
HAL Id: hal-01264690
https://hal.science/hal-01264690v1

Submitted on 29 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons CC0 - Public Domain Dedication 4.0 International License

A Non-Uniform Finitary Relational Semantics of System
T

Lionel Vaux

To cite this version:
Lionel Vaux. A Non-Uniform Finitary Relational Semantics of System T. 6th Workshop on Fixed
Points in Computer Science (FICS’09), Sep 2009, Coimbra, Portugal. �hal-01264690�

https://hal.science/hal-01264690v1
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
https://hal.archives-ouvertes.fr

A Non-Uniform Finitary Relational Semantics of System T
Lionel Vaux∗

Laboratoire de Mathématiques de l’Université de Savoie
UFR SFA, Campus Scientifique, 73376 Le Bourget-du-Lac Cedex, FRANCE

lionel.vaux@univ-savoie.fr

August 11, 2009

Abstract

We study iteration and recursion operators in the denotational semantics of typed λ -calculi de-
rived from the multiset relational model of linear logic. Although these operators are defined as
fixpoints of typed functionals, we prove them finitary in the sense of Ehrhard’s finiteness spaces.

1 Introduction

Finiteness spaces were introduced by Ehrhard [1], refining the purely relational model of linear logic. A
finiteness space is a set equipped with a finiteness structure, i.e. a particular set of subsets which are said
to be finitary; and the model is such that the relational denotation of a proof in linear logic is always a
finitary subset of its conclusion. By the usual co-Kleisli construction, this also provides a model of the
simply typed λ -calculus: the cartesian closed category Fin. The main property of finiteness spaces is that
the intersection of two finitary subsets of dual types is always finite. This feature allows to reformulate
Girard’s quantitative semantics [2] in a standard algebraic setting, where morphisms interpreting typed
λ -terms are analytic functions between the topological vector spaces generated by vectors with finitary
supports. This provided the semantical foundations of Ehrhard-Regnier’s differential λ -calculus [3] and
motivated the general study of a differential extension of linear logic (e.g., [4, 5, 6, 7, 8, 9, 10]).

It is worth noticing that finiteness spaces can accomodate typed λ -calculi only. In particular, the
relational semantics of fixpoint combinators is never finitary. The whole point of the finiteness construc-
tion is actually to reject infinite computations, ensuring the intermediate sets involved in the relational
interpretation of a cut are all finite. Despite this restrictive design, Ehrhard proved that a limited form of
recursion was available, by defining a finitary tail-recursive iteration operator.

The main result of the present paper is that finiteness spaces can actually accomodate the standard
notion of primitive recursion in λ -calculus, Gödel’s system T : we prove Fin admits a weak natural
number object in the sense of [11, 12], and we more generally exhibit a finitary recursion operator for
this interpretation of the type of natural numbers. This achievement is twofold:

• Before considering finiteness, we must define a recursion operator in the cartesian closed category
deduced from the relational model of linear logic. For that purpose, we cannot follow Ehrhard and
use the flat interpretation of the type Nat of natural numbers. Indeed, if t, u and v are terms of
types respectively Nat, Nat⇒X⇒X and X , the recursion step R(S t)uv ; ut (R t uv) puts t in
argument position. In case u is a constant function, t is not used in the reduced form. The recursor
R must however discriminate between S t and O, hence the successor S cannot be linear: it must
produce information independently from its input. Though it might be obscure for the reader not
familiar with the relational or coherence semantics, this argument will be made formal in the paper.
This was already noted by Girard in coherence spaces [13]: we adopt the solution he proposed,
and interpret terms of type Nat by so-called lazy natural numbers. An notable outcome is that our

∗This work has been partially funded by the French ANR projet blanc “Curry Howard pour la Concurrence” CHOCO
ANR-07-BLAN-0324.

1

lionel.vaux@univ-savoie.fr

A Non-Uniform Finitary Relational Semantics of System T Lionel Vaux

interpretation provides a semantic evidence of the well-known gap in expressive power between
the iterator and recursor variants of system T .

• The second aspect of our work is to establish that this relational semantics is finitary. This is far
from immediate because the recursion operator is defined as the fixpoint of finitary approximants:
since fixpoints themselves are not finitary relations, it is necessary to obtain stronger properties of
these approximants to conclude.

Structure of the paper. In section 2, we briefly describe two cartesian closed categories: the category
Rel of sets and relations from multisets to points, and the category Fin of finiteness spaces and finitary
relations from multisets to points. In section 3, we give an explicit presentation of the relational semantics
of typed λ -calculi in Rel and Fin, which we extend to system T in section 4. In section 5, we establish a
uniformity property of iteration-definable morphisms, which does not hold for recursion in general.

2 Sets, Relations and Finiteness Spaces

If A is a set, denote by P(A) the powerset of A, by Pf (A) the set of all finite subsets of A and by A!

the set of all finite multisets of A. If (α1, . . . ,αn) ∈ An, we write α = [α1, . . . ,αn] for the corresponding
multiset, and denote multiset union additively. Let f ⊆ A× B be a relation from A to B, we write
f⊥ = {(β ,α); (α,β) ∈ f}. For all a⊆ A, we set f ·a = {β ∈ B; ∃α ∈ a, (α,β) ∈ f}. We write Rel for
the coKleisli category of the comonad (−)! in the relational model of linear logic (see e.g. [14]): objects
are sets and Rel(A,B) = P

(
A!×B

)
; the identity on A is idA = {([α] ,α); α ∈ A}; if f ∈ Rel(A,B) and

g ∈ Rel(B,C) then g◦ f =
{

(∑n
i=1 α i,γ) ; ∃β = [β1, . . . ,βn] ∈ B!, (β ,γ) ∈ g∧∀i (α i,βi) ∈ f

}
.

The category Rel is cartesian closed. The cartesian product is given by the disjoint union of sets A]
B = ({1}×A)∪({2}×B), with terminal object the empty set /0. Projections are {([(1,α)] ,α) ; α ∈ A} ∈
Rel(A]B,A) and {([(2,β)] ,β) ; β ∈ B} ∈ Rel(A]B,B). If f ∈ Rel(C,A) and g ∈ Rel(C,B), pairing
is given by: 〈 f ,g〉 = {(γ,(1,α)) ; (γ,α) ∈ f} ∪ {(γ,(2,β)) ; (γ,β) ∈ g} ∈ Rel(C,A]B). The unique
morphism from A to /0 is /0. The adjunction for closedness is Rel(A]B,C)∼= Rel(A,B!×C) which boils
down to the bijection (A]B)! ∼= A!×B!.

We recall the few notions we shall use on finiteness spaces. For a detailled presentation, the obvious
reference is [1]. Let F ⊆ P(A) be any set of subsets of A. We define the pre-dual of F in A as F⊥ =
{a′ ⊆ A; ∀a ∈ F, a∩a′ ∈Pf (A)}. By a standard argument, we have the following immediate properties:
Pf (A)⊆ F⊥; F⊆ F⊥⊥; if G⊆ F, F⊥ ⊆G⊥. By the last two, we get F⊥ = F⊥⊥⊥. A finiteness structure
on A is a set F of subsets of A such that F⊥⊥ = F. Then a finiteness space is a dependant pair A =
(|A | ,F(A)) where |A | is the underlying set, called the web of A , and F(A) is a finiteness structure
on |A |. We write A ⊥ for the dual finiteness space:

∣∣A ⊥∣∣= |A | and F
(
A ⊥)= F(A)⊥. The elements

of F(A) are called the finitary subsets of A .
For all set A, (A,Pf (A)) is a finiteness space and (A,Pf (A))⊥ = (A,P(A)). In particular, each

finite set A is the web of exactly one finiteness space: (A,Pf (A)) = (A,P(A)). We introduce the empty
finiteness space T = (/0,{ /0}) and the finiteness space of flat natural numbers N = (N,Pf (N)). If A
and B are finiteness spaces, we define A & B and A ⇒B as follows. Let |A &B| = |A |] |B| and
F(A &B) = {a]b; a ∈ F(A)∧b ∈ F(B)}. Let |A ⇒B|= |A |!×|B| and set f ∈ F(A ⇒B) iff:
∀a ∈ F(A), f · a! ∈ F(B), and ∀β ∈ |B|, (f⊥ · {β})∩ a! is finite. It is easily seen that A & B is a
finiteness space, but the same result for A ⇒B is quite technical and the only known proof uses the
axiom of choice [1]. We call finitary relations the elements of F(A ⇒B).

Notice that F(A ⇒B) ⊆ Rel(|A | , |B|). We write Fin for the category of finiteness spaces with
Fin(A ,B) = F(A ⇒B) and composition defined as in Rel. It is cartesian closed with terminal object

2

A Non-Uniform Finitary Relational Semantics of System T Lionel Vaux

(Var)
Γ,x : A,∆ ` x : A

(Unit)
Γ ` 〈〉 :>

a ∈ CA (Const)
Γ ` a : A

Γ,x : A ` s : B
(Abs)

Γ ` λxs : A→ B
Γ ` s : A→ B Γ ` t : A (App)

Γ ` st : B
Γ ` s : A Γ ` t : B (Pair)

Γ ` 〈s, t〉 : A×B
Γ ` s : A×B (Left)
Γ ` πl s : A

Γ ` s : A×B (Right)
Γ ` πr s : B

Figure 1: Rules of typed λ -calculi with products

JVarK
Γ[],x[α] : A,∆[] ` xα : A

a ∈ CA α ∈ JaK
JConstK

Γ[] ` aα : A
Γ,xα : A ` sβ : B

JAbsK
Γ ` λxs(α,β) : A→ B

Γ0 ` s([α1,...,αk],β) : A→ B Γ1 ` tα1 : A · · · Γk ` tαk : A JAppK
∑

k
j=0 Γ j ` stβ : B

Γ ` sα
i : Ai JPairiK

Γ ` 〈s1,s2〉(i,α) : A1×A2

Γ ` s(1,α) : A×B JLeftK
Γ ` πl sα : A

Γ ` s(2,β) : A×B JRightK
Γ ` πr sβ : B

Figure 2: Computing points in the relational semantics

T , product −&− and exponential −⇒−: the definitions of those functors on morphisms, the natural
transformations, and the adjunction required for cartesian closedness are exactly the same as for Rel.

3 The Multiset Relational Semantics of Typed λ -Calculi

Typed λ -calculi. In this section, we give an explicit description of the interpretation in Rel and Fin of
the basic constructions of typed λ -calculi with products. Type and term expressions are given by:

A,B ::=X | A→ B | A×B | > and s, t ::= x | a | λxs | st | 〈s, t〉 | πl s | πr s | 〈〉

where X ranges over a fixed set A of atomic types, x ranges over term variables and a ranges over
term constants. To each variable or constant, we associate a type, and we write CA for the collection of
constants of type A. A typing judgement is an expression Γ ` s : A derived from the rules in Figure 1
where contexts Γ and ∆ range over lists (x1 : A1, . . . ,xn : An) of typed variables. The operational semantics
of a typed λ -calculus is given by a contextual equivalence relation' on typed terms: if s' t, then s and t
have the same type, say A; we then write Γ ` s' t : A for any suitable Γ. In general, we will give' as the
reflexive, symmetric and transitive closure of a contextual relation > on typed terms. We define >0 as
the least one such that: πl 〈s, t〉>0 s, πr 〈s, t〉>0 t and (λxs) t >0 s [x := t] (with the obvious assumptions
ensuring typability), and we write '0 for the corresponding equivalence.

Relational interpretation and finiteness property. Assume a set JXK is given for each base type X ;
then we interpret type constructions by JA→ BK = JAK!×JBK, JA×BK = JAK]JBK and J>K = /0. Further
assume that with every constant a ∈ CA is associated a subset JaK ⊆ JAK. The relational semantics of
a derivable typing judgement x1 : A1, . . . ,xn : An ` s : A will be a relation JsKx1:A1,...,xn:An

⊆ JA1K!×·· ·×
JAnK!× JAK. We first introduce the deductive system of Figure 2. In this system, derivable judgements
are semantic annotations of typing judgements: xα1

1 : A1, . . . ,xαn
n : An ` sα : A stands for (α1, . . . ,αn,α)∈

JsKx1:A1,...,xn:An
where each α i ∈ JAiK! and α ∈ JAK. In rules JVarK and JConstK, Γ[] denotes an annotated

3

A Non-Uniform Finitary Relational Semantics of System T Lionel Vaux

context of the form x[]
1 : A1, . . . ,x

[]
n : An. In rule JAppK, the sum of annotated contexts is defined point-

wise:
(

xα1
1 : A1, . . . ,xαn

n : An

)
+
(

xα
′
1

1 : A1, . . . ,x
α
′
n

n : An

)
=
(

xα1+α
′
1

1 : A1, . . . ,x
αn+α

′
n

n : An

)
. The semantics

of a term is the set of its annotations: JsKx1:A1,...,xn:An
=
{

(α1, . . . ,αn,α); xα1
1 : A1, . . . ,xαn

n : An ` sα : A
}

.
Notice there is no rule for 〈〉 in Figure 2, hence J〈〉K

Γ
= /0 for all Γ.

Theorem 3.1 (Invariance). If Γ ` s'0 t : A then JsK
Γ

= JtK
Γ
.

Proof. We followed the standard interpretation of typed λ -calculi in cartesian closed categories, in
the particular case of Rel. A direct proof is also easy, first proving a substitution lemma: if Γ0,x :
A[α1,...,αk],∆0 ` sβ : B, and, for all j ∈ {1, . . . ,k}, Γ j,∆ j ` tα j : A, then ∑

k
j=0 Γ j,∑

k
j=0 ∆ j ` s [x := t]β : B.

The relational interpretation also defines a semantics in Fin: assume a finiteness structure F(X) is
given for all atomic type X , so that X∗ = (JXK ,F(X)) is a finiteness space, and set (A→ B)∗ = A∗⇒ B∗,
(A×B)∗ = A∗& B∗ and >∗ = T . Then, further assuming that, for all a ∈ CA, JaK ∈ F(A∗), we obtain:

Theorem 3.2 (Finiteness). If x1 : A1, . . . ,xn : An ` s : A then JsKx1:A1,...,xn:An
∈ F(A∗1⇒···⇒A∗n⇒A∗).

Proof. This is a straightforward consequence of the fact that the cartesian closed structure of Fin is given
by the same morphisms as in Rel. A direct proof is also possible, by induction on typing derivations.

Examples. Pure typed λ -calculi are those with no additional constant or conversion rule: fix a set A of
atomic types, and write ΛA

0 for the calculus where CA = /0 for all A, and s' t iff s'0 t. This is the most
basic case and we have just shown that Rel and Fin model '0. Be aware that if we introduce no atomic
type, then the semantics is actually trivial: in Λ /0

0, all types and terms are interpreted by /0.
By contrast, we can consider the internal language ΛRel of Rel in which all relations can be described:

fix A as the collection of all sets (or a fixed set of sets) and CA = P(JAK). Then set s'Rel t iff JsK
Γ

= JtK
Γ
,

for any suitable Γ. The point in defining such a monstrous language is to enable very natural notations
for relations: in general, we will identify closed terms in ΛRel with the relations they denote in the empty
context. For instance, we write idA = λxx with x of type A; and if f ∈ Rel(A,B) and g ∈ Rel(B,C), we
have g ◦ f = λx(g(f x)). Similarly, the internal language ΛFin of Fin, where A is the collection of all
finiteness spaces and CA = F(A∗), allows to denote conveniently all finitary relations.

The main contribution of the present paper is to establish that Fin models Gödel’s system T , which
can be presented in various ways. The iterator version of system T is the typed λ -calculus with an
atomic type Nat of natural numbers, and constants O of type Nat, S of type Nat→ Nat and for all type
A, IA of type Nat→ (A→ A)→ A→ A and subject to the following additional conversions: IOuv > v
and I(S t)uv > u(I t uv) (we will in general omit the type subscript of such parametered constants). The
recursor variant is similar, but the iterator is replaced with RA of type Nat→ (Nat→ A→ A)→ A→ A
subject to conversions ROuv > v and R(S t)uv > ut (R t uv). Those systems allow to represent exactly
the same functions on the set of natural numbers, where the number n is denoted by Sn O: this is the
consequence of a normalization theorem (see [13]). In fact, we can define a recursor using iteration
and products with the standard encoding rec = λxλyλ zπl (Ix(λw〈y(πr w)(πl w),S(πr w)〉)〈z,O〉), and
we get rec(Sn O)uv ' R(Sn O)uv: the idea is to reconstruct the integer argument on the fly. But this
encoding is valid only for ground terms of type Nat: rec(S t)uv' ut (rec t uv) holds only if we suppose
t is of the form Sn O, or reduces to such a term. By contrast, the encoding of the iterator by iter =
λxλyλ z(Rx(λx′ y)z) is extensionally valid: iterOuv' v and iter(S t) uv' u(iter t uv) for all t,u,v.

The fact that one direction of the encoding holds only on ground terms indicate that the algorithmic
properties of both systems may differ. And these differences will appear in the semantics (see the final
section). Also, recall the discussion in our introduction: the tail recursive variant of iterator, J subject to

4

A Non-Uniform Finitary Relational Semantics of System T Lionel Vaux

J(S t)uv > J t u(uv), uses its integer argument linearly. This enabled Ehrhard to define a semantics of
iteration, with Nat∗ = N = (N,Pf (N)), JOK = O = {0} and JSK = S = {([n] ,n+1); n ∈ N}. Such an
interpretation of natural numbers, however, fails to provide a semantics of I or R, in Rel or Fin.

Lemma 3.1. Assume JNatK = |N |, JOK = O and JSK = S , and let A be any type such that JAK 6= /0. Then
there is no IA ⊆ JNat→ (A→ A)→ A→ AK such that, setting JIAK = IA, we obtain JIOuvK

Γ
= JvK

Γ

and JI(S t) uvK
Γ

= Ju(I t uv)K
Γ

as soon as Γ ` t : Nat, Γ ` u : A→ A and Γ ` v : A.

Proof. By contradiction, assume the above equations hold. By the second equation and Theorem 3.1,
JI(Sx) (λ z′ y) zK = JyK, and thus x[] : Nat,y[α] : A,z[] : A` I(Sx) (λ z′ y) zα : A. Inversing the rules of Figure
2, we obtain that ([] , [([] ,α)] , [] ,α)∈ JIK and then ([([] ,α)] , [] ,α)∈ JIOK. Since JAK 6= /0, this contradicts
the fact that, by the first equation: JIOK = Jλyλ z(IOyz)K = Jλyλ zzK = {([] , [α] ,α); α ∈ JAK}.

4 A finitary relational interpretation of primitive recursion

Lazy natural numbers. That x[] : Nat,y[α] : A,z[] : A ` I(Sx) (λ z′ y) zα : A implies ([] , [([] ,α)] , [] ,α)∈
JIK holds because JSK = S is linear, hence strict: this reflects the general fact that, if s ∈ Rel(A,B)
contains no ([] ,β) then, for all t ∈ Rel(B,C), ([] ,γ) in t ◦ s iff ([] ,γ) ∈ t. Such a phenomenon was also
noted by Girard in his interpretation of system T in coherence spaces [13]. His evidence that there was
no interpretation of the iteration operator using the linear successor relied on a coherence argument. The
previous lemma is stronger: it holds in any web based model as soon as the interpretation of successor is
strict.

In short, strict morphisms cannot produce anything ex nihilo; but the successor of any natural number
should be marked as non-zero, for the iterator to distiguish between both cases. Hence the successor
should be affine: similarly to Girard’s solution, we will interpret Nat by so-called lazy natural numbers.
Let Nl = (|Nl| ,Pf (|Nl|)) be such that |Nl| = N∪N>, where N> is just a disjoint copy of N. The
elements of N> are denoted by k>, for k ∈ N: k> represents a partial number, not fully determined but
strictly greater than k. If ν ∈ |Nl|, we define ν+ as k + 1 if ν = k and (k + 1)> if ν = k>. Then we set
Sl = {([] ,0>)}∪{([ν] ,ν+)}, which is affine. Notice that O ∈ F(Nl) and Sl ∈ F(Nl⇒Nl).

Fixpoints. For all finiteness space A , write Rec [A] = Nl⇒ (Nl⇒A ⇒A)⇒A ⇒A . We want to
introduce a recursion operator RA ∈ F(Rec [A]) intuitively subject to the following definition: R t uv =

match t with
{

O 7→ v
S t ′ 7→ ut ′ (R t ′ uv)

. This definition is recursive, and a natural means to obtain such

an operator is as the fixpoint of S tep = λX λxλyλ z
(

match x with
{

O 7→ z
Sx′ 7→ yx′ (X x′ yz)

)
.

The cartesian closed category Rel is cpo-enriched, the order on morphisms being inclusion. Hence it
has fixpoints at all types: for all set A and f ∈ Rel(A,A), the least fixpoint of f is

⋃
k≥0 f k /0, which is

an increasing union. The least fixpoint operator is itself definable as the supremum of its approximants,
F ixA =

⋃
k≥0 F ix(k)

A , where F ix(0)
A = /0 and F ix(k+1)

A = λ f
(

f
(
F ix(k)

A f
))

, more explicitly F ix(k+1)
A ={

([([α1, . . . ,αn] ,α)]+∑
n
i=1 ϕ i,α) ; ∀i, (ϕ i,αi) ∈F ix(k)

A

}
. Notice that these approximants are finitary:

if A is a finiteness space then, for all k, F ix(k)
A = F ix(k)

|A | ∈ F((A ⇒A)⇒A). The fixpoint, however,
is not finitary in general: for instance F ixSl = N> 6∈ F(Nl) hence F ixNl 6∈ F((Nl⇒Nl)⇒Nl). So
we proceed in two steps: we first introduce the finitary approximants R

(k)
A ∈ F(Rec [A]) by R

(k)
A =

S tepk
A /0, then we prove RA =

⋃
k≥0 R

(k)
A ∈ F(Rec [A]).

5

A Non-Uniform Finitary Relational Semantics of System T Lionel Vaux

Pattern matching on lazy natural numbers. We introduce a finitary operator C ase, intuitively de-

fined as: C aset uv = match t with
{

O 7→ v
S t ′ 7→ ut ′

. More formally:

Definition 4.1. If ν = [ν1, . . . ,νk] ∈ |Nl|!, we write ν
+ =

[
ν

+
1 , . . . ,ν+

n
]
. Then for all set A, let C aseA =

{([0] , [] , [α] ,α); α ∈ A}∪
{

([0>]+ν
+, [(ν ,α)] , [] ,α); ν ∈ |Nl|!∧α ∈ A

}
.

Lemma 4.1. Pattern matching is finitary: C aseA = C ase|A | ∈ F(Nl⇒ (Nl⇒A)⇒A ⇒A). More-
over, y : Nl⇒A ,z : A ` C aseO yz' z : A and x : Nl,y : Nl⇒A ,z : A ` C ase(Sl x)yz' yx : A .

Proof. That the equations hold is a routine exercise. To prove C ase is finitary, we check the defi-
nition of F(−⇒−). For the first direction: for all n ∈ F(Nl), C asen ⊆ {([] , [α] ,α); α ∈ |A |} ∪{
([(ν ,α)] , [] ,α); ν

+ ∈ n!∧α ∈ |A |
}

; hence, setting n′ = {ν ; ν+ ∈ n} ∈ F(Nl), we obtain C asen ⊆
(λyλ zz)∪ (λyλ z(yn′)), and we conclude since the union of two finitary subsets is finitary. In the re-
verse direction, we prove that, for all γ ∈ |(Nl⇒A)⇒A ⇒A |, setting N′ = C ase⊥ · {γ}, n! ∩N′ is
finite; this is immediate because N′ has at most one element.

A recursor in Rel. We introduce the relation R as the fixpoint of S tep.

Definition 4.2. Fix a set A. Let S tepA = λX λxλyλ z(C aseA x(λx′ (yx′ (X x′ yz)))z). and, for all
k ∈ N, let R

(k)
A = S tepk

A /0. Then we define RA =
⋃

k≥0 R
(k)
A , and fix JRK = R.

Lemma 4.2. For all finiteness space A , S tepA = S tep|A | ∈ F(Rec [A]⇒Rec [A]) and, for all k,

R
(k)
A = R

(k)
|A | ∈ F(Rec [A]). Moreover, we have: R

(0)
A = /0 and R

(k+1)
A = {([0] , [] , [α] ,α); α ∈ |A |}∪{(

[0>]+∑
n
i=0 ν

+
i , [(ν0, [α1, . . . ,αn] ,α)]+∑

n
i=1 ϕ i,∑

n
i=1 α i,α

)
; ∀i, (ν i,ϕ i,α i,αi) ∈R

(k)
A

}
.

Proof. The finiteness of the approximants follows from Theorem 3.2. The explicit description of R
(k)
A is

a direct application of the definition of the relational semantics.

Theorem 4.3 (Correctness). For all suitable Γ and ∆, JROyzK
Γ
= JzK

Γ
and JR(Sx)yzK

∆
= Jyx(Rxyz)K

∆
.

Proof. This follows directly from Lemma 4.1 and the fact that R = S tepR.

Finiteness. It only remains to prove R is finitary. Following the definition of (−⇒−), we proceed
in two steps: the image of a finitary subset of Nl is finitary; conversely, the preimage of a singleton is
“anti-finitary”.

Definition 4.4. If α = [α1, . . . ,αk] ∈ a!, we denote the support of α by Supp(α) = {α1, . . . ,αk} ⊆ a, and
the size of α by #(α) = k. If n ∈ F(Nl), we set max(n) = max{k; k ∈ n∨ k> ∈ n}, with the convention
max(/0) = 0. Then if ν ∈ |Nl|! we set max(ν) = max(Supp(ν)), and if n ⊆ n! for some n ∈ F(Nl),
max(n) = max(

⋃
ν∈n Supp(ν)).

Lemma 4.3. For all γ = (ν ,ϕ,α,α) ∈RA , γ ∈R
(max(ν)+1)
A .

Proof. By induction on max(ν), using Lemma 4.2.

Lemma 4.4. If n ∈ F(Nl), then RA n ∈ F((Nl⇒A ⇒A)⇒A ⇒A).

Proof. The previous Lemma entails RA n = R
(max(n)+1)
A n. We conclude recalling that R

(max(n)+1)
A n ∈

F((Nl⇒A ⇒A)⇒A ⇒A), because R
(max(n)+1)
A ∈ Rec [A].

6

A Non-Uniform Finitary Relational Semantics of System T Lionel Vaux

Definition 4.5. For all ϕ = [(ν1,α1,α1), . . . ,(νk,αk,αk)] ∈ |Nl⇒A ⇒A |!, let ##(ϕ) = ∑
k
j=1 #(ν j).

Lemma 4.5. If (ν ,ϕ,α,α) ∈RA , then #(ν) = #(α)+#(ϕ)+##(ϕ).

Proof. Using Lemma 4.2, the result is proved for all (ν ,ϕ,α,α) ∈R
(k)
A , by induction on k.

Theorem 4.6 (The recursion operator is finitary). RA ∈ F(Rec [A]).

Proof. By Lemma 4.4, we are left to prove that, for all n ∈ F(Nl) and γ ∈ |(Nl⇒A ⇒A)⇒A ⇒A |,
N = n!∩

(
R⊥ · {γ}

)
is finite. But by Lemma 4.5,

N ⊆
{

ν ∈ |Nl|!; #(ν) = #(α)+#(ϕ)+##(ϕ)∧max(ν)≤max(n)
}

which is finite.

Remark 4.7. We keep calling R “the” recursion operator, but notice such an operator is not unique in
Rel or Fin: let C ase′A = {([0,0] , [] , [α] ,α); α ∈ A}∪

{(
[0>]+ν

+, [(ν ,α)] , [] ,α
)

; ν ∈ |Nl|!∧α ∈ A
}

,
for instance; this variant of matching operator behaves exactly like C ase, and one can reproduce our
construction of the recursor based on that.

5 About iteration

We have just provided a semantics of system T with recursor. Now let IA = λxλyλ z(RA x(λx′ y)z)
for all set A. By Theorem 4.6, IA = I|A | ∈ F(Iter [A]). Moreover, by Theorem 4.3 this defines an
iteration operator and we obtain that the triple (|Nl| ,O,Sl), resp. (Nl,O,Sl), is a weak natural number
object [11, 12] in the cartesian closed category Rel, resp. Fin.

We now develop a semantic argument demonstrating how recursion is stricly stronger than iteration.
One distinctive feature of both models is non-uniformity: if a,a′ ∈ F(A) then a∪a′ ∈ F(A); and in the
construction of a!, there is no restriction on the elements of the multisets we consider. It is very different
from the setting of coherence spaces for instance. But we can show the iterator only considers uniform
sets of lazy numbers, in the following sense: if k ∈N, we define k = S k

l O = {l>; l < k}∪{k} ∈ F(Nl);
we say n⊆ |Nl| is uniform if n⊆ k for some k. Notice that, in the coherence space of lazy natural numbers
used by Girard in [13] to interpret system T , the sets k are the finite maximal cliques: coherence is given
by k ¨ l iff k = l, k ¨ l> iff k > l and k> ¨ l> for all k, l. The only infinite maximal clique is N> (recall
this is the fixpoint of Sl). We prove I considers only uniform sets of lazy numbers.

For all k, let I
(k)
A = λxλyλ z

(
R

(k)
A x(λx′ y)z

)
. Then let S tage(0)

A = {([0] , [] , [α] ,α); α ∈ |A |};

S tage(1)
A = {([0>] , [([] ,α)] , [] ,α) ; α ∈ |A |}; and, for all k > 0, S tage(k+1)

A = I
(k+1)
A \I (k)

A . One can
check that IA =

⋃
k≥0 S tage(k)

A .

Lemma 5.1. If A 6= T then, for all k ∈ N,
⋃{

Supp(ν); ∃(ϕ,α,α), (ν ,ϕ,α,α) ∈S tage(k)
A

}
= k.

Proof. The inclusion ⊆ is easy by induction on k. For ⊇, consider λxλ z
(
I (k) x(λ z′ z′)z

)
.

As a consequence, for all (ν ,ϕ,α,α)∈I , Supp(ν) is uniform. Of course, no such property holds for
R, because R

(1)
A ⊇

{(
[0>]+ν

+, [(ν , [] ,α)] , [] ,α
)

; α ∈ |A |∧ν ∈ |Nl|!
}

. An immediate generalization
is that no recursor can be derived from I : the interpretation of any recursor on the natural number object
(Nl,O,Sl) necessarily contains elements of the above form.

7

A Non-Uniform Finitary Relational Semantics of System T Lionel Vaux

Aknowledgements

The present work stems from a discussion with Thomas Ehrhard. It also greatly benefited from many
working sessions in the company of Christine Tasson, to whom I am most grateful.

References
[1] Thomas Ehrhard. Finiteness spaces. Mathematical Structures in Computer Science, 15(4):615–646, 2005.
[2] Jean-Yves Girard. Normal functors, power series and lambda-calculus. Annals of Pure and Applied Logic,

37(2):129–177, 1988.
[3] Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theoretical Computer Science,

309:1–41, 2003.
[4] Thomas Ehrhard and Laurent Regnier. Differential interaction nets. Electr. Notes Theor. Comput. Sci.,

123:35–74, 2005.
[5] Thomas Ehrhard and Laurent Regnier. Böhm trees, Krivine’s machine and the Taylor expansion of λ -terms.

In Arnold Beckmann, Ulrich Berger, Benedikt Löwe, and John V. Tucker, editors, CiE, volume 3988 of
Lecture Notes in Computer Science, pages 186–197. Springer, 2006.

[6] Thomas Ehrhard and Olivier Laurent. Interpreting a finitary pi-calculus in differential interaction nets. In
Luis Caires and Vasco T. Vasconcelos, editors, Concurrency Theory (CONCUR ’07), volume 4703 of Lecture
Notes in Computer Science, pages 333–348. Springer, September 2007.

[7] Paolo Tranquilli. Intuitionistic differential nets and lambda-calculus. To appear in Theor. Comput. Sci, 2008.
[8] Lionel Vaux. Differential linear logic and polarization. In Curien [15], pages 371–385.
[9] Christine Tasson. Algebraic totality, towards completeness. In Curien [15], pages 325–340.

[10] Michele Pagani and Christine Tasson. The inverse Taylor expansion problem in linear logic. In LICS, 2009.
[11] Marie-France Thibault. Pre-recursive categories. Journal of Pure and Applied Algebra, 24:79–93, 1982.
[12] J. Lambek and P. J. Scott. Introduction to higher order categorical logic. Cambridge University Press, New

York, NY, USA, 1988.
[13] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and types. CUP, Cambridge, 1989.
[14] Antonio Bucciarelli, Thomas Ehrhard, and Giulio Manzonetto. Not enough points is enough. In Computer

Science Logic, volume 4646 of Lecture Notes in Computer Science, pages 298–312. Springer Berlin, 2007.
[15] Pierre-Louis Curien, editor. Typed Lambda Calculi and Applications, 9th International Conference, TLCA

2009, Brasilia, Brazil, July 1-3, 2009. Proceedings, volume 5608 of Lecture Notes in Computer Science.
Springer, 2009.

8

	Introduction
	Sets, Relations and Finiteness Spaces
	The Multiset Relational Semantics of Typed �»-Calculi
	A finitary relational interpretation of primitive recursion
	About iteration

