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A time-frequency based method for the detection
and tracking of multiple non-linearly modulated
components with births and deaths

Zhongyang Li, Nadine MartiniMember, |IEEE

Abstract—The estimation of the components which contain the voice signals without births and deaths. SynchroSquedsing
characteristics of a signal attracts great attention in many real decomposes the signal into a limited number of components
world applications. In this paper, we address the problem of gy egsed in terms of pre-defined models, namely the litrins
the tracking of multiple signal components over discrete time !
series. We propose an algorithm to first detect the components Mode Types of accuracy.(e-IMT). The method assumes for
from a given time-frequency distribution and then to track them €ache-IMT a bounded chirp rate defined usiago ensure the
automatically. In the first place, the peaks corresponding to the consistency with a true signal component. The signal compo-
signal components are detected using the statistical propertief nents are reconstructed as an automatically determinedeum
the spectral estimator. Then, an original classifier is proposed to of e-IMTs using the wavelet SynchroSqueezing transform that
automatically track the detected peaks in order to build com- o
ponents over time. This classifier is based on a total divergence offers enhanced frequency localization _compared to a non-
matrix computed from a peak-component divergence matrix that SynchroSqueezed wavelet transform. This method has superi
takes account of both amplitude and frequency information. performance and robustness compared to the empirical mode
The peak-component pairs are matched automatically from this  decomposition [6], which is based on a similar component
divergence matrix. We propose a stochastic discrimination rule definition but lacks a rigorous theoretical interpretation

to decide upon the acceptance of the peak-component pairs. In R dina th It ¢ tati h si |
this way, the algorithm can estimate the number, the amplitude egarcing the muficomponent nonstationary speech signa

and frequency modulation functions, and the births and the With births and deaths, spectral modeling synthesis [7] [8]
deaths of the components without any limitation on the number is a commonly used method for speech and voice analysis.

of components. The performance of the proposed method, a The method is based on a piecewise local spectrum analysis
post-processing of a time-frequency distribution is validated on yerformed on the time-frequency distribution of the sigiiale
simulated signals under different parameter sets. The method is . .
also applied to 4 real-world signals as a proof of its applicability. peaks, characterized by the frequ_ency and amphtude values
are detected frame by frame using a spectrum filter, and
, . . are then tracked over each time frame using peak-component
Index Terms—Time-frequency domain, multicomponent, peak o . - .
detection, component tracking, amplitude and frequency modu- classifiers based on distance metrics, most of which measure
lation, nonlinear, nonstationary, births and deaths the closeness among the frequency values. The methods in
this category, such as the Harmonic plus Noise Model (HNM)
[9] and the adaptive Harmonic plus Noise Model [10], are
proposed to deal with the strong variations of amplitude and
HE detection of the multiple components of a signdtequency, and even with the births and deaths [11] of voice
and the estimation of their instantaneous amplitudes asignals. A hidden Markov model is employed in [12] to
frequencies is an important task in various domains, such ehance the continuity of the component tracking.
speech, fault diagnosis, civil structure analysis, andieidical Many frequency-modulation estimation methods are based
applications [1] [2] [3] [4]. In this paper, we consider a gpf on a time-frequency distribution, tool that is widely used t
multicomponent signal that is particularly difficult to hie. explore the time-varying frequency signature. The Wigner-
It is characterized by the existence of multiple componentfough transform [13] [14] regards the Wigner-Ville distrib
with strong modulations both in amplitude and frequency. lion of the signal as an image, so that the Hough transform can
some situations, the amplitude of certain components mighe applied to detect the edge of the image as a straight line.
diminish to or rebound from zero, which is referred to as @he line parameters are suitable to characterize chirs.rate
death or a birth of those components respectively. Moreover, the frequency component can either be extracted
Some speech processing methods allow the estimationfrefm the time-frequency distribution by using a model [15]
the amplitude and frequency modulations of multicomponefi6] [17], or by using a peak detection method [18] [11] [8],
for which the high-power frequency trajectory is selectsed a

However, permission to use this material for any other purpasest be

obtained from the IEEE by sending a request to pubs-permis@deee.org. by finding the r_]eareSt freq_uency mach’ whereas in [11] [7]. a
Zhongyang Li and Nadine Martin are with Univ. Grenoble Alp&sPSA- spectral modeling synthesis method is used to deal with more
Lab, F-38000 Grenoble, France and CNRS, GIPSA-Lab, F-3&@hoble, Complicated frequency variations.
France. . . .
Email:  zhong-yang.li@gipsa-lab.grenoble-inp.fr; nadinertin@gipsa- For long-time multicomponent signals, these methods have

lab.grenoble-inp.fr limitations in dealing with one or more aspects, such as the
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data length, the signal types, the non-linearity types dued ttion, and creation of new components. A weighted Euclidean

number of components, as well as the births and the deatlistance of amplitude and frequency is used as the distance
of the components. A new technique has to be developednetric between a peak and a component. In this manner, the
handle all these difficulties. tracking strategy is adaptive and robust.

A new method is proposed in this paper, which detects The content of this paper is organized as follows. Section
and tracks the peaks of all local spectra of a given timé- gives the general definition of a signal of interest and
frequency distribution. The proposed method is also capatl presents the proposed algorithm in detail. The performance
estimating the amplitude modulation and the frequency modf the proposed method is analyzed with simulated data in
ulation functions of the signal components simultaneoussy Section Ill, and illustrated on real-world signals in Seanti
its main advantage, the method can deal with multimoduiatiolV. Finally, conclusions are drawn in section V.
of complicated nonlinearity types, and with the births anel t
deaths of the components. Il. THE PROPOSED ALGORITHM

Many existing nonparametric methods [19] [20] [21] are The model of the complex observatigiin] is given as,
unable to estimate the amplitude modulation, many otheg-tim _
frequency based methods [8] [11] [7] are able to extract the ylnl = S}En] +elnl, 0smsN—1
amplitude modulation functions whereas in the component 1] — S I [n) Ag[n]ed @] (1)
tracking step, the consistency of the amplitude is not taken k=1
into account. The component tracking proposed here uses bghere n is the discrete time indexs[n] is a deterministic
the amplitude and the frequency values of the peaks. To dalse-free signalg[n] is a white gaussian noise of zero mean
with the extraction of the components, three questionslghond unknown variance?, andK is the number of components

be primarily asked when using this approach: How can thg the signal.,.[»] is an indicator function that indicates the
signal be represented in the time frequency domain? H@istence of componerit,

can the amplitude-frequency trajectories of a component be . { 1 if componentk exists atn,
Ik n

separated from the noise? How can the detected trajectories .
0 otherwise.

be connected?

The proposed algorithm is applicable on an arbitrary tim%C [n] and ®4[n] are the instantaneous amplitude and phase

frequer_lcy Qistribution without cros_s—terms. The .method- Pl of the &-th component. We define the instantaneous frequency
posed in this paper does not consider the reassignment of géethe discrete derivation @[]

time-frequency distribution as in Syncrosqueezing in otde

avoid the disturbance introduced by the reassignment of the Filn] = 1
noise. In this paper, we illustrate the implementation fbiak 2
the frequency and the amplitude of the signal componeéien component: exists, we assumel,[n] to be positive

are estimated using respectively the Capongram [22] [28] aAnd @, [n] to be continuous [25] [26]. The frequency value is
the spectrogram. These distributions are employed bethasecontinuous, positive and bound@d< Fi[n] < Fy/2, where
minimum variance (Capon) estimator has a low variance whifg is the sampling frequency. In this paper, the frequency
the spectrogram offers a weak error in amplitude estimatiogstimation is based on a time-frequency distributioivgf+ 1

The interpretation of the time-frequency distribution i§requency bins, such that[n] € {0,F;/2Ny,...,f x
carried out over each time frame. First, the noise spectrufy/2Ny, ..., Fs/2}.
which is the spectral content corresponding to a noise thatHowever, when componerit dies, ®4[n] is not defined,
is assumed to be additive, is extracted using a data-driv@fd therefore the derivatiof®[n + 1] — ®x[n]) is unknown.
method. Based on the results of the noise spectrum estimatibhe above-mentioned Bedrosian identity is not applicable.
a peak detection method is proposed with a given falsEsing the indicator functiody n], the instantaneous frequency
alarm probability to distinguish the spectral content aéiest during the component death is set to zero, to avoid ambiguity
from the noise. The peaks are thus detected by a Neymayith its physical interpretation.

Pearson hypothesis test that requires the choice of a falseln this section, we describe the main steps of the proposed
alarm probability and the estimation of the noise spectrum algorithm based on a time-frequency distributiboF D, [n, f]

Using a component-tracking method, the detected peaks 8fethe signaly[n]. The calculation of the latter depends on
connected in sequence to form the amplitude and frequdhRe user and should be tailored according to the applica-
cy modulations of the components. The component-trackitign. This choice is beyond the scope of this paper. In the
method, as proposed in [18], where only a few neighborirfgllowing sections, the results of the proposed method are
time-frequency samples are used, is hardly applicable whé@monstrated using two time-frequency distributions. fiitse
births and deaths occur, or when the frequency variation @8€ is the spectrogram which provides a piece-wise Fourier-
strong. To deal with the strong nonstationarity of the signd?ased power spectral density estimate. The second one is the
we propose to use a peak-component classification in ordegpongram, which is a piece-wise power spectrum obtained
to track the amplitude and frequency modulations inspirét$ing a non-Fourier estimation method, called the minimum
by the K-means classifier [24] and by the Spectral modelingriance method [27] [28]. The details of these time-fremye
synthesis methods [11] [7]. The discrimination criteridrtte ~ distributions are presented in the appendix. An illustratis
classification yields three possible results: acceptargjec- 9iven in Fig.1.

)

(Px[n + 1] = ®x[n])Ix[n], 3)
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5 Signal content as a double-hypothesis test,
OWJMM[WWWWNVW\AMAMMMMMANWNW Ho: Y] =EMf], 5)
Sl Hi: YO[f) =S+ EM(f).
Capongram, M=21, window of 43 points, log. scale . . . .
25 - When #; is unknown, as is the case in this paper, we can
5 : ‘ 0 apply a Neyman-Pearson lemma [1], with
¥ | 20 PFA= Pr(T(f) > AHo), (®)
=15 \‘_ ‘ -40 _ .
< | ‘ ‘ i where ) is the test threshold, an®F A is the false-alarm
q% ! | 1 probability. The test result is given by
T E‘ "y | B-80
L 05 ‘ 100 H,
I § >
00 20 40 60 80 100 120 oz ()
Time (s) Ho
(a) Capongram of a seismic signal In this test, the threshold is calculated from a choseRF.A
and using the statistical properties of the spectrum estima
Spectrogram, Hann window of 43 points, log. scale For Capon and Fourier estimators,
25 m 40
v 5 s il | r(s) = 20U, (®)
§ 2 : iy e 20 En) [f]
515 0 Under the hypothesi#{,
g 20
g 27(f) ~ X3 ©)
T -40 . .
“ 05 T[f] can be regarded as proportional to a random variable
" , e -60 which has ay3 distribution [28] if the noise:[n] is gaussian.
20 40 60 80 100 120 Combining (6) and (8), the detection thresholdcan be
Time (s) determined by
(b) Spectrogram of a seismic signal +oo +oo
Fig. 1.  Two time-frequency distributions of a seismic sign&l1@0 s PFA= / PT(f) M, (2)da :/ pyz2(z)dz.  (10)
(n = 1,...,601), resampled at 5 Hz, witlVy, = 505 frequency bins. 2\ 2 2
C ith a window of 43 points (8.6 s); (b) Specaagwith .
ﬁ‘;nnavﬁ’,?nréggzrgfvﬂs pzmg (g‘_hé Z)_ points (8.6 s); (b) Speeaogwith @ oy the test hypothesis (7) becomes
Hq
YOI 2 axEMLf]. (11)

The proposed method consist of a peak detection step and
a component tracking step. The peaks of the local spectrum Ho

of time instantn, noted asy[n] = TFDy[n, f] are detected From (11), the test depends on theriori choice of the false-

in two steps. The first step is to estimate the additive noiggarm probability?.F.A4 and the estimation of the unknown
spectrum. The estimation is done by a multipass filteringbise spectrung (™) [f].

technique, as described in Section II-B. The second step ign the proposed algorithm, the test is used twice: in theenois
to detect the peaks of the local spectra, using a data-driv@fectrum estimation and in the peak detection. For the noise
peak detection method, as described in Section 1I-C. Both ﬁectrum estimation described in Section II-B, it is neapss
these steps are based on a Neyman-Pearson hypothesis t¢$émove peaks using this hypothesis test with a falseralar
as described in Section II-A. The detected peaks are finalyobability referred to as?F.A.. For the peak detection in
connected by the component tracking method proposed S@ction II-C, the test is applied using another value, reter
Section II-D. to asPFA,.

A. Hypothesis test for peak detection and removal B. Estimation of the noise spectrum
Focusing on a given time frame, we propose to approxi-
mate the unknown noise spectruifi)[f] through an iterative
process; namely, the multipass filtering that was developed
[29] [30]. The entire procedure of multipass filtering can be
(M) = g (n) summarized by Fig.2.
YU = ST £, ) The first pass is d ;-point median filter,

Since the additive noise[n] is of zero mean, the cross-
section of the time-frequency distribution at time instant
can be expressed as

where Y [f] = TFD,[n, f]. S™|[f] and EM[f] are the . L1 L1
cross-sections of respectively the deterministic sighal and &1 [f] = Median{)™ [f=——5—1- , ) [f+=5—1}
the additive noisez[n]. We define here two types of spectral (12)
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where L; is the length of a frequency window sliding over The final noise spectrung (") [f] estimation is the output
the frequency sampleé.l(”) [f] is the estimation result of the after P passes,
first pass. ) .

The estimated noise spectrum is refined in the following EM[f] =~ EMf] = ESV[S). (13)
passes. Each pags has two steps: in the first step, the
peaks of the spectru(™[f] are removed by applying the The total number of passé8 corresponds to the pass from
hypothesis test described in the previous section, witisa-fa Which the estimated noise spectrum remains identical.
alarm probabilityPF.A. and the previously estimated noise
spec’[rumé‘;ﬁ)1 [f]. All peaks verifying?{, are removed from
the local spectrum to yield its peak-free pa’ff,”) [f]. The
second step smooths the remaining @S’f) [f] by an average  The estimated noise spectrum is regarded as the spectral
filter with a sliding window ofL ; points. The estimated noisecontent verifying?, in (5). Based on the estimation result,
spectrum is upgraded by the filter output. An example of trenother Neyman-Pearson test is applied to identify the peak

C. Peak detection

first and last passes is shown in Fig.3. that verify 7. For each frequency indek, a hypothesis test
is carried out using a statistical test of the random vagiabl
Nn[.ve‘ T[f]
spectrum
VO£ estimation T(f) _ :)A)(n) [f] (14)
EMf)
under the hypothesi&
L i )
2% T(f) ~ X3 (15)
&1/
The test threshold\ is defined by a false-alarm probability
PFA, as
PFAH—| +o0 +oo
P.F.Ad == / pT(f)\Hg (x)dx = / pxg (I)diﬁ (16)
EP[£] A 2
II Then the hypothesis of peak detection (7) becomes
EPLL s .
YOz AxEMf]. 7
</;P?\/L Ho
No . . . .
”‘%f An example of the peak detection is shown in Fig.4.
E™f]
Fig. 2. Decomposition of the block "noise spectrum estimétionFig.9, gm & | [y
done by multipass filtering with? passes. Based on the local spectrum s 140 T 10 5”“"{[(/}'{]”” s
YM[f], the noise spectrum is finally estimated &) [f] using a sliding = 120 % —Ax ]
window of Ly frequency samples and the probability of false al&Pt.A.. 2 120 2
% 110 %
% 100 %
140 - - o g o . L )
0 === VO[] 0 05 1 15 2 25 0 05 1 15 2 25
130) | ES[y) Frequency (Hz) Frequency (Hz)

(@)n =232 (b) n = 206

Fig. 4. Peak detection on two local spectra of the signal gflFatn = 32
andn = 206, with PFA. = PF A4 = 0.1. (*)Detected peaks over the
thresholdX x £(™)[f] calculated withP F.A. = 0.1 and£(™)[f]. (o) Local
maxima treated as noise.

Power distribution (dB)
Power distribution (dB)

@
S

0 0. 25 0 0. 2t

'5Freq1uenc;/'5(Hz) ’ ° Freqluenc;s(Hz) ’ .
. The peaks are defined as the vertex of the lobes above the

(a) first pass (b) second pass . o .

i ) detection threshold\ x £(™) [f] . Each peak is represented

Fig. 3. The noise spectra of the local spectrum extracted free Capongram by its f (n) di litud (n) D h

of Fig.1(a) atn = 32, obtained by the first pas® (= 1) and the last pass y Its .requ?ncyfq &.m its amplitudea, °. Due to t. e

(p = P, P = 5) from the original local spectruv3?)[f], f = 1,..., Ny, honstationarity of the signal, the numb@f® of peaks varies

Ny = 505. (a) The first passt{*?)[f] calculated by the median filtering of with time n (for example in Fig.4(a) the number of detected

169 points; (b) The last pas§'532>[f] calculated by the average filtering of peast(32> = 2 at time framen = 32, whereas in Fig.4(b),
169 points of5{**)[f] obtained withPF A. = 0.1. Q%) = 3 at time framen = 206).
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D. Component tracking previously built components witl)("™) detected peaks using
We hereby address the issue of component tracking fr peak-component classifier. The principle of tracking is to
the detected peaks, as summarized in Fig.5 choose the peak-component pairs with closest amplitude and

Suppose that all the components remain inactive until tIﬁrgquency values. Therefore, the classification at eacle tim

time framen when the firstQ(tr) = Q| ramen starts with calculating the distances of all the available
start - n)In=nstart . . . .

peaks are detected. The peaks are directl; )stored as Eﬁgk-component pairs and selecting the pairs with the estall

beginning ofQ("=+r) components istances. This is done by the total divergence matrix we

propose and describe in Section 1I-D1. Then the selected
(nstar't) F,

Fynstart] = ( zNy’Ak[nstm] — a,(cn““”), pairs are acc_epted or rejected accordmg to a discrimimatio
‘ L< R rule defined in Section II-D2, or otherwise regarded as the
or "= T stare beginning of new components using a criterion described in
where K (start) = Q(nstart) Section 11-D3.

. . (18) 1) Total divergence matrix: The peak-component classifier
where F;[n] and Ay [n] denote the estimation of the frequencys pased on two essential elements: the peaks are objeats to b
modulation Fy,[n] and of the amplitude modulatioA[n] of  classified, while the components are classes that storeilasim
the k-th component. group of peaks. Differently from using a canonical classifie

the peaks are stored sequentially, and at each time frame

For a given instam : one component can associate with only one "optimal” peak

(& 1), a=1...Q" that is closest in both amplitude and frequency. Thus thes pai
| have to be selected by means of what we refer to as the total
Ay poak— No divergence matrix, which gathers all the possible choices.

detected?

=

The distance for each peak-component pair has first to

Yes be computed. Since the quality of selection relies totally o

Yes_Any existing the quality of the distance calculation, we need to take both
omponent? amplitude and frequency values into account. The amplitude
Birth of and frequency of componerit are characterized byly[n}]
55 e —— componenty and F.[n}] at time framen),, which corresponds to the most
a o divergence matrix recent non-zero value df[:] = 0,
i T o/ T l .
‘Select peak-component p#irs Iy[ni] > 0 and L[] = 0, for nj, <i <n, (19)
l while the amplitude and frequency of a detected peais
kFl defined asa{™ and fé")QFTSy. The amplitude distancéay, ,
k-th peak-component pair and frequency distancas f;, , between componerit and peak
q at time framen is defined as
d,,d A
o Aarg = | Axlni] - o), (20)
Pair accepted Afk,q = |Fk [n;c} — q(")zFTsy|'
Y[ ] L, Such distance values are calculated for all &) existing

components and all th&®(™ detected peaks. We define an
amplitude divergence matriA A and a frequency divergence

New pair abandoned matrix AF, both of dimensionkx =1 x Q™| such as
component
(")|

created

‘ AA = [Aak,q]f(m—l)xc)(n)v Aay,qg = |Ak[nﬁ — Qq

PN AF = [Afiglginnwgms  Afrg = Frlng] — £V 5|
No Al palrsa\re (51)
focessed? A le of litude and a f di
ves n example of an amplitude and a frequency divergence
matrix is illustrated in Table I.

Alrl, BIA, 1A, k=1, K,

Fig. 5. Flow chart of the component tracking. THE™ detected peaks
are classifiedﬂintdA(n components to formulate the amplitude and frequency
modulationsAy[n] and Fy[n] and the indicator functiong,[n], using the
parametersq, d5, do, andd;.

For the following n > mng.- time frames where the
tracked components are non-empty, the component tracking
is a sequential and iterative procedure to associate—")
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TABLE | . . . .
THE AMPLITUDE AND FREQUENCY DIVERGENCE MATRIX OF PEAKS because false peaks might exist because of noise and mterfe

q =1,2 OF FIG.4 AND TWO COMPONENTSk = 1,2 ALREADY TRACKED  ence terms of the time-frequency distribution. A discriatian
AT n = 32 ON THE CAPONGRAM OF FIG.1(A) USING i ; ;
PFA, = PEA — 0.1 THE TRACKING CANDIDATES ARE IN BOLD. rule based on the total divergence value is necessary tejudg
whether a pair can be accepted. Due to the random disturbance
of the noise, we assume that a pair that is correctly assatiat

Elements of peakq . =
AF andAA 1 5 should have a low total divergence value that satisfies a
Afra 0 0.75 stochastic discrimination rule; otherwise, it is regardeda
' A, | 544 | 2589 wrong association. This discrimination rule is defined as:
componentk 4 . . . . . o
o | Afkg | 075 | 0.005 (i) Generate a random variableby a uniform distribution
Aay,, | 2034 | 0.04 u[o, 1J;

(if) Accept the association if. < n(Ady 4, ); otherwise, the
association is discarded.
To facilitate the selection of peak-component pairs, the tWrhijs can be also expressed as
matrices are merged into a "total divergence matrix” acicard

to the following equation, X . (afi), for) % SRy if u < p(Adpg, ),
(Aeln], Feln]) =3 o " otherwise
AD = [Adk,Q]f(n,l x Q1) ( ’ ) othenwise (24)
with Ady, =\/AG, +ATh . (22)  whereAd, ,, is the total divergence value of the selected pair
and  Aay, = 0, AAaak,?"Afk7q =0f x AAffk,?‘. (I:c,qk). To determine Wheth.er the pair is to be accepted or
e Jmas discarded, a threshold functiof{Ad) of total divergenceAd
where Aa,q. and A fr,.. are two normalization factors.e. is applied onAd, ,, as
the maximum values of the elements &fA and AF. ¢, )
andd; are the amplitude and the frequency weighting factors 1 if 0 < Ady,q, < do,
that satisfyd; + 67 = 1. A greater frequency weighting kar) = exp(,;(w)z) if Ady g, > do,
factor means that the frequency divergence is magnifiedewhil 2 olmdo) o (25)

the amplitude divergence is suppressed, site versa. FOr \yheres — 2\/§dl_d£ is a constant designatingid, ) = 10~*.
many real-world signals, the choice of these two factors isthe functions indicates the tolerance of the divergence
quite flexible. The total divergence matriXD calculated by using two parameterd, and d,. Parameterd, is a lower
synthesizing Table | using (22) is shown in Table II using,reshold, in the sense that a pair with a total divergenteeva
df =20, anddy = dq. lower thand, is definitely accepted.d; — d,) influences the
rate of acceptance of a pair with total divergence valuedrigh
TABLE I . .
THE TOTAL DIVERGENCE MATRIX SYNTHESIZED FROMTABLE | than d, using the random test based anA high value of
ACCORDING TO(22) USING TWO CONFIGURATIONS 7 = 8 AND (d1 — do) results in a wider region of acceptance.

85 = 20a. THE TRACKING CANDIDATES ARE IN BOLD. Parameterl; controls the tolerance of the total divergence.
Successful component tracking also dependgoandd in
(22), which control the relative importance of the ampléud
and frequency divergence. The impactégf ¢, dy andd; is
shown in Fig.6 and Fig.7.

n therefore defines a soft threshold for the discrimination
rule. Instead of either accepting or rejecting the assiociat
by applying a hard threshold on the total divergence value,

n defines a smooth transition where the discrimination can

The selectio_n of the peak-component pairs matches eabq@ decided by a probability, specified ay and d;. When
componentk with the best peaky;, by locating the smallest ; -~ _ " the discrimination rule reduces to a classical hard
total divergence value of the row in the total divergence thr

Elements of the total peakgq
divergence matrix 1 2
0p =20, | 021 1.41
6p =0, | 012 | 1.41
05 =20, | 126 | 0.006
0f = dq 1.35 | 0.008

1

componentk

i AD esholding.
matrix ’ ) In Fig.6, the total divergence valuAdy , is illustrated
qr = argmin {Ady,q}. (23)  petween two components = 1,2 and two peaks; = 1,2.

(n) . . . .
tsa=@ Each total divergence value is represented by a two-dirnansi

Once the indexg; is found for the componenk, all the vector. The darker the region a total divergence value éscat
elements on row; and columny;, are removed from the total in, the higher the level of acceptance of the corresponding
divergence matrixAD to form a submatrix. The next pair ispeak-component pair. A highed, value defines a wider
selected by finding the minimum value in the submatrix. I8 thdark region (see Fig.6(a) and Fig.6(b)), whereas a larger
manner, every existing component is matched with a unigde — dy induces a smoother transition outside. The valye
peak; the selection continues until the submatrix reduces tis important for the pairdk = 1, ¢ = 1 andk = 2, ¢ = 2,
vector. which have small total divergence values (see Fig.6(a) and
2) Discrimination rule: A peak-component pair thus se-Fig.6(c)). Nonetheless, the pdir= 1, ¢ = 2, with a high total
lected might be wrong if the total divergence value is higldivergence value that corresponds to a wrong associagon, i
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almost impossible to be accepted simgé\d; 1) is very close spectrum. This means that the creation of a new component
to 0. In Fig.6, it is evident that in case & = 1 as shown can be determined by using the global spectrum.

in (@) and (b), the peak of the best maigh= 1. In another ~ The creation of a component yields a component activated
case wherés = 2 as shown in (c) and (d), the peak of theat instantn, expressed as,

best matchg, = 2. The gap defined byl; — dy affects the .

acceptance of the pairs outside. Indeed, the valueg @ind R = K4 AlaFf((m [illi<n = 0, )
d, are not very sensitive unless they become close o 1. A illicn = 0, Fgmy[n] = fq x QFTsyaAf((n) [n] = ag,

From Fig.7(a) to Fig.7(b), the total divergence values are jt Vif] > A x Elfl,
influenced by the increase ify compared ta),. The contri- (26)
bution of the amplitude divergence is suppressed with mspwhereé’[f] is the global noise spectrum estimated using the
to the frequency divergence. multipass filtering proposed in Section 1I-B with false+ata

probability PF.A. and number of passes; )\ is a detection
threshold that is calculated using the method proposed in
1 Section II-C with false-alarm probabilitpp F.A,.

k=1,6;=0, k=1,6,=4,

: peak q=1 peak g=1
12 O peak g=2 O peakg=2
, di2

S
Power spectral density (dB)

Power spectral density (dB)
A

O dy =01 d, =06 Aay, ° dy=0.5d; = 0.6 IAﬁ“, ° 760
@k=1,do=01,d =07 (b)k=1,do=0.5,d1=0.6 ’8"
(] 05 1 15 2 25 100 05 1 15 2 25
k=2,0; =6, B k=2,0; =6 Acceptance Frequency (Hz) Frequency (Hz)
1.4 L § * peak g=
Lo 1 @ o
--------------- : °° ig. 8. (a) Superimposed local spectra of the Capon of Fig.1(a
1 o Fig. 8 S d local tra of the C M [f] of Fig.1
308 06 06 calculated using a Capon estimator at or@ler with a 43-point window and

o4 505 frequency bins. (b$[f]: Spectrum of the entire signal of Fig.1, calculated
using a Capon estimator at ord2tr and 505 frequency bins.

do=01 d =06 Aay, O =05 4 =06 Azy,  Refusal
(©)k=2,dop=0.1,dy =0.6 (dyk=2,dp =0.5,d1 =0.6 E. S_ernary

Fig. 6. Impact ofdy and di on the tolerance of the total divergence, The above-described steps are arranged in the proposed
illustrated with data of Table | undef; = .. do is equal to the radius

of the inner circle,d; is equal to the diameter of the outer circle. The‘?‘lgorithm as illustrated in Figure 9. . .
function n(Ady, ), Which is represented by the gray level of the image, One of the advantages of the proposed algorithm is that the
changes accordingly, is equal to the width of the outer rectangle; is peak detection strategy is adjusted to the data and thstitaki
equal to its height. The length of the vectors indicates tireesponding total . .
divergence value, , in Table I, whereg is distinguished by different gray Properties of the spectrum estimator. Thgrefore, heavyualan
scales. configurations are avoided. With the noise specti€if®y|[f]
estimated from the local spectrum itself using a multipass
- filtering method, the calculation of the detection thredhol
e hE Loz : . k=16 =25 . depends on the false-alarm probability chosen by the user.
peak q=1 42,2 * peak q=1 .
12 o5 12f 7T ! _ The spectral contents of interest hereby detected areredfer
to as "peaks”, which are essential to the component tracking
Each peak refers to a pair of amplitude and frequency values.
This peak-detection strategy is particularly suitableHighly
‘ 02 nonstationary signals for which a manual choice of detactio
T =0 A 0 T 0% A, ° threshold is almost impossible over each time frame. _
@k=1,06; =6, () k= 1,8, =2 x 6, As another contribution, we propose a component-track_mg
fa 7 | o ands. ilustated with data of Table b, | " method to upgrade the amplitude and frequency modulations
1g. /. mpact oto, an flusrae Wi ata ol lable b, Is equal to . H
the width of the outer rectangle, ang is equal to its height. The length of using the amplltgde and frequency _Values of th.e deteCFed
the vectors indicates the corresponding total divergeatge\Ady, , in Table  Peaks. The tracking method automatically determines which
Il, where ¢ is distinguished by different gray scales. component a peak belongs to and how the components should
be tracked. Based on the hypothesis that if two peaks can be
3) Creation of new components. If a pair is rejected by the connected as one component, their frequency and amplitude
above discrimination rule, the pegkmight be the beginning distances should simultaneously be very low, these differe
of a new component. We presume that the peak is likelye evaluated by a proposed distance metric; namely, the tot
to be a component if it locates in the energetic part of thdivergence. The judgement on whether two peaks can be
global spectrum, as illustrated in Fig.8. An energetic dirt connected is carried out by a peak-component classifier. The
the local spectra corresponds to an energetic part of tHeblocomponent is considered dead if no further peak can be found.
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yinl to be close to reality. Consider first the case without bitths

Proposed algorithm deaths, where zero values do not exist in the amplitude and th
frequency modulations. The simulated sigppl] is defined as
‘ (1), with N = 600 samples, sampling frequendy, = 20H z,
Globa TR UL and K = 3 components. The amplitude and the frequency
modulations ofs[n] are generated as shown in Fig.10.
[~ 10 180
= - T
L YLl T T o 10} oo
| | v T prmmmmmmT B ol
) Li Noise spectrum ? ° E 122
PFA estimation £ % a0
R g < |- -
E0rf) Eof e ST
(a0, 1), q=1... QO (a) Frequency modulations (b) Amplitude modulations
i Fig. 10. Generated frequency and amplitude modulations of reeth
do. . ‘ component simulated signal, where the components are distiregl by
9,0, Tracking different colors g = 1, k= 3).
Al Bl WA, =LKy The global SNR is set ta5dB, defined as the ratio of the
\\ . K . .
<a=N-L/z>No 0 e average power of the signdl_ |s[n]|? to the noise variance
~ k=1
Yes o2, For a highly nonstationary signal, the global SNR can
End hardly characterize the local noise level against indiaidu

components. For this signal, the power of the strongest cemp
Fig. 9. Flow chart of the proposed algorithm. Given the infighal y[n], nent is over 50 times higher than the weakest one &t298.
the algorithm provides the estimated number of componéfis 1, /2. the  Fig.11 illustrates this effect for each component by showin
amplitude and the frequency modulatiorts,[n], F[n], and the indicator 5 |ncal SNR, which is the ratio of its instantaneous power
functions Iy, [n], using the parameters:, PF Ay, P, PFAe, da, 05, do, A2 . . 2
andd, . %[n] to the noise variance;.

Even for a moderate global SNR level, the componénts

1 and k = 3 are rather distinct, as shown by the Capongram
In this way, the births and the deaths of components are alsoFig.12, while the componenit = 2 is almost as weak as
managed. the noise for a local SNR equal to -5 dB.

Ill. PERFORMANCE ANALYSIS ON SIMULATED SIGNALS

In this section, the performance of the algorithm will S T
be assessed under various aspects. The performance of the
frequency and the amplitude estimation is evaluated ovér mu 20} B
ticomponent signals without births or deaths under difiere % 3 a7
signal-to-noise ratio (SNR) levels. The recognition of the 1ot LemmmTTTTTTEmTITT
births and the deaths of the components is then studied in % PR
three cases: births or deaths that occur on all components
simultaneously, at different time frames, or at very shionet
intervals. An advantage of this nonparametric approachas t ‘ ‘ ‘ ‘ ‘
the number of components to handle is not limited by the 5 10 15 20 25 30
dimension of the parameter space. Time (s)
Fig. 11. Time-varying local SNRs of the simulated signal witle three
A. On multicomponent signals without births or deaths components defined in Fig.10, at a global SNR of 15 dB. The coemtsn
. . are distinguished by different colorg & 1, k= 3).
In this section, we analyze the performance of the proposeg

algorithm on multicomponent simulated signals under diffié
parameter sets. Among the algorithm parameters indicated i
Fig.9, PFA., PF A4, 64, 6y, do, andd; have to be chosen
manually by the user. The sensitivity of these parameters is
studied in order to assess the robustness of the algorithm.

In real-world situations, the instantaneous amplitudethef
components can be relatively disparate; therefore, thepoem
nents are generated with diversified amplitude levels ireord
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Signal
500 " " ‘ ‘ : %
0
-500 : : : : :
Capongram, M=15, window of 43 points, log. scale
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Time (s)

Fig. 12. Capongram of the simulated signal with the three comapts
defined in Fig.10, generated at the global SNR of 15 dB.

1%omponent trajectories in time—frequency plane
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Fig. 14. Merged plot of the estimated amplitude and frequencgutations
of Fig.13(a)(b) in the time-frequency plane. For each compgrike frequen-

cy modulation is represented by its trajectory, while the éungé modulation
is shown by its color.

rameter sets. However, the weak componknt 2 cannot
be fully detected byset 2, which has a lowerPFA,. The

Fig.13 and 14 show the results of the proposed method usfiggu!ts show that the low-energy parts of the component are

the following two parameter sets that differ MF.Ay.
setl: PFA. =03, PFA; =03, 05 =24, ,do = 0.5,

d; = 0.6.
set 22 PFA. =03, PFA; =0.1, §f =24, ,dp =0.5,
diy = 0.6.

.
o

@

- “"M

30 5 1

-
1<)
S

Frequency (Hz)
Amplitude

a
=]

2_/

10_ 15 20 0 . 15 20 25 30
Time (s) Time (s)

(a) set 1 (b) set 1

25 30

Frequency (Hz)
Amplitude

o
=]

P

10

==

15 20 25 30 0 o 15 20
Time (s) Time (s)

(c) set 2 (d) set 2

identified as deaths. It is common to avoid using a very high
PFA, value to ensure the correctness of the peak detection.
The component tracking algorithm based on the successful
peak detection with th@ F A, value inset 1 shows excellent
robustness. The impact of the total divergence threshdéjds
andd; is so trivial that the estimation results remain the same
as in Fig.13(a) and (b) witld, and d; taking any values in
[0.01, 1]. No difference can be seen from Fig.13(a) and (b) if
the amplitude and frequency weighting factégsandéy vary
from §; = 5J, t0 6 = d,/5.

The influence of the parameter sets becomes more obvious
when the noisy observation is generated at lower SNR levels.
Consideringset 1 as the reference parameter set, the quality
of the estimation can be studied by changing the SNR level
and certain values in the test set. The Mean Absolute Errors
(MAESs) of F[n] and A [n] are shown in Table Il to evaluate
the performance of the algorithm on the component with the
highest energy.

From Table Ill, we can infer that the performance of the
algorithm is relatively robust. Under all the parametesstite
MAEs of the frequency are of the order ®0—2 Hz, while
the MAEs of the amplitude are also negligible. Comparing the
MAEs of the frequency and of the amplitude under different
SNR levels, the errors are not significantly deterioratetdl un

Fig. 13. Sensitivity of PF A, illustrated by the frequency and amplitudethe SNR reaches dB, where the noise variance is equal to

modulations of the simulated signal of Fig.10, estimated by pteposed

the average signal power. An exceptional high amplitude MAE

algorithm withset 1 andset 2. Dashed line, generated modulation functionsgt PFA; = 0.1 and low SNR leveldo dB is caused by the

solid line, estimated modulation functions. The componergsdastinguished
by different colors £ = 1, k= 3).

low false-alarm probability of detectioRF.4,, which tends
to classify low-amplitude peaks as noise. For applicatioms

The high-power components can be easily estimated wiignals atlow SNR, a high false-alarm probability of detect

the proposed algorithm.e. the quality of the estimation is in-

is preferred at the risk of increasing false alarms, but #ieef

sensitive to the parameter sets. However, the weak componf@ks can be excluded at the component-tracking phase with
k = 2 can only be detected with a high false-alarm probabili§ discrimination rule that is correctly chosen.

PFA;.

Comparing the results obtained witgt 1 and set 2 in
Fig.13, the two high-energy componerits= 1 andk = 3
are not influenced by the variation g?F.A,, since their

amplitudes are strong enough to be detected with both pa-
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TABLE Ill _ R
MAES OF AMPLITUDE AND FREQUENCYF [n], A1[n] AVERAGED OVER 500
50 NOISE REALIZATIONS, CALCULATED USING PARAMETER SET1 AND
S
OTHER SETS WITH DIFFERENT VALUES OFP F Ag, 5 do ORdy.
-500
Parameter SNR (dB)
sets 15 10 5 0 80
set 1 1.02 | 1.42 | 1.93 | 4.34 .
N
01| 087 | 1.04| 1.74 | 9.80 T
PFAq < 60
05| 0.88| 1.22| 219 | 3.83 3
4 ) 122 | 162 | 4.1 0}
MAE of LF 0.89 6 8 z | | 40
p da 1 | 089 1.26| 2.03 | 343 o ' 14 'm
Ay1[n] i | \“ ||
J 0.2 ] 099 | 1.24| 205 | 4.02 2 1"
0 1 |097|122| 168 | 3.39 L eng™ P ’ 20
oLl )
d 05| 091 | 1.36 1.62 3.21 0 5 10 15 20 25 30
! 0 | 096 1.07| 1.94 | 3.26 Time (s)
set1 331| 6.92| 956 | 18.96
PFA 01| 239 542 11.07 | 2037 Fig. 16. (a) Capongram of the simulated signal with three corapts
d 05| 236 | 532 | 942 | 19.22 defined in Fig.15, generated at the SNR of 15 dB.
MAE of 5 4 | 330 515 7.61 | 16.46
Fy[n] in Sa 1 | 355|551 10.80 | 17.97 L . .
10-2 H The estimation of the modulations are close to the simulated
z 0.2 | 360 | 5.65 | 11.45 | 22.62 . . .
do T 1337617 1053 1832 ones, whereas the instants of birth or death are detectéd wit
05 4'06 5'45 8;12 18'02 lags due to the time-averaging effect attributed to theirsiid
J ) ) ) . ) . - ) . .
1 o 1322566 800 | 1631 time windowwy,,. For births and deaths of long time duration,

B. On multicomponent signals with births and deaths

this effect might be negligible. However, the estimatiorghti
be distorted if births and deaths are short, askfet 3, 10 s
- 11.5 s @ = 200,...,230). The death of the component is

estimated in such cases as a smoother amplitude attenuation
In this section, the identification of births and deaths Wwél than the true variation.
discussed. The localization of births and deaths is eqerivab

the identification of the borders of the low-power regiormir 10
the time-frequency distribution. Starting from the modiala
functions defined in Fig.10, several time intervals withthmsr
and deaths are added to all the components, as shown
Fig.15 and Fig.16(b). A new simulated signal is generatet wi S !
number of samplesV = 600, sampling frequency, = 20 —
Hz, and SNR atl5 dB. The first component = 1 is dead at s rimee” O s
15s- 30 s4 = 300,...,450); the second component is born @)

at5s (@ = 100), and isdead at 20 s - 308 & 400, ...,450); _ . . N .
the third component is dead at 10's - 1155200, ... 230) e components defined in Fig.15 at a global SNE0l, estmated by the
and at 25 s - 27.5 (= 500, ...,515). The Capongram of proposed algorithm usingt 1. The components are distinguished by different

i i i i i i 'GHCIIKI colors ¢ = 1, ,k = 3). Dashed line, generated modulation functions;
the signal is prese.”ted in Fig.16(a) besides the time solid line, estimated modulation functions. (a) Frequency ulfattbns Fy, [n].
plot of the estimation results.

(b) Amplitude modulationsd[n].

Frequency (Hz)

t
20 25 30

15
Time (s)

(b)

180
T 8 160 [
o EES T g b
> 6 1 1
g ; Ep L
g . : g o ‘. Lo
<3 | i Coron T 0 _e-m L meremmeee "y
L 2 ! L (RN a0p-" F i
----- - === o 20 b "
0 L [l Lot
10 15 20 25 30 5 0_ 15 20 25 30
Time (s) Time (s)
(@ (b)
Fig. 15. Simulated frequency and amplitude modulations of @ethr

component simulated signal with births and deaths, where theponents
are distinguished by different coloré (= 1, Jk = 3). (a) Frequency
modulationsFy [n]. (b) Amplitude modulationsA,[n].

The estimation of the modulation functions by the proposed
algorithm withset 1 is shown in Fig.17 and 18.
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Component trajectories in time—frequency plane

11

using both time-frequency distributions to show a compagat

study.
<8/ , 40 The computation time of the proposed algorithm which
IK v 35 depends on the total number of FFT/Capon points of the time-
) 6 . frequency distribution (number of FFT/Capon points pegaloc
0:,947 ) - 30 spectrum x number of local spectra), also on the number
g of iterations of the multi-pass filtering and on the number
L2t , N Lo of components which defines the size of the total divergence
20 matrix. By the way, the computation load of the Capongram
0 5 1‘0 1‘5 26 2‘5 30 is not significantly high with respect to the other steps @ th
Time (s) proposed method.

On a computer running Matlab 2011b and Windows 7 64-bit
version with an intel core i7-3540m processor and 16 GB of
RAM, the execution of a non-optimized program takes around
2 us per point per multi-pass filtering iteration. So the analysi
of the oboe music in Section IV-C takes about 120 seconds in

total.
Comparing the Capongram of the simulated signal and

the the estimation results in Fig 18, all the components a8 Givil structure analysis
reconstructed with correct amplitude and frequency values o o _
while the estimation of the weak componédnt= 2 is less The.asse.ssmgnt of the _r|g|d|ty of a bglldmg is often carried
accurate than the others because it is easier to be disthybe®Ut Using vibration recordings from which the modal param-
the noise. The births and the deaths of all the components §f&rs ©f the building can be estimated. The investigation of
identified, with estimation lags smaller than 10 points.csin the modal parameters and their variation allows the sumgeyi
the lags are affected by the length of the time windbwthis ©Of the damage brought to the structure, and also its char-
effect cannot be avoided, but it can be alleviated by chapain actérization. The estimation of the amplitude and frequenc

shorter window lengttL; to estimate the births and the death§'0dulations of the signal model, seg. (1) is indirectly
accurately. related to the physical model from which the modal pararseter

can be obtained.
According to the excitation sources, the vibration of a
building can be categorized into two types, ambient vibresi

In this section, we present the application of the propos@fd €arthquakes [31]. In the case of ambient vibrations, the
algorithm in three real-world contexts. In Section IV-Agth building is excited by weak and relatively stationary groun
algorithm is applied to vibrations of buildings, for traoki Metion. With an earthquake occurrence, the ground exeitati
the vibratory variations under ambiant excitations orregs ShOWS @ sudden burst of power. Both types of vibrations

ones. In section IV-B, the algorithm is tested on a canargsof'® nonstationary, but the nonstationarity is strongerafor
and in Section IV-C on a piece of oboe music. earthquake (see Fig.1) than for an ambient vibration (see

In this section, the Capongram and the spectrogram £i9-19).
used according to the requirements of the application. The _
spectrogram is faster to compute than the Capongram, since x 10 ~ Signal
the Fast Fourier Transform (FFT) in the calculation of the OW‘MWWMMM
spectrogram is much faster than the calculation of the autoc
relatlon matrix in Caponlgram; _secondly a spectral es_tmnan c1apongram, M=21, window of 43 points, log. scale
is performed for every window in the spectrogram, while such

Fig. 18. Merged plot of the estimated amplitude and frequencgutations
of Fig.17 in the time-frequency plane. For each component,frisguency
modulation is represented by its trajectory while the amgétmodulation is
shown by its color.

IV. APPLICATION TO REAL-WORLD SIGNALS

4

estimation has to be done for each grid of the time-frequency . Jl | R NI w 2
plane in the Capongram. Therefore, in cases where the input 5 2 LA 'w e 40 o Vol
signal has a high number of points, or the number of grids < I || -
of the time-frequency plane is significant, it is preferatie I :
choose spectrogram in favor of its simplicity and efficieinty % 1 ,...‘1 Y P e | 100
the computation. x LR n

Therefore, in cases such as the oboe signal where the O.5] et T vt 80
signal contains a sufficient number of points so that the SIEE | \ |
Fourier-based method can provide a sufficient resolution in o 0 © 09 15t

the local spectrum, the spectrogram are used. If the signals

are short, or if the calculation time is not an important &sug;, 19
the Capongram is used to benefit from its better performanmever in Taipei, Taiwan, from 400 s to 550 s, resampled at 5 Hz.

in resolution and side-lobe reduction, as in the cases of the

Capongram of the ambient vibration recorded at tpeofoTaipo

seismic signals. The signal of the canary song is processedhe signals processed in this section were provided by the
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RISKNAT program (project URBASIS ANR-09-RISK-009,
French National Research Agency).

In Fig. 20 and 21, the application of the proposed method ol

an ambient vibration yields three components that varyiwith
narrow frequency bands. Usinggt 1, the total divergence

Frequency (Hz)

o
o

2

1.

5

N

5

-

e A e e e

values are calculated withy = 24, for which the component
tracking is more tolerant against the amplitude variation i

Fig.21. The algorithm can track the components of drastic
amplitude variations, whereas for seismic signals, as Bhowg. 22
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Time (s)

80 100 120

12

Amplitude

AN
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Time (s)

(a) Frequency modulations (b) Amplitude modulations

Frequency and amplitude modulations of the seismioasig

in Fig.22 and 23, the algorithm has to handle a differest Fig.23, estimated from the Capongram of Fig.1(a) using gheposed

nonstationarity pattern.
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(a) Frequency modulations

(b) Amplitude modulations

algorithm with set 1. The components are distinguished by different colors

k=1, k= 3).

Component trajectories in time—frequency plane
25 ‘ : : ; :

Fig. 20. Frequency and amplitude modulations of the ambiemn&irdn signal
of Fig.19 estimated using the proposed algorithm séhl. The components

are distinguished by different colorg & 1,

k= 3).

Component trajectories in time—frequency plane
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Fig. 23. Merged plot of the estimated amplitude and frequencgutadions
of Fig.22 in the time-frequency plane. For each component,friiguency
modulation is represented by its trajectory while the amgétmodulation is
shown by its color.

it preserves more detail of high frequency components which
are low in amplitude.

The frequency trajectories are estimated based on both the
the Capongram and the spectrogram to demonstrate the adapt-
ability of the proposed method to different time-frequency
distributions chosen by the users. On the Capongram, in
order to detect the high frequency components, the follgwin

Fig. 21. Merged plot of the estimated amplitude and frequencgutadions
of Fig.20 in the time-frequency plane. For each component,frgguency
modulation is represented by its trajectory while the amg@étmodulation is
shown by its color.

parameters are choseRF A, = 0.1, PFA; = 0.1, 6 = 24,
do = 1, d; = 1. While on the spectrogran? FA. = 0.05,
PFA, = 0.05 are sufficient for the detection. The results
o ] ) ~of Fig. 25 show that the five components involved are well
In the seismic recording, the power is not evenly distridutggtimated using both time-frequency distributions.
among the compqnents_, but is_concentrat(_ad onalow—f_reg(uencln Fig. 25, the estimation on both time-frequency distri-
component that is active during the entire observation. Thgions” shows rather similar results. However some subtle
other components are activated when the earthquake oCCHjffierences can be noticed. At low frequency range where
and then perish rapidly. Fig.22 shows a good estimation ofost of the signal power is concentrated, the modulation
these details. functions tracked on the Capongram are more detailed and
less influenced by the noise. At high frequency range where
B. Canary Song the components are more difficult to be detected on the
The canary song has a very rich spectral content wiapongram than on the spectrogram, the components tracked
multiple components that show smoothly varying amplituden the Capongram are as influenced by the noise as on the
and frequency, as illustrated in Fig.24. Similarly to maogal spectrogram, since a higher false alarm probability haseto b
signals, the richness of the components and the instanesetfor the Capongram to detect the components.
signal power varies drastically. The song is generated by air-flow-induced vibrations of
In Fig. 24, the background is cleaner on the Capongratime structures in the vocal organ of the canary called the
thanks to the use if the minimum variance spectral estimatyrinx. The syringeal muscles control the opening of the
which greatly diminishes the noise. On the contrary, thespesyrinx and therefore the frequency in the signal. The fraque
trogram shows a more significant noise background, howevsjectories decrease exponentially and become closecto ea
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Signal

10000 10000
8000 8000

= N
s I
. . . ? 6000 f § 6000
Capongram, M=55, window of 111 points, log. scale 5 i ML N 5
S 4000 “i‘ [T \ S 4000
10000} £ 0 “\t‘ iu# L M\
-50 I
N 8000f Pos 198 ; 2.02 2.04L 2.06 P 18 2 202 204 206
Iz " . : Time (s) Time (s)
>
2 6000+ (a) from Capongram (b) from spectrogram
< ' -100
Q \ s
> 4000,'4 y ‘ "y ] Fig. 26. Frequency modulations of the two most powerful comptmef
L9-|_’ L \ \ the canary song of Fig. 25, estimated respectively from thgoB@gram (a)
2000} \ : ﬁ | -150 and the spectrogram (b) using the proposed algorithm. The @oems are
—.\__Q distinguished by different colors:(= 1,k = 2).
0
196 198 2 202 204 206

Time (s)

(a) Capongram of the canary song In practice, the choice of the time-frequency distributisn

a matter of compromise between the desired performance and

Spectrogram, Hann window of 111 points, log. scale the computation time.

N 20
A10000 ] i g : A C. Oboe music
z 800 ‘ . Since the proposed method can be implemented whatever
§ 6000 B e the signal type and the number of components, an oboe
g 4000 ‘ gt T -40 recording is used as an example to demonstrate its appitgabi
2 - P 60 on a real-world signal with a high number of components.
2000 * ,,* - The signal under study is illustrated in Fig.27. By the way,
o v o —_— the proposed algorithm is applied purely on the spectrogram
196 1.98 2 202 204 206 to demonstrate its applicability despite the choice of theet
Time (s) frequency distribution.
(b) Spectrogram of the canary song As the spectrogram of Fig.27 shows, the signal is composed

Fig. 24. Capongram and spectrogram of a canary song of Ogisampled of a series of sounds, between which the power of the
at 22050 Hz, both are calculated using a window of 111 points. components dies out. During each sound, new components can
also emerge and disappear. In this example, both the freguen
and the amplitude of the components are estimated using the

Component trajectories in time—frequency plane Time-frequency plot in log. scale

0000] - o " ool T spectrogram of the signal sampled at 16000 Hz. The window
T oo - TR ' U ’2°'§8000 S '_i 20 length and the overlapping of the spectrogram are calallate
?eooo T e B T from a required frequency resolution, which is 18 Hz.

2 4000 i f__” ‘:.\_ ) % 4000 - -
S‘: 2000_H:::_ : ‘m__:;_ o ,j“j 2000_\\; N 20 Signal

0 _80 0 -40 20001
1.98 2 2.02 2.04 1.96 1.98 2 2.02 0
Time (s) Time (s)
—2000E 1

@ (b)

Blackman window, resolution: 0.046062 s (time),17.9359 Hz (freq.)

Fig. 25. Merged plot of the amplitude and frequency modulatiestimated 8000 : : 200

respectively from the Capongram Fig. 24(a) and the spectnod-ig. 24(b). 7000} 1

For each component, the frequency modulation is representis toajectory N 6000F 1 150

while the amplitude modulation is shown by its color. (a) Estedeamplitude = 5000F

and frequency modulation functions based on the Capongram BsF A, = & 100

0.1, PFA; =0.1, 65 = 264 ,do = 1, d1 = 1. (b) Estimated amplitude and a§ 4000¢ BEET

frequency modulation functions based on the spectrogramgBiF.A. = S 30007 LA I ) o 50

0.05, PFAq =0.05, 67 =284 do =1,dy = 1. (T 2000 S — — 0

1000 AT oz TS A

e e -50
0 5 10 15 20 25

other on the time intervals [1.96 s, 2 s] and [2.03 s, 2.06 s]. Time (s)

The components of.7 and 2.7 kHz corresponds to a tuned

filter of the trachea and the beak. Fig. 27. A piece of oboe recording during 25.7 s, performed bsille Hory

. and produced by &ard Lejeune, sampled at 16000 Hz. The spectrogram is
As Fig. 2_6 shows, thanks to_ the nat_ure of the Caponcﬁlculated using a Blackman window of 737 points (frequemspiution: 18
spectral estimator, the modulation functions tracked o thiz, time resolution 46 ms) and an overlapping of 50% .

Capongram are generally more continuous than on the spec-

trogram. The mode mixing is also rarely seen in the tracking The number of components is to be estimated by applying
of the powerful components. It helps to establish a mothe proposed component detection and tracking method on the
reasonable interpretation of the estimation results. spectrogram of Fig. 27. Over each local spectrum, the peaks
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are detected with the false alarm probabilitie& A; = 0.001 distribution of the signal. At each local spectrum, a peak
and PFA. = 0.001 and with the multi-pass filter banddetection method is applied to extract the peaks from the
Ly as equivalent to 3.5 times the width of the main lobroise spectrum, which is estimated by a multipass filtering
of the Blackman window. The configurations concerning thmethod. Sequentially in time, the detected peaks are tdacke
component tracking are the same asanl. Fig.28 shows the with previously formed components by evaluating the total
instantaneous frequency and amplitude of the 39 componeditgergence matrix, where the minimum values indicate the
extracted by the algorithm we propose. peak-component pairs to be selected. The elements of e tot

In Fig. 28(b), only 1 component is tracked at the beginningjvergence matrix indicate the divergence of frequency and
the others are detected at their own instants of activatimmplitude between a detected peak and a formed component.
18 components belong to the same harmonic family whoseThe performance analysis assessed on simulated signals
fundamental frequency is 440 Hz and the highest harmorshows that the proposed method is accurate and robust de-
order is 17. This harmonic family is related to the key Apite low SNR levels and across different parameter sets.
above middle C. In fact, the player kept playing the standafthe number of components is estimated and the components
concert pitch (440 Hz), this explains why the harmonic Are tracked automatically. Due to two adjustable falsenala
with fundamental frequency of 440 Hz is dominant in therobabilities, the peak detection from the noise spectrsm i
signal and also in the tracked components. Other componergatively flexible. In the component-tracking step, a peak
are identified as the harmonic families of other pitches Whicomponent classifier can automatically track peaks to build
exist only within certain periods of time. For many harmanic components. The births and the deaths of components can
the trembling of the oboe tone, indicated as slight frequenbe automatically identified from the existence or the absenc
fluctuations, is clearly visible and is correctly trackedthe of peaks. The total divergence matrix proposed in this paper
proposed method. is a useful distance metric that helps to select unique peak-
component pairs.

The proposed tracking method takes into account not only

Component trajectories in time-frequency plane

7000t -
—

| ' B the frequency, but also the amplitude. By the way it pernhi¢s t
g e tracking of a trajectory with discontinuation, which is &mer
2200 == o novelty of the approach compared to the others.

L 2000] Z — 40

s As a general-purpose method, the applicability of the pro-
el © ° Tty © © posed method is illustrated on a civil structure evaluati@n

@ ®) bird song analysis and an oboe music processing.

Fig. 28. 39 extracted components of the music signal of Fig.87 e .AS. th.e proposed_ metho.d is based on the .tlme-fr(.aquency
timated from the spectrogram of Fig.27 by the proposed amariwith ~distribution of .the signal, high fre_quency and time resoimt_
PFAq = 0.001 and PFA. = 0.001, Ly = 31, and the configuration cannot be achieved at the same time. The margins of the births
ff = 20a, dod:| 0~05udi }:r? for thedcomp"”ﬁ”; tl;ach;l;g. @) Els“ma(ts)dand the deaths of the components are estimated with time
requency modulation$’, [n|wherek is distinguished by different colors. . . .

Merged plot of the estimated amplitude and frequency modulstiBor each lags due to time averaging effects that cannot be aVOIde_d I_Dy
component, the frequency modulation is represented by iiscteay while the proposed method. To solve these problems, work is in
the amplitude modulation is shown by its color. progress in order to propose a local signal model where the

. . ) ) amplitude and the frequency are approximated by low-order
Besides, a weak component which remains alive at & v&hyiynomials and the births and the deaths of the components
low frequency (45 Hz) may correspond to the noise of thge modeled by Heaviside functions. The model parameters
electric parts of the recording devices. There are also@uddyjj pe estimated using a maximum likelihood strategy. Such
and wide-band energy bursts which are not identified @s method will no longer be based on anpriori time-
components since the peak detection method is not adapfedy,ency estimation and thus will require no analysis wind
to the wide-band case. Since the background is not purely,sing the time-lag effect. In this way the estimation @ th
silent, some spurious components are detected when all (h6yjations will be carried out at a very high precision and
main components die out. ___resolution as it is the case for the parametric approaches.
The estimation is robust when t?e false alarm probabilitigg,e method proposed in the present paper will serve as an
are in the range ofl0~*,107], 1 < § <5and0.03 <do < njtialization step to provide a preliminary estimatioratitan
0.2. Nevertheless, the estimation is degraded if the frequengy refined by the parametric approach. The interest of the non
resolution of the spectrogram is greater than 24 Hz, beca‘b%‘?ametric approach proposed in this paper lies in a gain of

the trajectories of the pitches may be gathered in the timgmpytation time and in the capability of identifying a non-
frequency plane. limited number of signal components.

h’

1000

@ ‘ | ‘
»
3

V. CONCLUSION

In this paper, we are interested in the component extraction
of non-stationary signals with births and deaths. We pregos
an original method to detect the peaks of a time-frequencyTo demonstrate the applicability of the proposed algorithm
distribution and to form the components by tracking the den both Fourier-based and non-Fourier time-frequencyidist
tected peaks in time. The method starts from a time-frequenutions, the two time-frequency distributions considerettis

APPENDIX
CAPONGRAM AND SPECTROGRAM
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paper: the spectrogram and the Capongram. The spectrogram

of a discrete signay[n] is a commonly-used tool in time- 1]
frequency analysis,
[2]
Ly/2 .
TFDyn, fl=| > wi[l—nlyllle” 2T
I=—L:/2

27) @

, , . : [4
with w[n] a windows function ofL; + 1 points. Whereas

for the Capongram, a piecewise spectrum is estimated usin
non-Fourier estimator, namely the Capon’s method [32] als
known as the Minimum Variance Spectral Estimator (MVSE).
Instead of using a Fourier kernel, the Capon’s method dssign
a data-adaptive filtelhr,,[— L:/2], . . ., hr,[L:/2]] which min-
imizes the total energy output

a

L2 | 7]
Jout =| Y Wi, [l —nlyllle” 77 (28)
I=—L:/2 i8]
subject to
(9]
L¢/2 y 2
Jpenal = Z th, [l]eim =1 (29) [10]
I=—L/2
Thus, the obtained filter parameters (11
hy, =[hr,[—L:/2],...,hr,[Lt/2]] (30) [12]

should preserve the energy at frequentywhile it rejects [13]
the energy at other frequencies. This constraint optintnat
problem can be solved by the Lagrange multiplier methoﬂn]
The cost function

J = Jout - A (Jpenal - 1) (31) [15]
is minimized when [16]
R,‘E; 1
hy, = HMi_lfa A= g — p— (32)
Ef RMEf Ef RM Ef [17]

275 f

where E; = [l,e' % ,...e | with F, being the I[18]
sampling frequency of the signall/ is the order of the
Capon’s filter, andR 5, is the M x M auto-correlation matrix [1g]
of the windowed signay[n — 4], ..., y[n + 4].

Substitutinghy, in (28), the estimated power spectrum 0[‘20]
the data-adaptive filter at frequengyis

2mj(M—1)f
Zml =]

TFD,[n, f] ! 33
T IR R,

[22]
The Capon’s method is known to have higher resolution than
the Fourier-based spectrum estimators [27] [28]. Due to tlpg]
energy minimization of the filter design, the side-lobes of
the frequency response of the filter are significantly reduc&r2 4
compared to the Fourier-based methods using a smooth

n
window.
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