best learning abilities are those that are the most regular
(Figure 5, A; this figure use the same data as Figure 4). Hence,
among networks evolved with the direct encoding, those that
have at least 2 automorphisms (one axis of symmetry) have
a better GLA score than those that have no automorphism
(p = 6 × 10−3). Those with more than 3 automorphisms also
have statistically better learning abilities than those with two
automorphisms (p = 0.05) and than those without any sym-
metry axis (p = 5 × 10−4). The same tendency is present with
the HNN encoding: networks with at least two automorphisms
(i.e., networks with at least one symmetry axis) have a higher

GLA score than those that have no symmetry axis (one auto-
morphism, p = 0.04); networks with more than 17 automor-
phisms have a higher GLA score than those with at least two
automorphisms (p = 2× 10−3).

With the HNN encoding, 41% of networks have exactly 24
automorphisms but only 23% of them have 25 or more auto-
morphisms (Figure 5, B, blue line). With the map-based encod-
ing, a drop from 100% to 87% occurs at the same number of
automorphisms (Figure 5, B, grey line). A network with 24 au-
tomorphisms is a network in which a sub-network is repeated
4 times (24 = 4!, Methods). This number is particular in our
experiments because both HNN and the map-based encoding
group neurons by 4, therefore the number of automorphisms
is expected to be a multiple of 24: a different number means
that at least one neuron of a group has a connectivity pattern
that is different from the rest of the group. With HNN, this kind
irregularity is possible but unlikely. With the map-based encod-
ing, it is not possible, that is why all map-based networks have
a number of automorphisms exactly equals to a multiple of 24
(for instance, on figure 6, all map-based networks have 24 or
576 = 24× 24 automorphisms).

Conclusion and discussion

The experiments reported in this paper add weight to the hy-
pothesis that using a developmental encoding improves the
learning abilities of evolved, plastic neural networks. Comple-
mentary experiments reveal that this result is the consequence
of the bias of developmental encodings towards regular struc-
tures [11]: (1) encodings that tend to produce more regular net-
works yielded networks with better general learning abilities;
(2) in our experimental setup, whatever the encoding is, net-
works that are the more regular are statistically those that have
the best learning abilities. This second point implies that an

PLOS ONE | www.plosone.org 5 November 2013 | Volume 8 | Issue 11 | e79138

Mouret and Tonelli, 2013

1

2

3

4

5

6

7

GLA score: 0.255913
#Automorphisms: 1

14

15

i0 i1 i2 i3 i4 i5 i6 i7 i8 i9

o0 o1 o2 o3

GLA score: 0.712965
#Automorphisms: 1

14
15

i0 i1 i2 i3 i4 i5 i6 i7 i8 i9

o0 o1 o2 o3

GLA score: 0.685947
#Automorphisms: 1

14 15 16

i0 i1 i2 i3 i4 i5 i6 i7 i8 i9

o0 o1 o2 o3

GLA score: 0.871448
#Automorphisms: 24

14

15

i0 i1 i2 i3 i4 i5 i6 i7 i8 i9

o0 o1 o2 o3

GLA score: 0.947874
#Automorphisms: 6

14

15

i0 i1 i2 i3 i4 i5 i6 i7 i8 i9

o0 o1 o2 o3

GLA score: 0.987641
#Automorphisms: 2

14

15

16

17

18

i0 i1 i2 i3 i4 i5 i6 i7 i8 i9

o0 o1 o2 o3

GLA score: 0.984026
#Automorphisms: 48

14

15

16

i0 i1 i2 i3 i4 i6 i7 i9

o0 o1 o2 o3

GLA score: 0.700195
#Automorphisms: 24

14 1516 17

i0 i1 i2 i3 i4 i5 i6 i7 i8 i9

o0 o1 o2 o3

GLA score: 0.963379
#Automorphisms: 6

14 1516
17

i0 i1 i2 i3 i4 i5 i6 i8 i9

o0 o1 o2 o3

GLA score: 0.935059
#Automorphisms: 6

14
15

1617

i0 i1 i2 i3 i5 i6 i7 i8 i9

o0 o1 o2 o3

GLA score: 0.928223
#Automorphisms: 2

14 15 1617

i0 i1 i2 i3 i4 i5 i6 i7 i8 i9

o0 o1 o2 o3

GLA score: 0.939453
#Automorphisms: 24

1415 16 17

i0 i1 i2 i3 i4 i5 i6 i8 i9

o0 o1 o2 o3

GLA score: 0.982422
#Automorphisms: 69120

14 1516 17

i0 i1 i2 i3 i9

o0 o1 o2 o3

GLA score: 0.970215
#Automorphisms: 864

14 1516 17

i0 i1 i2 i3 i4 i5 i6 i7 i8 i9

o0 o1 o2 o3

GLA score: 1.0
#Automorphisms: 576

14 151617

i0 i1 i2 i3 i4 i5 i6 i7 i8 i9

o0 o1 o2 o3

GLA score: 0.999993
#Automorphisms: 576

14 1516 17

i0 i1 i2 i3 i4 i5 i6 i7 i8 i9

o0 o1 o2 o3

GLA score: 1.0
#Automorphisms: 576

1415 16 17

i0 i1 i2 i3 i4 i5 i6 i7 i8 i9

o0 o1 o2 o3

GLA score: 0.999612
#Automorphisms: 24

14 15 16 17

18 19 20 21

i0 i1 i2 i3 i4 i5 i6 i7 i8 i9

o0 o1 o2 o3

GLA score: 0.997306
#Automorphisms: 576

14 151617
i0 i1 i2 i3 i4 i5 i6 i7 i8 i9

o0 o1 o2 o3

GLA score: 0.999583
#Automorphisms: 576

1415 16 17

i0 i1 i2 i3 i4 i5 i6 i7 i8 i9

o0 o1 o2 o3

GLA score: 0.999139
#Automorphisms: 576

1415 16 17

i0 i1 i2 i3 i4 i5 i6 i7 i8 i9

o0 o1 o2 o3

Direct encoding (DNN) CPPN-based (HNN) Map-based (EvoNeuro)

Fig. 6. Network with the best learning abilities, for each encoding and each size of the evolutionary learning set. Each network is the best
(in term of learning abilities) of the 30 independent runs. Inhibitory connections are represented as green line and excitatory ones as red lines.
The width of the lines is proportional to the corresponding synaptic weight (for modulated connections, the line width is determined after one of
the learning phases, for one of the possible association sets). Input neurons are in green, output neurons in red, modulatory neuron in gray and
standard neurons in blue. “#automorphisms” means “number of automorphisms” (Methods). Nodes that are not connected (directly or indirectly)
to at least one input and one output are not drawn.

PLOS ONE | www.plosone.org 6 November 2013 | Volume 8 | Issue 11 | e79138

Mouret and Tonelli, 2013

indirect encoding that is not biased towards regular network
should not lead to ANNs with high learning abilities; it also
implies that a direct encoding combined with a helper objec-
tive that encourages regularity should lead to ANNs with good
learning abilities (see [4] and [51] for examples of helper ob-
jectives with a direct encoding). Nonetheless, our experiments
show that current generative encodings and neuro-modulated
Hebbian plasticity make a promising combination to evolve
large, plastic neural networks. Future work in this direction
should investigate whether this combination holds its promises
in other tasks such as learning in a maze [21, 23] or visual pro-
cessing [12].

According to our results, neural networks evolved with an
encoding biased towards regularity could be more flexible than
those evolved with an unbiased encoding: they are better at
learning association sets that have never been encountered dur-
ing their evolution. To achieve this flexibility, they have to
possess connections that were not directly selected during evo-
lution. In other words, their flexibility stems from “span-
drels” [52]: they are the byproducts of the bias that make evo-
lution more likely to duplicate a sub-structure than to design a
specialized circuit.

These results are in opposition to the general tendency of
neural networks to minimize connection costs [51, 53–55] be-
cause they show that flexible behaviors require maintaining
many “useless” connections. They indicate that a selective pres-
sure for flexibility is likely to favor developmental procedures
that would result in connections that do not procure any short-
term advantage. In a constant environment, these connections
should disappear; but in a constantly changing environment –
which puts more pressure on flexibility –, these connections ap-
pear critical. This view is consistent with the theory of “variabil-
ity selection”, which posits that flexibility is one of the primary
selective pressure that shaped the brains of hominids [56, 57].

The conflict between flexibility and connection costs also
echoes the debate about the modularity/non-modularity of the
mammalian brain [6, 58, 59], since the minimization of con-
nection costs has been linked with the evolution of modular-
ity [51, 60]. Our results thus suggest that the parts of the brain
that heavily rely on synaptic plasticity to achieve flexible be-
haviors should be less modular than simpler, less plastic parts.
To test this proposition, it is possible to launch computational
experiments in which plastic neural networks are evolved with
a selective pressure to minimize connection costs and different
flexibility requirements.

Pushed to the extreme, the results of our experiments suggest
that the best flexibility would be achieved with fully connected
networks, since this would be the best possible regularity. In
real brains, such a connectivity would be challenging for pure
physical reasons [5, 53]: if each neuron of a mouse was con-
nected to each other, its brain (about 10 millions neurons) would
at least occupy 350 cubic meters [5] (about the cranial volume
of an Orangutan). Artificial brains do not have such limitations
and can be designed as fully connected [61], but most neural
networks used in machine learning are made of layers of neu-
rons, with each layer fully connected to the next one [27, 62].
Layers are a very specific structure that prevents some flexibility
(non-Markovian tasks cannot be learned), but they make learn-
ing easier, because feed-forward networks have no intrinsic dy-
namics (contrary to recurrent neural networks). These networks
are still very regular and flexible. In image processing, convolu-
tional neural networks are classic feed-forward neural networks
in which many, well-chosen connections are removed and many
synaptic weights are constrained to be equal [63]. These net-
works are much easier to train than classic layered neural net-
works, but they cannot learn when the input data do not look
like images.

These examples highlight a potential trade-off between flexi-
bility and trainability, or, put differently, between learning abil-
ities and learning efficiency: in many situations, it seems ben-
eficial to trade some flexibility to make the system easier to
train4. Our experiments considered a simple situation in which
trainability was not a major concern because the input/output
patterns are simple and low-dimensional. In more challenging
tasks, the evolutionary process would probably have to find the
best trade-off between trainability and flexibility, and therefore
between regularity and specialization. Nonetheless, although
convolutional networks are less regular than multi-layer per-
ceptrons, they are still very regular and could be generated with
a generative encoding. Generative encodings that aim at inter-
mediate regularity might thus be one of the key to explore this
trainability/flexibility trade-off.

Overall, the present paper shows that evolution, develop-
ment and synaptic plasticity are three interleaved processes that
are hard to study separately. While an extensive understanding
of their interactions is probably out of reach with the current
state of knowledge, studies that combine simple models of each
of these processes shed light on how one of them – here de-
velopment – can simplify another – here learning. Such studies
appear helpful for both building a global vision of the evolution
of intelligent lifeforms as well as harnessing evolution to create
intelligent agents.

Methods

Plastic neuron model

Following [21–23], we distinguish two types of neurons: “stan-
dard neurons” and “modulatory neurons”. Inputs of each neu-
ron are divided into modulatory inputs Im and standard Is in-
puts. The output ai of a neuron i is then defined as follows:

ai = ϕ1

(∑
j∈Is

wijaj + bi
)

(1)

where i is the identifier of a neuron, ai its output, bi its bias,
ϕ1(x) = 1

1+exp(−λx) a sigmoid on [0, 1], wij the synaptic
weight between neurons i and j. Each non-modulatory synap-
tic weight wij is modified with regards to the sum of modula-
tory inputs and a constant coefficient η (η = 0.04 in our experi-
ments):

mi = ϕ2

(∑
j∈Im

wijaj
)

(2)

∆wij = η ·mi · ai · aj (3)

wij(t+ δt) =


min(max(wij(t) + ∆wij , 0), 30)
if wij(t) ≥ 0
min(max(wij(t)−∆wij ,−30),−10−5)
if wij(t) < 0

where ϕ2 = ϕ1(x) = 2
1+exp(−λx) − 1 is a sigmoid on [−1, 1] (to

allow positive and negative modifications of synaptic weights).

Fitness function and behavioral descriptors

The fitness function computes the number of associations that
the network successfully learn, given an evolutionary learning
set E.

For each association set of E (for instance,
{(1, B), (2, C), (3, D), (4, A)}), this function first randomly

4Flexibility must sometimes be avoided because any change in the behavior
might kill the animal or break the robot. This situation would correspond to a
very easy learning, because current values are deemed as perfect, and a very
low flexibility.

PLOS ONE | www.plosone.org 7 November 2013 | Volume 8 | Issue 11 | e79138

Mouret and Tonelli, 2013

initializes the modulated weights, that is, the network does not
have to un-learn what was previously learned. The network
is then allocated 90 learning episodes, each one executing the
following steps:

• successively select one of the four associations of the asso-
ciation set (for instance, (1, B));

• set the stimuli inputs of the neural network according to
the chosen association and set the other inputs (reward and
feedback) to zero (for instance, for the association (1, B),
the input will be [0, 0, 0, 0, 1, 0, 0, 0]);

• compute the output of the network by simulating it during
5 time-steps (5 time-steps is enough to allow a signal to
travel from the inputs neurons to the output neurons);

• select an action using the four outputs of the neural net-
work and a softmax function (see section “Output selec-
tion”);

• set the reward inputs (i.e., positive reward if the output is
correct, negative otherwise) and the feedback inputs (for
instance, if the output is “C”, a wrong answer, then the new
input will be [0, 0, 1, 0, 1, 0, 0, 1]);

• simulate the network again for 5 time-steps (this is the step
where the network is expected to reinforce connections;
however, nothing prevents adaptation to occur during the
previous activation);

• if the last learning episode for this association set is
reached:

– the positive reward that corresponds to each input
of the set is added to the fitness (for instance, if the
network’s output was C for association (1, B), C for
(2, C), D for (3, D) and A for (4, A), then 3 is added
to the current value of the fitness);

– the output of the network (before the softmax)
for each input of the set is appended to the be-
havior descriptor (for instance, for the previously
described outputs, we would append the vector
[0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0]);

In summary, the final fitness value corresponds to the average
number of associations of E that have been successfully learned.
The final behavior descriptor is a vector that contains the final
output of the network for each association of E.

This fitness function is described in a more algorithmic on
figure 7. follows:

Output selection (softmax)

At the ouptut of the neural networks, the action is selected
thanks to a softmax function [31]:

P (i) =
exp(βai)∑n
j=1 exp(βaj)

(4)

where P (i) is the probability of selecting output i, ai is the
activity of output i and β is a constant. In effect, this distri-
bution gives a higher probability to actions that corresponds to
high output values. If values are close, then they will have sim-
ilar chances to be selected; if values are very contrasted, then
the softmax function is equivalent to a “max” function. Using
this distribution instead of a simpler “max” function allows net-
work to explore – which is required to learn – and encourages
the contrast between output. This technique is commonly em-
ployed in reinforcement learning [31].

Map-based encoding

Many computational neuroscience models (e.g. [34–36]) are de-
scribed as graph of neural maps (spatially-organized identical
neurons) in which each connection is labeled by a set of param-
eters that represent the connection scheme [16](Figure 3). This
description of neural networks can be seen as a developmental
encoding according to which networks of maps are developed
to form a neural networks.

In our model, each edge is associated with three parameters:
(1) connection type (“1 to 1” or “1 to all” with uniform synap-
tic weights); (2) synaptic weight (all connections between maps
have the same strength) (3) inhibitory or excitatory (a Boolean
value). Similarly, three parameters describe each map: (1) iso-
lated neuron or map of neurons (a Boolean value); (2) inhibitory
or excitatory (a Boolean value – the whole map will be in-
hibitory or excitatory); (3) parameters of the neuron (float num-
ber, threshold value). Each label is encoded with a real number
in [0, 1], mutated with polynomial mutation in the same way as
intrinsic parameters of neurons and synaptic weights in a direct
encoding. The section “parameters” describes how these num-
bers are translated into Boolean values and parameters.

In the present study, all maps have the same size. Each graph
of neural maps is developped into a full neural network by an-
alyzing each node and each edge of the graph to create the cor-
responding neurons, maps and connections.

Labeled graphs are evolved using the direct encoding (Meth-
ods).

HNN encoding (minimal HyperNEAT)

HyperNEAT is a developmental encoding in which morphogen
gradients are described as feed-forward networks of mathemat-
ical functions that operate in a Cartesian space [12], called Com-
positional Pattern Producing Networks (CPPNs). When evolv-
ing an ANN, HyperNEAT evolves CPPNs that are then queried
to know each synaptic weight. This indirect approach allows
HyperNEAT to evolve large networks with Nature-like connec-
tion patterns (symmetry, symmetry with variations, repetition,
etc.).

In the present study, we use a simplified version of Hyper-
NEAT in which the CPPNs are evolved using a simple direct
encoding instead of the NEAT method5. We call this encoding
HNN (Hyper Neural Network).

We place 9 input neurons, 5 hidden neurons and 4 output
neurons in a 3D substrate (Figure 3)6. We describe each individ-
ual with two CPPNs: one connection-centred CPPN that returns
whether a connection exists (LEO link in HyperNEAT [64]) and
the synaptic weigth, and one node-centred CPPN that returns
the intrinsic parameters of each neuron, that is, the threshold
value used in the sigmoid and whether the neuron is “mod-
ulatory” or “standard”. Three functions are available to the
CPPNs: sin(x), 2/(1 + e−x)− 1 (sigmoid), e−x

2

(Gaussian) and
min(max(x,−3), 3)/3 (linear).

Many other substrates can be used and some of them un-
doubtedly lead to faster convergence; it is also possible to use
a single CPPN for both the connection and the node parame-
ters. Nevertheless, the present work is centered on the conse-
quences of using any developmental encoding when evolving
plastic neural networks. The relative performance of each en-
coding is irrelevant.

5We chose this simplified version to make easier the reproduction of our results,
to enable the use of multi-objective evolutionary algorithms and to focus our
study on the developmental process.

6We checked that we were able to design a simple CPPN that generates an ANN
that solves the task with the chosen substrate.

PLOS ONE | www.plosone.org 8 November 2013 | Volume 8 | Issue 11 | e79138

Mouret and Tonelli, 2013

ƒ 0 . Unnormalized fitness
B � . Behavior descriptor

for n = 0 to n = K do . K assocation sets
A associations[n] 2 E . Select an association set
Randomly initialize the modulated weights . Un-learn everything

for � = 0 to � = 90 do . 90 learning episodes

for j = 0 to j = 4 do . 4 assocations in each set
Activate network 5 times for A[j] . Signal travels from inputs to outputs

Select an action (softmax) and collect rewards . See section “output selection”

ƒ ƒ+ positive reward
Set the reward and the feedback inputs
Activate network 5 times times for A[j] . The network is expected to reinforce connections

if � >= P� 4 then . Final test (last episode for A)

f f + positive reward / 4 . Add the positive reward to the fitness value

B B [o�tp�ts . Append the outputs to the behavioral descriptor
end if

end for
end for

end for
fitness f / K . Final fitness value

1

Fig. 7. Algorithmic view of the fitness function.

Direct encoding (control experiment, labeled graph,
CPPN)

We use a straighforward direct encoding, loosely inspired by
NEAT [65], to encode both the labeled graph of the map-based
encoding and CPPN for the HNN experiments. We also use
it as a control experiment. In this case, the evolved graph is
employed in a more classic fashion to directly define a neural
network.

In this encoding, a neural network (or a CPPN) is described as
a directed graph and five mutation operators are implemented:

• add a connection between two randomly chosen neurons
(probability: p(c)a);

• remove a randomly chosen connection (probability: p(c)r);

• move the target or the source of a randomly chosen con-
nection (probability: p(c)c);

• add a neuron by splitting an existing connection in two (the
connection weight is kept on the two connections) (proba-
bility: p(n)a);

• delete a randomly chosen neuron and all related connec-
tions (probability: p(n)r);

• change random weights using the polynomial muta-
tion [47] (probability: pw for each connection);

• change the intrinsic parameter of a neuron (e.g. the acti-
vation function when evolving CPPNs) (probability: pb for
each neuron);.

Cross-over is not employed. To initiate the evolutionary pro-
cess, neural networks of the first generation are feed-forward
networks without hidden layer, each one with randomly gener-
ated weights. This encoding has been previously employed in
many papers, with similar parameters [4, 50, 66–68].

Counting automorphisms

Figure 8 shows the number of automorphisms for a few net-
works.

Definition 5 (Automorphism) An automorphism of a graph G =
(V,E) is a permutation σ of the vertex set V , such that the pair of
vertices (u, v) forms an edge if and only if the pair (σ(u), σ(v)) also
forms an edge. Put differently, an automorphism is a graph isomor-
phism from G to itself.

Each network has at least one automorphism, itself. The
number of symmetry axes of a network therefore corresponds to
the number of automorphisms minus one. Counting and enu-
merating automorphisms is a NP-complete problem, but there
exist fast, exact algorithms that work for most graphs [44–46].
In the present work, we use the Bliss library [45].

We count the number of automorphisms of the developped
neural network (and not those of the genotype). Modulatory
neurons are labeled as “m” and other neurons as “n”. The Bliss
library does not handle labeled edges, but edge labels can eas-
ily be transformed into node labels as follows: first, synaptic
weights are binned into four categories (large negative, small
negative, small positive, large positive); second, each of them is
associated to a unique label; last, on each connection, a node is
added and labeled by the category of the corresponding synap-
tic weight. Bias of neurons are ignored.

Evolutionary algorithm

Networks are evolved using NSGA-II [48]. To mitigate prema-
ture convergence, we add to the fitness objective a behavioral
novelty objective [4, 22, 23, 49, 50] that rewards individuals that
do something that has not been done before. In effect, we trans-
form the single-objective problem of maximimizing the fitness
into a two-objective optimization problem:

maximize

{
Fitness(x)
Novelty(x) = 1

8

∑
j∈Nx

db(x, j)
(5)

where db(x, j) denotes the distance between the behaviors of in-
dividuals x and j, Nx the set of the 10 closest individuals to x
in the archive and the current population. At the end of each
learning session (90 episodes), for each input pattern, the 4 out-
puts of the neural network are appended to a behavior descriptor
(see the “Fitness function” section). The distance db(x, j) is the
Euclidean distance between the behavior descriptors of x and j.

PLOS ONE | www.plosone.org 9 November 2013 | Volume 8 | Issue 11 | e79138

Mouret and Tonelli, 2013

Fig. 8. Examples of networks and corresponding number of automorphisms. (Colors are only here to help seing the symmetry axes, they
have no particular meaning). A. A random network typically has 1 automorphism (itself). B. The central pattern generator of the lamprey [69] has
4 automorphisms (2× 2) because it has two axial symmetries: top-down and left-right. The structure of the graph implies that the vertex orderings
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, {7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6}, {6, 5, 4, 3, 2, 1, 12, 11, 10, 9, 8, 7} and {12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1} all lead
to the same connectivity matrix. C. This network has 6 automorphisms (3!) because modules marked 1, 2 and 3 can be swapped without changing
the connectivity of the network. D. This fully connected network with uniform synaptic weights has 120 automorphisms (5!) because each of its
nodes can be swapped with any other node. E. This multi-layer perceptron with uniform synaptic weights has 241920 automorphisms(7!× 4!× 2!)
because each node of each layer can be swapped with any other node of the same layer.

Parameters

Evolutionary algorithm (NSGA-II)

• population size: 400

• number of generations: 4000

Plastic neuron model

• η = 0.04

• maximum weight: 30

• minimum weight: 0 (no negative weight)

• maximum bias: −1

• minimum bias: 1

• λ = 30

Softmax

• β = 10

Direct encoding (control experiment, labeled graph, CPPN)

• pw = 0.1 (per connection)

• pb = 0.1 (per neuron)

• ηm = 15.0 (polynomial mutation)

• p(c)a = 0.07

• p(c)r = 0.06

• p(c)c = 0.08

• p(n)a = 0.05

• p(n)r = 0.04

Map-based encoding Each connection is labeled by a tuple
(x1, x2, x3):

• synaptic weight: x1 × 30

• inhibitory/excitatory:
{

inhibitory if x2 < 0.5
excitatory, otherwise

• connection type:
{

one to one if x3 < 0.4
one to all, otherwise

Each neuron is labeled by a tuple (y1, y2, y3):

• map/single neuron:
{

map if y1 > 0.5
single neuron, otherwise

• modulatory/standard:
{

modulatory if y2 < 0.4
standard, otherwise

• bias: y3

CPPN

• available functions: sin(x), 2/(1 + e−x)− 1 (sigmoid), e−x
2

(Gaussian), min(max(x,−3), 3)/3 (linear)

• maximum connection weight: 3

• minimum connection weight: −3

• other parameters: see direct encoding

HNN encoding

• threshold for the creation of a connection (LEO link): 0.3

• synaptic weights are scaled to [0, 30]

• modulatory vs standard: modularatory if output is below
0.4

Source code

The source code for all the experiments is available at: http:
//pages.isir.upmc.fr/evorob_db

Acknowledgments

The authors thank J. Clune, S. Doncieux and B. Girard for help-
ful comments on this manuscript.

PLOS ONE | www.plosone.org 10 November 2013 | Volume 8 | Issue 11 | e79138

Mouret and Tonelli, 2013

References

1. Pfeifer R, Bongard J (2006) How the Body Shapes the Way
we Think. MIT Press.

2. Floreano D, Dürr P, Mattiussi C (2008) Neuroevolution:
from architectures to learning. Evolutionary Intelligence
1: 47–62.

3. Floreano D, Mattiussi C (2008) Bio-Inspired Artificial In-
telligence: Theories, Methods, and Technologies. Intelli-
gent Robotics and Autonomous Agents. MIT Press.

4. Mouret JB, Doncieux S (2012) Encouraging behavioral di-
versity in evolutionary robotics: An empirical study. Evo-
lutionary computation 20: 91–133.

5. Braitenberg V (2001) Brain size and number of neurons:
an exercise in synthetic neuroanatomy. Journal of com-
putational neuroscience 10: 71–77.

6. Meunier D, Lambiotte R, Bullmore ET (2010) Modular
and Hierarchically Modular Organization of Brain Net-
works. Frontiers in neuroscience 4: 200.

7. Abbott LF, Nelson SB (2000) Synaptic plasticity: taming
the beast. Nature neuroscience 3: 1178–1183.

8. Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA,
Hudspeth AJ, editors (2012) Principles of Neural Science.
McGraw-Hill, 5th edition.

9. Hornby GS, Pollack JB (2002) Creating high-level com-
ponents with a generative representation for body-brain
evolution. Artificial Life 8: 223–246.

10. Stanley KO, Miikkulainen R (2003) A taxonomy for artifi-
cial embryogeny. Artificial Life 9: 93–130.

11. Clune J, Stanley KO, Pennock RT, Ofria C (2011) On the
performance of indirect encoding across the continuum
of regularity. IEEE Transactions on Evolutionary Compu-
tation 15: 346–367.

12. Stanley KO, D’Ambrosio DB, Gauci J (2009) A hypercube-
based encoding for evolving large-scale neural networks.
Artificial life 15: 185–212.

13. Bongard J (2002) Evolving modular genetic regulatory
networks. In: Proceedings of IEEE-CEC. IEEE, volume 2,
pp. 1872–1877.

14. Mattiussi C, Floreano D (2007) Analog Genetic Encoding
for the Evolution of Circuits and Networks. Evolutionary
Computation 11: 596–607.

15. Gruau F, Whitley D (1993) Adding learning to the cellu-
lar development of neural networks: Evolution and the
Baldwin effect. Evolutionary computation 1: 213–233.

16. Mouret JB, Doncieux S, Girard B (2010) Importing
the computational neuroscience toolbox into neuro-
evolution-application to basal ganglia. In: Proceedings
of GECCO. ACM, pp. 587–594.

17. Hebb DO (1949) The organization of behavior. Wiley.
18. Niv Y, Joel D, Meilijson I, Ruppin E (2002) Evolution

of Reinforcement Learning in Uncertain Environments:
A Simple Explanation for Complex Foraging Behaviors.
Adaptive Behavior 10: 5–24.

19. Urzelai J, Floreano D (2001) Evolution of adaptive
synapses: Robots with fast adaptive behavior in new en-
vironments. Evolutionary Computation 9: 495–524.

20. Soltoggio A, Dürr P, Mattiussi C, Floreano D (2007)
Evolving neuromodulatory topologies for reinforcement
learning-like problems. In: Proceedings of IEEE-CEC. pp.
2471–2478.

21. Soltoggio A, Bullinaria JJA, Mattiussi C, Floreano D, Dürr
P (2008) Evolutionary advantages of neuromodulated
plasticity in dynamic, reward-based scenarios. In: Pro-
ceedings of ALIFE. volume 11, pp. 569–576.

22. Soltoggio A, Jones B (2009) Novelty of behaviour as a ba-
sis for the neuro-evolution of operant reward learning. In:
Proceedings of GECCO. ACM, pp. 169–176.

23. Risi S, Hughes CE, Stanley KO (2010) Evolving plastic
neural networks with novelty search. Adaptive Behav-
ior 18: 470–491.

24. Risi S, Stanley KO (2010) Indirectly Encoding Neural
Plasticity as a Pattern of Local Rules. In: Proceedings of
SAB. pp. 533–543.

25. Tonelli P, Mouret JB (2011) On the relationships between
synaptic plasticity and generative systems. In: Proceed-
ings of GECCO. ACM, pp. 1531–1538.

26. Minsky ML, Papert SA (1987) Perceptrons - Expanded
Edition: An Introduction to Computational Geometry.
MIT press.

27. Cybenko G (1989) Approximation by superpositions of a
sigmoidal function. Mathematics of Control, Signals, and
Systems (MCSS) 2: 303–314.

28. Chalmers DJ (1990) The evolution of learning: An exper-
iment in genetic connectionism. Connectionist Models
Summer School .

29. Risi S, Stanley KO (2011) Enhancing es-hyperneat to
evolve more complex regular neural networks. In: Pro-
ceedings of GECCO. ACM, pp. 1539–1546.

30. Hornby GS (2005) Measuring, enabling and comparing
modularity, regularity and hierarchy in evolutionary de-
sign. In: Proceedings of GECCO. ACM, pp. 1729–1736.

31. Sutton RS, Barto AG (1998) Reinforcement learning: An
introduction. The MIT press, 360 pp. doi:10.1016/
S1364-6613(99)01331-5.

32. Houk JC, Adams JL, Barto AG (1995) A model of how the
basal ganglia generate and use neural signals that predict
reinforcement. Models of information processing in the
basal ganglia : 249–270.

33. Frank MJ, Claus ED (2006) Anatomy of a decision: striato-
orbitofrontal interactions in reinforcement learning, de-
cision making, and reversal. Psychological review 113:
300.

34. Girard B, Tabareau N, Pham Q, Berthoz A, Slotine JJ
(2008) Where neuroscience and dynamic system theory
meet autonomous robotics: a contracting basal ganglia
model for action selection. Neural Networks 21: 628–641.

35. Gurney K, Prescott TJ, Redgrave P (2001) A computa-
tional model of action selection in the basal ganglia. II.
Analysis and simulation of behaviour. Biological cyber-
netics 84: 411–423.

36. Rougier N, Vitay J (2006) Emergence of attention within a
neural population. Neural Networks 19: 573–581.

37. Lipson H (2007) Principles of modularity, regularity, and
hierarchy for scalable systems. Journal of Biological
Physics and Chemistry 7: 125.

38. Li M, Vitányi P (2008) An introduction to Kolmogorov
complexity and its applications. Springer.

39. Peshkin L (2007) Structure induction by lossless graph
compression. In: Data Compression Conference. IEEE,
pp. 53–62.

40. Hayashida M, Akutsu T (2010) Comparing biological net-
works via graph compression. BMC systems biology 4:
S13.

41. Mowshowitz A (1968) Entropy and the complexity of
graphs: I. an index of the relative complexity of a graph.
The bulletin of mathematical biophysics 30: 175–204.

42. Mowshowitz A (1968) Entropy and the complexity of
graphs: Ii. the information content of digraphs and infi-
nite graphs. The Bulletin of mathematical biophysics 30:
225–240.

43. Zenil H, Soler-Toscano F, Dingle K, Louis AA (2013)

PLOS ONE | www.plosone.org 11 November 2013 | Volume 8 | Issue 11 | e79138

Mouret and Tonelli, 2013

Graph automorphism and topological characterization of
synthetic and natural complex networks by information
content. arXiv preprint arXiv:13060322 .

44. McKay BD (1981) Practical graph isomorphism. Congres-
sus Numerantium 30: 45–87.

45. Junttila T, Kaski P (2007) Engineering an efficient canoni-
cal labeling tool for large and sparse graphs. In: Proceed-
ings of the Ninth Workshop on Algorithm Engineering
and Experiments and the Fourth Workshop on Analytic
Algorithms and Combinatorics. SIAM, pp. 135–149.

46. Katebi H, Sakallah KA, Markov IL (2012) Graph symme-
try detection and canonical labeling: Differences and syn-
ergies. In: Proceedings of Turing-100.

47. Deb K (2001) Multi-objective optimization. John Wiley &
Sons Hoboken, NJ, 13–46 pp.

48. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast
and elitist multiobjective genetic algorithm: NSGA-II.
Evolutionary Computation 6: 182–197.

49. Lehman J, Stanley KO (2011) Abandoning objectives:
Evolution through the search for novelty alone. Evolu-
tionary computation 19: 189–223.

50. Mouret JB (2011) Novelty-based multiobjectivization. In:
New Horizons in Evolutionary Robotics, Springer. pp.
139–154.

51. Clune* J, Mouret* JB, Lipson H (2013) The evolutionary
origins of modularity. Proceedings of the Royal Society
B: Biological Sciences 280: 20122863.

52. Gould S, Lewontin R (1979) The spandrels of San Marco
and the panglossian paradigm: a critique of the adapta-
tionist programme. Proceedings of the Royal Society of
London Series B, Biological Sciences 205: 581–598.

53. Chklovskii D, Schikorski T, Stevens C (2002) Wiring opti-
mization in cortical circuits. Neuron 34: 341–347.

54. Cherniak C, Mokhtarzada Z, Rodriguez-Esteban R,
Changizi K (2004) Global optimization of cerebral cortex
layout. Proceedings of the National Academy of Sciences
101: 1081–6.

55. Chen B, Hall D, Chklovskii D (2006) Wiring optimization
can relate neuronal structure and function. Proceedings
of the National Academy of Sciences 103: 4723.

56. Potts R (1998) Variability Selection in Hominid Evolution.
Evolutionary Anthropology 7: 81–96.

57. Richerson P, Bettinger R, Boyd R (2005) Evolution on a
restless planet: Were environmental variability and en-
vironmental change major drivers of human evolution?
Handbook of evolution 2: 223–242.

58. Grossberg S (2000) The complementary brain: unifying
brain dynamics and modularity. Trends in cognitive sci-
ences 4: 233–246.

59. Bullmore E, Sporns O (2009) Complex brain networks:
graph theoretical analysis of structural and functional
systems. Nature reviews Neuroscience 10: 186–98.

60. Striedter G (2005) Principles of brain evolution. Sinauer
Associates Sunderland, MA.

61. Hopfield JJ (1982) Neural networks and physical systems
with emergent collective computational abilities. Pro-
ceedings of the national academy of sciences 79: 2554–
2558.

62. Haykin S (1998) Neural Networks: A Comprehensive
Foundation. Prentice Hall.

63. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE 86: 2278–2324.

64. Verbancsics P, Stanley KO (2011) Constraining Connectiv-
ity to Encourage Modularity in HyperNEAT. In: Proceed-
ings of GECCO. ACM, pp. 1483–1490.

65. Stanley KO, Miikkulainen R (2002) Evolving neural net-
works through augmenting topologies. Evolutionary
Computation 10: 99–127.

66. Mouret JB, Doncieux S (2009) Overcoming the bootstrap
problem in evolutionary robotics using behavioral diver-
sity. In: Proceedings of CEC. IEEE, pp. 1161–1168.

67. Pinville T, Koos S, Mouret JB, Doncieux S (2011) How to
promote generalisation in evolutionary robotics: the pro-
gab approach. In: Proceedings of GECCO. ACM, pp. 259–
266.

68. Ollion C, Pinville T, Doncieux S (2012) With a little help
from selection pressures: evolution of memory in robot
controllers. In: Proceedings of ALIFE. volume 13, pp.
407–414.

69. Ijspeert AJ, Crespi A, Ryczko D, Cabelguen JM (2007)
From swimming to walking with a salamander robot
driven by a spinal cord model. Science 315: 1416–1420.

PLOS ONE | www.plosone.org 12 November 2013 | Volume 8 | Issue 11 | e79138

