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A NON-UNIFORM FINITARY RELATIONAL SEMANTICS
OF SYSTEM T ∗

Lionel Vaux1

Abstract. We study iteration and recursion operators in the denota-
tional semantics of typed λ-calculi derived from the multiset relational
model of linear logic. Although these operators are defined as fixpoints
of typed functionals, we prove them finitary in the sense of Ehrhard’s
finiteness spaces.

1991 Mathematics Subject Classification. 03B70, 03D65, 68Q55.

1. Introduction

Since its inception in the late 1960’s, denotational semantics has proved to be
a valuable tool in the study of programming languages, by recasting the equal-
ities between terms induced by the operational semantics into an more abstract
algebraic setting. By the Curry–Howard correspondence between proofs and pro-
grams, this concept also provided important contributions to the design of logical
systems. Notably, the invention of linear logic by Girard [1] followed from his
introduction of coherences spaces as a refinement of Scott’s continuous semantics
of the λ-calculus [2], moreover taking into account the property of stability put
forward by Berry [3].

The design of coherence spaces was moreover largely based on the ideas pre-
viously developed by Girard about a quantitative semantics of the λ-calculus [4]:
the property that the behaviour of a program is specified by its action on finite
approximants of its argument can be related with the fact that analytic functions
are given by power series. This suggests interpreting types by particular topologi-
cal vector spaces, and terms by analytic functions between them: Girard proposed
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such an interpretation using the notion of normal functor, a categorical analogue
of analytic functions.

Applying these ideas in a qualitative setting (i.e. forgetting about coefficients in
power series) led Girard to the definition of qualitative domains [5], later refined
into coherence spaces. These models, together with the so-called graph models
introduced by Engeler, Plotkin and Scott [6], share the following basic idea: one
may interpret types as sets, which we will call webs, possibly with some additional
structure (order, coherence, etc.); and then one may interpret terms as subsets of
the webs of their types, respecting the additional structure (ideals, cliques, etc.).

The properties of the interpretations of programs (continuity, stability, etc.)
are put to use in that they allow the particular morphisms associated with λ-
abstractions to be unambiguously represented by their traces, i.e. sets of (input
bits/output bit)-pairs. Notice the plural in “input bits”: intuitively, a program
may need several bits of input information to produce one bit of output. Scott’s
continuity roughly means that each bit of output requires only finitely many bits of
input. Berry’s stability indicates that each output bit produced by a deterministic
program is characterized by a minimal set of input bits. Girard’s linearity specifies
those programs which use exactly one input bit per output bit. Such webbed
models can be refined as models of linear logic, so that every morphism from A
to B becomes a linear morphism from !A to B, where !A stands for the type of
“chunks” of information (precisely those that are sufficient to obtain one output
bit).

The most simple webbed model is the relational one: types are interpreted by
sets without any additional structure, and any subset is (potentially) the interpre-
tation of a term. Linear morphisms from A to B are simply relations, i.e. subsets
of A × B. The exponential modality ! is represented by the finite multiset con-
struction, so that arbitrary morphisms from A to B are relations between finite
multisets over A and elements of B. Despite its apparent simplicity, the relational
model of the λ-calculus thus obtained has many interesting properties: for instance
it is injective on βη-classes [7], and it is closely connected with intersection types
and execution time [8].

Ehrhard introduced finiteness spaces [9] by refining this relational model. A
finiteness space is a set equipped with a finiteness structure, i.e. a particular set
of subsets which are said to be finitary; and the model is such that the relational
denotation of a proof in linear logic is always a finitary subset of its conclusion.
The distinctive property of finiteness spaces is that the intersection of two fini-
tary subsets of dual types is always finite. In the associated model of the simply
typed λ-calculus, this feature allowed Ehrhard to reformulate Girard’s quantita-
tive semantics in a standard algebraic setting, where morphisms interpreting typed
λ-terms are analytic functions between the topological vector spaces generated by
vectors with finitary supports. More explicitly:

• the vectors of type A are of the form (vα)α∈|A| where |A| is the web of the
associated finiteness space;
• !A is similar to the symmetric algebra on A, in particular |!A| is the set of

all finite multisets of elements of |A|;
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• an analytic function from A to B is given by a power series:

(f(v))β =
∑
α∈|!A|

f(α,β) · vα

where vα denotes
∏n
i=1 vαi

when α = [α1, . . . , αn];
• considering only vectors with finitary supports ensures the convergence of

the previous sum, because it has only finitely many non-zero terms.
This provided the semantic foundations of Ehrhard–Regnier’s differential λ-calculus
[10] and motivated the general study of a differential extension of linear logic
(e.g., [11–17]).

It is worth noticing that finiteness spaces can accommodate typed λ-calculi only.
In particular, we will see the relational semantics of fixpoint combinators is finitary
only on empty types: this strengthens a previous remark by Ehrhard. The whole
point of the finiteness construction is actually to reject infinite computations, by
ensuring the intermediate sets involved in the relational interpretation of a cut
are all finite. This contrasts with the purely relational model where the inclusion
order defines a cpo on homsets and fixpoints are available at all types — the
relational semantics even admits reflexive objects, hence models of the untyped
λ-calculus [18, 19]. Despite this restrictive design, Ehrhard was able to define a
finitary interpretation of tail-recursive iteration (Section 3 of [9]): this indicates
that the finiteness semantics can accommodate a form of typed recursion. This
interpretation, however, is not completely satisfactory: tail recursive iteration
is essentially linear, thus it does not provide a type of natural numbers in the
associated model of the λ-calculus.

The main result of the present paper is that finiteness spaces can actually accom-
modate the standard notion of primitive recursion in the λ-calculus, Gödel’s system
T : we prove Fin admits a weak natural number object in the sense of [20,21], and
we more generally exhibit a finitary recursion operator for this interpretation of
the type of natural numbers. This achievement is twofold:

• Before considering finiteness, we must define a recursion operator in the
cartesian closed category deduced from the relational model of linear logic.
As we have already stated, Ehrhard’s proposition does not match this
requirement, which has nothing to do with the finiteness structure: this
is essentially due to the fact that the interpretation of natural numbers is
flat (in the sense of domains). In fact, a similar effect was already noted
by Girard in the design of his coherence semantics of system T [22]: his
solution was to propose a lazy interpretation of natural numbers, where
laziness refers to the possibility of pattern matching on non normal terms.
We adapt Girard’s solution to the purely relational case.

• The second aspect of our work is to establish that this relational semantics
is finitary. This is far from immediate because the recursion operator is de-
fined as the union of its finitary approximants, by a fixpoint construction:
since the fixpoint operator itself is not a finitary relation, it is necessary
to obtain stronger properties of these approximants to deduce finitariness.
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Parigot proved by syntactic means that no term in the iterator variant of system T
could define a valid predecessor operator, i.e. a formal inverse of the successor on
Church natural numbers [23]. This implies in particular that the recursion operator
of system T cannot be recovered from the sole iterator. A notable outcome of our
relational interpretation of system T is that it provides semantic evidence of this
gap in expressive power between iterator and recursor (although we did not manage
to turn this evidence into a fully new proof).

The present paper takes place in a series of works, aiming to extend the quan-
titative semantics of the simply typed λ-calculus in vectorial finiteness spaces to
functional programming with base types. This would broaden the scope of the
already well developed proof theory of differential linear logic: quantitative se-
mantics provides more precise information on cut elimination, and is thus a better
guide in the design of syntax than the plain relational interpretation.

Earlier achievements in this direction include Tasson’s extension of the algebraic
λ-calculus [24] with a type of booleans, together with a semantic characterization
of total terms which is proved to be complete on boolean functions [16]. The
present work contributes an important step by defining precisely the relational
framework in which a quantitative semantics of system T could be developed.

Since such quantitative approaches are known to extend the proofs-as-programs
paradigm to parallel [25], non deterministic [26], concurrent [13] or even quan-
tum [27] programming features, our hope is that recasting standard datatypes
in this setting will bring interesting new ideas on how to integrate such features
within functional programming languages.

1.1. Structure of the paper

In section 2, we briefly describe two cartesian closed categories: the category Rel
of sets and multirelations, and the category Fin of finiteness spaces and finitary
multirelations. In section 3, we give an explicit presentation of the relational
semantics of typed λ-calculi in Rel and Fin, which we extend to system T in
section 4. In section 5, we establish a uniformity property of iteration-definable
morphisms, which does not hold for recursion in general. Finally, we discuss
possible further developments of this work.

2. Sets, Relations and Finiteness Spaces

2.1. Notations

If A is a set, we write #A for the cardinality of A, P (A) for the powerset
of A and Pf (A) for the set of all finite subsets of A. We identify multisets of
elements of A with functions A −→ N. If µ is such a multiset, we write Supp (µ)
for its support set {α ∈ A; µ(α) 6= 0}. A finite multiset is a multiset with finite
support. We write A! for the set of all finite multisets of elements of A. Whenever
(α1, . . . , αn) ∈ An, we write α = [α1, . . . , αn] for the corresponding finite multiset:
α ∈ A 7→ # {i; αi = α}. We also write # [α1, . . . , αn] = n for the cardinality of
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multisets. The empty multiset is [] and we use the additive notation for multiset
union, i.e. µ+ µ′ : α ∈ A 7→ µ(α) + µ′(α).

2.2. Sets and (multi-)relations

Let f ⊆ A×B be a relation from A to B. We write f⊥ = {(β, α); (α, β) ∈ f}.
For all a ⊆ A, we write f · a for the direct image of a by f :

f · a = {β ∈ B; ∃α ∈ a, (α, β) ∈ f} .

We call multirelation from A to B any relation from A! to B. We define the
category Rel of sets and multirelations:

• objects are sets;
• morphisms are multirelations, i.e. Rel(A,B) = P

(
A! ×B

)
;

• the identity on A is idA = {([α] , α); α ∈ A};
• if f ∈ Rel(A,B) and g ∈ Rel(B,C) then their composite is g ◦ f ={

(
∑n
i=1 αi, γ) ; ∃β = [β1, . . . , βn] ∈ B!, (β, γ) ∈ g ∧ ∀i (αi, βi) ∈ f

}
.

This construction can be thought of as follows: ([α1, . . . , αp] , β) ∈ f represents the
instance of f which produces the result β by consuming the resources [α1, . . . , αp].
Then the definition of composition is quite natural: to produce γ, g might consume
resources [β1, . . . , βn], each βi being produced by f , consuming αi; the overall
process builds γ from

∑n
i=1 αi.

Let us mention that Rel is the co-Kleisli category of the comonad (−)
! in the

relational model of linear logic. Beyond the motivations and general line of work
exposed in our introduction, this point is however of marginal interest in the
remaining of the paper. The careful reader may nonetheless refer to the addendum
of [9] for a formal definition of this model of linear logic.

The category Rel is cartesian closed. The cartesian product is given by the
disjoint union of sets A ] B = ({1} × A) ∪ ({2} × B), with terminal object
the empty set ∅. Projections are {([(1, α)] , α) ; α ∈ A} ∈ Rel(A ] B,A) and
{([(2, β)] , β) ; β ∈ B} ∈ Rel(A ] B,B). If f ∈ Rel(C,A) and g ∈ Rel(C,B),
pairing is given by: 〈f, g〉 = {(γ, (1, α)) ; (γ, α) ∈ f} ∪ {(γ, (2, β)) ; (γ, β) ∈ g} ∈
Rel(C,A ] B). The unique morphism from A to ∅ is ∅. The adjunction for
closedness is Rel(A ] B,C) ∼= Rel(A,B! × C) which boils down to the bijection
(A ]B)

! ∼= A! ×B!: this is a typical feature of cartesian closed categories derived
from models of linear logic by the co-Kleisli construction (see, e.g., the compre-
hensive survey by Melliès [28]).

Moreover, Rel is enriched on cpos: the inclusion of multirelations is a complete
partial order.

2.3. Finiteness spaces and finitary multirelations

The construction of finiteness spaces follows a well established pattern [29].
It is given by the following notion of orthogonality on subsets a, a′ ⊆ A: a ⊥
a′ iff a ∩ a′ is finite. Then one unrolls the familiar definitions associated with
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biorthogonal closure. We retain only what is necessary for our exposition: for a
detailed presentation, the obvious reference is [9].

Let F ⊆ P (A) be any set of subsets of A. We define the pre-dual of F in A
as F⊥ = {a′ ⊆ A; ∀a ∈ F, a ⊥ a′}. We have the following immediate properties:
F ⊆ F⊥⊥ and, if G ⊆ F, F⊥ ⊆ G⊥. By the last two, we get F⊥ = F⊥⊥⊥. Moreover,
Pf (A) = P (A)

⊥ ⊆ F⊥. A finiteness structure on A is a set F of subsets of A such
that F⊥⊥ = F. Then a finiteness space is a dependent pair A = (|A| ,F (A)) where
|A| is the underlying set, called the web of A, and F (A) is a finiteness structure on
|A|. We write A⊥ for the dual finiteness space:

∣∣A⊥∣∣ = |A| and F
(
A⊥
)

= F (A)
⊥.

The elements of F (A) are called the finitary subsets of A.
For every set A, (A,Pf (A)) is a finiteness space and (A,Pf (A))⊥ = (A,P (A)).

In particular, each finite setA is the web of exactly one finiteness space: (A,Pf (A)) =
(A,P (A)). We introduce the empty finiteness space E = (∅, {∅}) and the finiteness
space of flat natural numbers N = (N,Pf (N)). If A and B are finiteness spaces,
we define A& B and A ⇒ B as follows:

• |A& B| = |A| ] |B| and F (A& B) = {a ] b; a ∈ F (A) ∧ b ∈ F (B)};
• |A ⇒ B| = |A|! × |B| and f ∈ F (A ⇒ B) iff ∀a ∈ F (A), f · a! ∈ F (B), and
∀β ∈ |B|, (f⊥ · {β}) ⊥ a!.

For instance, setting S = {([k] , k + 1); k ∈ N}, we have S ∈ F (N ⇒ N ). It is
easily seen that A&B is a finiteness space, but the same result for A ⇒ B is quite
technical [9]. We call finitary multirelations the elements of F (A ⇒ B).

Notice that F (A ⇒ B) ⊆ Rel(|A| , |B|). Moreover the identity idA = id|A| is
always finitary from A to itself, and finitary multirelations compose. We write Fin
for the category of finiteness spaces with Fin(A,B) = F (A ⇒ B) and composition
defined as in Rel. It is cartesian closed with terminal object E , product − & −
and exponential − ⇒ −: the definitions of those functors on morphisms, the
natural transformations, and the adjunction required for cartesian closedness are
exactly the same as for Rel, applied to the webs of finiteness spaces and to finitary
multirelations. By contrast with Rel, Fin is not cpo-enriched: the union of finitary
multirelations might not be finitary — see Section 4.2. Again, for reference, the
reader may check that Fin is the co-Kleisli category of the exponential comonad
in the finitary relational model of linear logic, which is detailed in the Section 1
of [9].

3. The Multiset Relational Semantics of Typed
λ-Calculi

3.1. Typed λ-calculi

In this section, we give an explicit description of the interpretation in Rel and
Fin of the basic constructions of typed λ-calculi with products. Type expressions
are given by:

A,B ::=X | A→ B | A×B | >
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(Var)
Γ, x : A,∆ ` x : A

(Unit)
Γ ` 〈〉 : >

a ∈ CA (Const)
Γ ` a : A

Γ, x : A ` s : B
(Abs)

Γ ` λx s : A→ B
Γ ` s : A→ B Γ ` t : A (App)

Γ ` s t : B
Γ ` s : A Γ ` t : B (Pair)

Γ ` 〈s, t〉 : A×B
Γ ` s : A1 ×A2 (Proji)

Γ ` πis : Ai

Figure 1. Rules of typed λ-calculi with products

where X ranges over a fixed set A of atomic types. Term expressions are given by:

s, t ::= x | a | λx s | s t | 〈s, t〉 | π1 s | π2 s | 〈〉

where x ranges over term variables and a ranges over term constants. To each
variable and to each constant, we associate a type: we write CA for the collection
of constants of type A, and we assume that every type admits a countably infinite
set of variables.

A typing judgement is an expression Γ ` s : A derived from the rules in Figure
1 where contexts Γ and ∆ range over lists (x1 : A1, . . . , xn : An) of typed variables.
Clearly, if a term s is typable, then its type is uniquely determined, say A, and
then Γ ` s : A iff Γ contains the free variables of s. We denote by s [x := t] the
capture avoiding substitution of t for x in s.

The operational semantics of a typed λ-calculus is given by a congruence ' on
typed terms: if s ' t, then s and t have the same type, say A; we then write Γ `
s ' t : A for any suitable Γ. In general, we will give ' as the reflexive, symmetric
and transitive closure of a contextual relation > on typed terms. We define >0

as the least one such that: πi〈s1, s2〉 >0 si and (λx s) t >0 s [x := t] (with the
obvious assumptions ensuring typability), and we write '0 for the corresponding
equivalence.

Pure typed λ-calculi are those with no additional constant or conversion rule:
fix a set A of atomic types, and write ΛA

0 for the calculus where CA = ∅ for all A,
and s ' t iff s '0 t.

3.2. Relational interpretation and finiteness property

Assume a set JXK is given for each base type X; then we interpret type con-
structions by JA→ BK = JAK! × JBK, JA×BK = JAK ] JBK and J>K = ∅. Further
assume that with every constant a ∈ CA is associated a subset JaK ⊆ JAK. The
relational semantics of a derivable typing judgement

x1 : A1, . . . , xn : An ` s : A

will be a relation

JsKx1:A1,...,xn:An
⊆ JA1K

! × · · · × JAnK
! × JAK .
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JVarK
Γ[], x[α] : A,∆[] ` xα : A

a ∈ CA α ∈ JaK
JConstK

Γ[] ` aα : A
Γ, xα : A ` sβ : B

JAbsK
Γ ` λx s(α,β) : A→ B

Γ0 ` s([α1,...,αk],β) : A→ B Γ1 ` tα1 : A · · · Γk ` tαk : A
JAppK∑k

j=0 Γj ` s tβ : B

Γ ` sαi : Ai JPairiK
Γ ` 〈s1, s2〉(i,α)

: A1 ×A2

Γ ` s(i,α) : A1 ×A2 JProjiK
Γ ` πisα : Ai

Figure 2. Computing the elements of the relational semantics

We first introduce the deductive system of Figure 2, which is a straightforward
adaptation of de Carvalho’s system R [18] to the simply typed case. In this system,
derivable judgements are semantic annotations of typing judgements:

xα1
1 : A1, . . . , x

αn
n : An ` sα : A

stands for
(α1, . . . , αn, α) ∈ JsKx1:A1,...,xn:An

.

In rules JVarK and JConstK, Γ[] denotes an annotated context of the form x
[]
1 :

A1, . . . , x
[]
n : An. In rule JAppK, the sum of annotated contexts is defined pointwise:(

xα1
1 : A1, . . . , x

αn
n : An

)
+
(
x
α′

1
1 : A1, . . . , x

α′
n
n : An

)
=
(
x
α′′

1
1 : A1, . . . , x

α′′
n
n : An

)
where α′′i = αi + α′i for all i. The semantics of a term is then simply obtained as
the set of its annotations:

JsKx1:A1,...,xn:An
=
{

(α1, . . . , αn, α); xα1
1 : A1, . . . , x

αn
n : An ` sα : A

}
.

Notice there is no rule for 〈〉 in Figure 2, hence J〈〉KΓ = ∅ for all Γ.

Theorem 3.1 (Invariance). If Γ ` s '0 t : A then JsKΓ = JtKΓ.

Proof. We followed the standard interpretation of typed λ-calculi in cartesian
closed categories, in the particular case of Rel. A direct proof is also easy, first
proving a substitution lemma: if Γ0, x : A[α1,...,αk],∆0 ` sβ : B, and, for all
j ∈ {1, . . . , k}, Γj ,∆j ` tαj : A, then

∑k
j=0 Γj ,

∑k
j=0 ∆j ` s [x := t]

β
: B. �

The relational interpretation also defines a semantics in Fin: assume a finiteness
structure F (X) is given for each atomic type X, so that X∗ = (JXK ,F (X)) is a
finiteness space, and let (A→ B)

∗
= A∗ ⇒ B∗, (A×B)

∗
= A∗&B∗ and >∗ = E .

Then, further assuming that, for all a ∈ CA, JaK ∈ F (A∗), we obtain:

Theorem 3.2 (Finiteness). If x1 : A1, . . . , xn : An ` s : A then JsKx1:A1,...,xn:An
∈

F (A∗1⇒ · · · ⇒A∗n⇒A∗).
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Proof. This is a straightforward consequence of the fact that the cartesian closed
structure of Fin is given by the same morphisms as in Rel. A direct proof is also
possible, by induction on typing derivations. �

3.3. On the relations denoted by λ-terms

We have just shown that Rel and Fin model '0 in pure typed λ-calculi. Be
aware that if we introduce no atomic type, then the semantics is actually trivial:
in Λ∅0, all types and terms are interpreted by ∅.

By contrast, we can consider the internal language ΛRel of Rel in which all
relations can be described: fix A as the collection of all sets (or a fixed set of sets)
and CA = P (JAK). Then let s 'Rel t iff JsKΓ = JtKΓ, for any suitable Γ. The
point in defining such a language is to enable very natural notations for relations:
in general, we will identify closed terms in ΛRel with the relations they denote in
the empty context. For instance, we write idA = λxx with x of type A; and if
f ∈ Rel(A,B) and g ∈ Rel(B,C), we have g ◦ f = λx (g (f x)). Similarly, the
internal language ΛFin of Fin, where A is the collection of all finiteness spaces and
CA = F (A∗), allows us to denote conveniently all finitary relations.

Before we address the main subject of the paper, system T , let’s just review
some easy examples of usual λ-calculus constructions that can be modelled in
Rel and Fin. First, being cartesian closed categories, they are actually models of
pure typed λ-calculi with extensionality, surjective pairing and terminal object:
Theorem 3.1 still holds if we add the reductions λx (ux) >0 u, 〈π1 s, π2 s〉 >0 s
and v >0 〈〉 as soon as x is not free in u and v has type > (although, in that case,
>0 is no longer confluent).

We can also extend the language with particular base types and constants. For
instance, we can introduce base type Bool together with constants T and F of type
Bool, and DA of type Bool→ A→ A→ A, with the additional reductions D T s t >
s and D F s t > t (we will in general omit the type subscript of such constants
and keep the obvious hypotheses on typability implicit) and fix interpretations as
follows: let B a finiteness space with a two element web |B| = {tt, ff}; then let
Bool∗ = B, JTK = {tt}, JFK = {ff} and JDAK = DA = {([tt] , [α] , [] , α); α ∈ |A∗|} ∪
{([ff ] , [] , [α] , α); α ∈ |A∗|}. That these interpretations are finitary should be clear.
Then one retains that Γ ` s ' t : A implies JsKΓ = JtKΓ. But the essential point is
that this semantics is internal: in ΛRel and ΛFin, x : A, y : A ` DA T x y ' x : A
and x : A, y : A ` DA F x y ' y : A. This means that booleans interact as
expected with all relations of appropriate types and not just with those derived
from λ-terms.

Much more structure can be revealed in Rel and Fin, with computational coun-
terparts in ΛRel and ΛFin. Most importantly, the semantics of the λ-calculus in
Fin lead Ehrhard and Regnier to the definition of the differential λ-calculus in [10].
One can present this calculus in the current framework by introducing, for all types
A and B, a new constant DiffA,B of type (A → B) → A → A → B subject to a
new reduction rule (Diff λx s) t > λx

(
∂ s
∂ x
· t
)
where ∂ s

∂ x
· t is the linearized version

of substitution defined in [10].
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3.4. System T

The main contribution of the present paper is to establish that Fin models
Gödel’s system T , which can be presented in various ways. The iterator version of
system T is the typed λ-calculus with an atomic type Nat of natural numbers, and
constants O of type Nat (corresponding to zero), S of type Nat→ Nat (correspond-
ing to successor) and for every type A, IA of type Nat→ (A→ A)→ A→ A, sub-
ject to the following additional conversions: I Ou v > v and I (S t)u v > u (I t u v).
The recursor variant is similar, but the iterator is replaced with RA of type
Nat → (Nat → A → A) → A → A subject to conversions R Ou v > v and
R (S t)u v > u t (R t u v). Yet another possible system is obtained with tail recur-
sive iteration: take JA of type Nat→ (A→ A)→ A→ A and let J Ou v > v and
J (S t)u v > J t u (u v).

These systems allow us to represent exactly the same functions on the set of
natural numbers, where the number n is denoted by Sn O: this is the consequence
of a normalization theorem (see [22]). Notice in particular that, when applied to
a canonical integer, I and J coincide: I (Sn O)uv ' J (Sn O)uv ' un v; this does
not hold for all terms of type Nat, however (consider, e.g., a variable of type Nat).
Moreover, we can define a recursor using iteration and products with the standard
encoding rec = λxλy λz π1 (Ix (λw 〈y (π2 w) (π1 w),S (π2 w)〉) 〈z,O〉), and we get
rec (Sn O)uv ' R (Sn O)uv: the idea is to reconstruct the integer argument on the
fly. But this encoding is valid only for ground terms of type Nat: rec (S t)u v '
u t (rec t u v) holds only if we suppose t is of the form Sn O, or reduces to such
a term (notice we could as well use J in the definition of rec). By contrast, the
encoding of the iterator by iter = λxλy λz (Rx (λx′ y) z) is extensionally valid:
iter Ou v ' v and iter (S t) u v ' u (iter t u v) for all t, u, v.

The fact that one direction of the encoding holds only on ground terms in-
dicate that the algorithmic properties of both systems may differ. And these
differences will appear in the semantics (see Section 5). Also, recall the dis-
cussion in our introduction: the tail recursive variant of iterator, J subject to
J (S t)u v > J t u (u v), uses its integer argument linearly. This enabled Ehrhard
to define a semantics of iteration, with Nat∗ = N = (N,Pf (N)), JOK = O = {0}
and JSK = S = {([n] , n+ 1); n ∈ N}. Such an interpretation of natural numbers,
however, fails to provide a semantics of I or R, in Rel or Fin.

Lemma 3.3. Assume JNatK = |N |, JOK = O and JSK = S, and let A be any type
such that JAK 6= ∅. Then there is no IA ⊆ JNat→ (A→ A)→ A→ AK such that,
setting JIAK = IA, we obtain JI Ou vKΓ = JvKΓ and JI (S t) u vKΓ = Ju (I t u v)KΓ as
soon as Γ ` t : Nat, Γ ` u : A→ A and Γ ` v : A.

Proof. By contradiction, assume the above equations hold. We can then de-
rive the following in ΛRel: λxλy (I O (λz x) y) ' λxλy y and, observing that
∅ ⊆ N, λxλy (I (S ∅) (λz x) y) ' λxλy x. Since moreover S ∅ ' ∅, and the se-
mantics is monotonic for relation inclusion, we obtain: λxλy (I (S ∅) (λz x) y) '
λxλy (I ∅ (λz x) y) ⊆ λxλy (I O (λz x) y). We conclude that Jλxλy xKx:A,y:A ⊆
Jλxλy yKx:A,y:A for every type A, which obviously fails as soon as JAK 6= ∅. �
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4. A finitary relational interpretation of primitive
recursion

4.1. Lazy natural numbers

We say a multirelation from A to B is:
• linear if it contains only elements of the form ([α] , β);
• affine if it contains only elements of the form ([α] , β) or ([] , β);
• strict if it contains no element of the form ([] , β).

In the proof of Lemma 3.3, S ∅ = ∅ holds because S is linear, hence strict. This
reflects the general fact that, if s is a strict multirelation from A to B then, for
all t ∈ Rel(B,C), ([] , γ) in t ◦ s iff ([] , γ) ∈ t. Such a phenomenon was also noted
by Girard in his interpretation of system T in coherence spaces [22]. His evidence
that there was no interpretation of the iteration operator using the linear successor
relied on a coherence argument. The previous lemma is stronger: it holds in any
webbed model as soon as the interpretation of successor is strict.

In short, strict morphisms cannot produce anything ex nihilo; but the suc-
cessor of any natural number should be marked as non-zero, for the iterator to
distinguish between both cases. Hence the successor should not be strict: simi-
larly to Girard’s solution, we will interpret Nat by so-called lazy natural numbers.
Let Nl = (|Nl| ,Pf (|Nl|)) be such that |Nl| = N ∪ N>, where N> is just a
disjoint copy of N. The elements of N> are denoted by k>, for k ∈ N: k>

represents a partial number, not fully determined but strictly greater than k. If
ν ∈ |Nl|, we define ν+ as k + 1 if ν = k and (k + 1)> if ν = k>. Then we set
Sl = {([] , 0>)}∪{([ν] , ν+); ν ∈ |Nl|}, which is affine. Notice that O ∈ F (Nl) and
Sl ∈ F (Nl⇒Nl).

We will show that these allow us to provide an interpretation of recursion, hence
iteration, in system T : for all finiteness space A, there exists

RA ∈ F (Nl⇒ (Nl⇒A⇒A)⇒A⇒A)

such that, in ΛFin,

y : Nl⇒A⇒A, z : A ` RO y z ' z : A

and
x : Nl, y : Nl⇒A⇒A, z : A ` R (Sl x) y z ' y x (Rx y z) : A.

4.2. Fixpoints

For all finiteness space A, write Rec [A] = Nl⇒ (Nl⇒A⇒A)⇒A⇒A. We
want to introduce a recursion operator RA ∈ F (Rec [A]) intuitively subject to the
following definition:

R t u v = match t with
{

O 7→ v
S t′ 7→ u t′ (R t′ u v)

.
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This definition is recursive, and a natural method to obtain such an operator is as
the fixpoint of

Step = λX λxλy λz
(
match x with

{
O 7→ z

Sx′ 7→ y x′ (X x′ y z)

)
.

The cartesian closed category Rel is cpo-enriched, the order on morphisms be-
ing inclusion. Hence it has fixpoints at all types: for all set A and f ∈ Rel(A,A),
the least fixpoint of f is

⋃
k≥0 f

k ∅, which is an increasing union. The least fix-
point operator is itself definable as the supremum of its approximants, FixA =⋃
k≥0 Fix

(k)
A , where Fix(0)

A = ∅ and Fix(k+1)
A = λf

(
f
(
Fix(k)

A f
))

. More explic-

itly, Fix(k+1)
A =

{
([([α1, . . . , αn] , α)] +

∑n
i=1 ϕi, α) ; ∀i, (ϕi, αi) ∈ Fix

(k)
A

}
: the

reader may check that this equation holds by inspecting all the possible anno-
tations of λf (f (a f)) by the rules of Figure 2, where a is any constant of type
(A → A) → A. Intuitively, the pair ([α1, . . . , αn] , α) corresponds to the head
instance of f in f (a f), while each ϕi holds the instances of f used by a in order
to produce αi in the recursive call (a f).

Notice that these approximants are finitary: if A is a finiteness space then, for
all k, Fix(k)

A = Fix(k)
|A| ∈ F ((A⇒A)⇒A). The fixpoint, however, is not finitary

in general: for instance FixSl = N> 6∈ F (Nl) hence Fix 6∈ F ((Nl⇒Nl)⇒Nl).
In fact Fix ∈ F ((A⇒A)⇒A) only for the empty type A = E :

Lemma 4.1. If |A| 6= ∅, then Fix 6∈ F ((A⇒A)⇒A).

Proof. Let α ∈ |A| and f = {([] , α)} ∪ {([α] , α)} ∈ Pf (A⇒A) ⊆ F (A⇒A).
Observe that ([([] , α)] , α) ∈ Fix(1), ([([] , α), ([α] , α)] , α) ∈ Fix(2), and more gen-
erally ([([] , α)] + n [([α] , α)] , α) ∈ Fix(n+1). Hence f ! ∩

(
Fix⊥ · {α}

)
is infinite

although f ∈ F (A⇒A), which contradicts the definition of finitary multirela-
tions. �

This result indicates that the finitary semantics refuses infinite computations
and will not accommodate general recursion. It is thus very natural to investigate
the nature of the algorithms that can be studied in a finitary setting, hence our
interest in typed recursion and system T . So we proceed in two steps: we first
introduce the finitary approximants R(k)

A ∈ F (Rec [A]) by R(k)
A = StepkA ∅, then

we prove RA =
⋃
k≥0R

(k)
A ∈ F (Rec [A]).

On a side note, recall that coherence spaces accommodate fixpoints without
difficulty [22]: in particular, the coherence semantics of system T is very similar to
the relational interpretation we give in the following. By contrast, the finiteness
property is completely new. We will moreover show in section 5 that, despite its
similarity with the coherence semantics, the relational interpretation itself brings
new light on the nature of iteration and recursion, which would not be accessible
in the uniform setting of coherence spaces.
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4.3. Pattern matching on lazy natural numbers

We introduce a finitary operator Case, intuitively defined as:

Case t u v = match t with
{

O 7→ v
S t′ 7→ u t′

.

More formally:

Definition 4.2. If ν = [ν1, . . . , νk] ∈ |Nl|!, we write ν+ =
[
ν+

1 , . . . , ν
+
n

]
. Then for

all set A, let

CaseA = {([0] , [] , [α] , α); α ∈ A}
∪

{
([0>] + ν+, [(ν, α)] , [] , α); ν ∈ |Nl|! ∧ α ∈ A

}
.

Lemma 4.3. The operator Case performs pattern matching on natural numbers:

y : Nl⇒A, z : A ` CaseO y z ' z : A

and
x : Nl, y : Nl⇒A, z : A ` Case (Sl x) y z ' y x : A.

Moreover, pattern matching is finitary:

CaseA = Case|A| ∈ F (Nl⇒ (Nl⇒A)⇒A⇒A) .

Proof. That the equations hold is by now a routine exercise. To prove that Case
is finitary, we check the definition of F (− ⇒ −). For the first direction: for all
n ∈ F (Nl), Case n ⊆ {([] , [α] , α); α ∈ |A|}∪

{
([(ν, α)] , [] , α); ν+ ∈ n! ∧ α ∈ |A|

}
;

hence, setting n′ = {ν; ν+ ∈ n} ∈ F (Nl), we obtain Case n ⊆ (λy λz z)∪(λy λz (y n′)),
and we conclude since the union of two finitary subsets is finitary. In the reverse di-
rection, we prove that, for all γ ∈ |(Nl⇒A)⇒A⇒A|, setting N ′ = Case⊥ · {γ},
n! ∩ N ′ is finite: this is immediate because N ′ has at most one element (by the
definition of Case). �

4.4. A relational recursor

We introduce the relation R as the fixpoint of Step.

Definition 4.4. Fix a set A. Let

StepA = λX λxλy λz (CaseA x (λx′ (y x′ (X x′ y z))) z)

and, for all k ∈ N, let R(k)
A = StepkA ∅. Then we define RA =

⋃
k≥0R

(k)
A , and fix

JRK = R.
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Lemma 4.5. For all finiteness space A, StepA = Step|A| ∈ F (Rec [A]⇒ Rec [A])

and, for all k, R(k)
A = R(k)

|A| ∈ F (Rec [A]). Moreover, we have: R(0)
A = ∅ and

R(k+1)
A = {([0] , [] , [α] , α); α ∈ |A|} ∪{ (

[0>] +
∑n
i=0 ν

+
i , [(ν0, [α1, . . . , αn] , α)] +

∑n
i=1 ϕi,

∑n
i=1 αi, α

)
;

∀i, (νi, ϕi, αi, αi) ∈ R
(k)
A
}
.

Proof. The finiteness of the approximants follows from Theorem 3.2. The ex-
plicit description of R(k)

A is a direct application of the definition of the relational
semantics. �

Theorem 4.6 (Correctness). For all suitable Γ and ∆, JR O y zKΓ = JzKΓ and
JR (Sx) y zK∆ = Jy x (Rx y z)K∆.

Proof. This follows directly from Lemma 4.3 and the fact that R = StepR. �

4.5. Finiteness

It only remains to prove R is finitary. Following the definition of (− ⇒ −), we
proceed in two steps: the image of a finitary subset of Nl is finitary; conversely,
the preimage of a singleton is “anti-finitary”.

Definition 4.7. If n ∈ F (Nl), we set max (n) = max {k; k ∈ n ∨ k> ∈ n}, with
the convention max (∅) = 0. Then if ν ∈ |Nl|! we set max (ν) = max (Supp (ν)),
and if N ⊆ n! for some n ∈ F (Nl), max (N) = max

(⋃
ν∈N Supp (ν)

)
.

Lemma 4.8. For all γ = (ν, ϕ, α, α) ∈ RA, γ ∈ R(max(ν)+1)
A .

Proof. By induction on max (ν), using Lemma 4.5. �

Lemma 4.9. If n ∈ F (Nl), then RA n ∈ F ((Nl⇒A⇒A)⇒A⇒A).

Proof. The previous Lemma entails RA n = R(max(n)+1)
A n. We conclude recalling

that R(max(n)+1)
A ∈ F (Rec [A]). �

Definition 4.10. For all ϕ = [(ν1, α1, α1), . . . , (νk, αk, αk)] ∈ |Nl⇒A⇒A|!, let
♦ϕ =

∑k
j=1 # νj.

Lemma 4.11. If (ν, ϕ, α, α) ∈ RA, then # ν = #α+ #ϕ+ ♦ϕ.

Proof. Using Lemma 4.5, the result is proved for all (ν, ϕ, α, α) ∈ R(k)
A , by induc-

tion on k. �

Theorem 4.12 (The recursion operator is finitary). RA ∈ F (Rec [A]).

Proof. By Lemma 4.9, we are left to prove that, for all n ∈ F (Nl) and γ =
(ϕ, α, α) ∈ |(Nl⇒A⇒A)⇒A⇒A|, N = n! ∩

(
R⊥ · {γ}

)
is finite. But by

Lemma 4.11,

N ⊆
{
ν ∈ |Nl|!; # ν = #α+ #ϕ+ ♦ϕ ∧max (ν) ≤ max (n)

}
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which is finite. �

Remark 4.13. We keep calling R “the” recursion operator, but notice such an
operator is not unique in Rel or Fin: let Case′A = {([0, 0] , [] , [α] , α); α ∈ A} ∪{(

[0>] + ν+, [(ν, α)] , [] , α
)

; ν ∈ |Nl|! ∧ α ∈ A
}
, for instance; this variant of match-

ing operator behaves exactly like Case, and one can reproduce our construction of
the recursor based on that. This is to be related with the fact that neither Rel nor
Fin admit coproducts: in other terms, there is no canonical way to implement sum
types and pattern matching in these categories.

5. About iteration

5.1. A weak natural number object

We have just provided a semantics of system T with recursor. Now let IA =
λxλy λz (RA x (λx′ y) z) for all set A. By Theorem 4.12, IA = I|A| ∈ F (Iter [A]),
where Iter [A] = Nl⇒ (A⇒A)⇒A⇒A. Moreover, by Theorem 4.6 this defines
an iteration operator and we obtain that the triple (|Nl| ,O,Sl), resp. (Nl,O,Sl),
is a weak natural number object [20,21] in the cartesian closed category Rel, resp.
Fin. Indeed:

Lemma 5.1. For all f ∈ Fin(A,A) and all a ∈ F (A), there exists h ∈ Fin(Nl,A)
such that hO = a and h ◦ Sl = f ◦ h.

Proof. Take h = λx (I x f a). �

According to Remark 4.13, there is no hope of finding a strong natural number
object in these categories, i.e. to require h to be unique in the above lemma.

We could also have introduced I by a construction similar to that of R:

Definition 5.2. Let

ItStep = λX λxλy λz (Case x (λx′ (y (X x′ y z))) z)
∈ F (Iter⇒ Iter)

and, for all k ∈ N, I(k) = ItStepk ∅ ∈ F (Iter).

Lemma 5.3. The relations I(k)
A are given by: I(0)

A = ∅ and

I(k+1)
A = {([0] , [] , [α] , α); α ∈ |A|}∪{ (

[0>] +
∑n
i=1 ν

+
i , [([α1, . . . , αn] , α)] +

∑n
i=1 ϕi,

∑n
i=1 αi, α

)
;

∀i, (νi, ϕi, αi, αi) ∈ I
(k)
A

}
.

Proof. Again, routine exercise. �

Lemma 5.4. We have
⋃
k≥0 I

(k)
A = IA.

Proof. Check that, for all k, I(k) = λxλy λz
(
R(k) x (λx′ y) z

)
. �
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5.2. Uniformity of iteration

We now develop a semantic investigation of the gap in expressive power between
iteration and recursion, which was formally established by Parigot [23].

One distinctive feature of the (pure or finitary) relational model is non-uniformity:
if a, a′ ∈ F (A) then a ∪ a′ ∈ F (A); and in the construction of a!, there is no re-
striction on the elements of the multisets we consider. It is very different from
the setting of coherence spaces for instance. But we can show the iterator only
considers uniform sets of lazy numbers, in the following sense: if k ∈ N, we define
k = Skl O = {l>; l < k} ∪ {k} ∈ F (Nl); we say n ⊆ |Nl| is uniform if n ⊆ k
for some k. Notice that, in the coherence space of lazy natural numbers used by
Girard in [22] to interpret system T , the sets k are the finite maximal cliques:
coherence is given by k ¨ l iff k = l, k ¨ l> iff k > l and k> ¨ l> for all k, l. The
only infinite maximal clique is N> which is not finitary (recall this is the fixpoint
of Sl). We prove I considers only uniform sets of lazy numbers.

Let Stage(0)
A = {([0] , [] , [α] , α); α ∈ |A|} and, for all k ∈ N,

Stage(k+1)
A = {([0] , [] , [α] , α); α ∈ |A|}∪{ (

[0>] +
∑n
i=1 ν

+
i , [([α1, . . . , αn] , α)] +

∑n
i=1 ϕi,

∑n
i=1 αi, α

)
;

∀i, (νi, ϕi, αi, αi) ∈ Stage
(k)
A

}
.

Setting Stage(−1)
A = ∅, one can check that Stage(k−1)

A ⊆ I(k)
A ⊆ Stage(k)

A for all k,
and then IA =

⋃
k≥0 Stage

(k)
A .

Lemma 5.5. If A 6= E then, for all k ∈ N,⋃{
Supp (ν) ; ∃(ϕ, α, α), (ν, ϕ, α, α) ∈ Stage(k)

A \ Stage
(k−1)
A

}
= k.

Proof. The first inclusion (⊆) is easy by induction on k. For the reverse (⊇), check
that ([0>, 1>, . . . , (k − 1)>, k] , (k−1) [([α] , α)] , [α] , α) ∈ Stage(k)

A \Stage
(k−1)
A for

all α ∈ |A|. �

As a consequence, for all (ν, ϕ, α, α) ∈ I, Supp (ν) is uniform. Of course, no
such property holds for R, because

R(1)
A ⊇

{([
0>
]

+ ν+, [(ν, [] , α)] , [] , α
)

; α ∈ |A| ∧ ν ∈ |Nl|!
}
.

Actually, this non-uniformity of recursion is not related with our specific choice
of the interpretation of R . Rather, it follows from the fact that, in the equation
R (S t)u v ' u t (R t u v), u can take arbitrary arguments. Let us make this remark
precise:

Lemma 5.6. Fix a set A 6= ∅, α ∈ A and let r be a relation of type |Nl| → (|Nl| →
A → A) → A → A, such that r (Sl t)u v ' u t (r t u v) for all terms t, u and v of
suitable type in ΛRel. Then, for all ν ∈ |Nl|!, r admits an element of the form
(ν+ + [0>, . . . , 0>] , φ, [] , α) ∈ r.
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Proof. Fix α ∈ A and let f = {(ν, [] , α)}, which is a singleton relation of type
|Nl| → A → A. Then, if x is a variable of type |Nl|, r (Sl x) f ∅ ' f x (r x f ∅)
holds in ΛRel. Now observe that, by the definition of f , Jf x (r x f ∅)Kx:|Nl| =

{(ν, α)}. Hence xν : |Nl| ` (r (Sl x) f ∅)α : A. By inspecting the rules of Figure 2,
we necessarily have xν : |Nl| ` (r (Sl x) f)

([],α)
: A → A. By the same argument,

we obtain xν : |Nl| ` (r (Sl x))
(ϕ,[],α)

: (|Nl| → A → A) → A → A for some
ϕ ∈ f !. Finally, there exist finite multisets [µ1, . . . , µk] , ρ1, . . . , ρk ∈ |Nl|

! such
that x[] : |Nl| ` r([µ1,...,µk],ϕ,[],α) : |Nl| → (|Nl| → A → A) → A → A and
xρj : |Nl| ` (Sl x)

µj : |Nl| for all j, with moreover
∑
j ρj = ν. Since (ρj , µj) ∈ Sl

for all j, we conclude that [µ1, . . . , µk] is of the form ν+ + [0>, . . . , 0>]. �

The contrast between Lemma 5.5 and Lemma 5.6 reflects a gap in expressive
power between iteration and recursion. Indeed, from Lemma 5.5, we can deduce
the following result:

Lemma 5.7. Consider the iterator variant of system T , and fix the interpretations
JNatK = Nl, JOK = O, JSK = Sl and JIK = I. Fix a variable x of type Nat. Let s
be a term such that:
(i) all occurrences of x are of the form Ix;
(ii) no occurrence of Ix is inside the argument of an application.
Then, if some judgement Γ, xν : Nat ` sα : A is derivable, Supp (ν) is uniform.

Proof. We prove the result by induction on s, the only interesting case being that
of an application:

• if s = Ix then A is of the form (B → B) → B, we check that Γ, xν :

Nat ` Ix(φ,β) : (B → B) → B implies (ν, φ, α) ∈ I, and we conclude by
Lemma 5.5;
• otherwise, s = u v and x does not occur in v, hence Γ, xν : Nat ` sα : A

implies some judgment Γ0, x
ν : Nat ` u([γ1,...,γk],α) : C → A can be derived,

and we conclude by induction hypothesis applied to u, which necessarily
satisfies (i) and (ii).

�

Corollary 5.8. No term of the form λx s, with s as in the previous lemma is a
valid implemention of recursion.

Notice that this already rules out the usual naïve attempt to implement recur-
sion using only iteration and products (recall the term rec from section 3.4). We
can moreover drop the hypothesis (ii) in Lemma 5.7 by considering the following
oriented version of coherence on |Nl|: we say µ is less defined than ν and write
µ ≺ ν if there are m < n ∈ N such that µ = m> and either ν = n> or ν = n. The
coherence relation ¨ is the reflexive and symmetric closure of this partial order.
We then obtain the following property for I:

Lemma 5.9. For all (ν, ϕ, α, α) ∈ I, Supp (ν) is downwards closed for ≺, i.e.
µ ≺ ν ∈ Supp (ν) implies µ ∈ Supp (ν).
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Proof. By Lemma 5.3, it is sufficient to prove this result for I(k), for all k ∈ N.
First notice that any union of downwards closed subsets of |Nl| is downwards
closed, and that if n ⊆ |Nl| is downwards closed then so is {0>} ∪ {ν+; ν ∈ n}.
We then conclude by a straightforward induction on k. �

Again, such a property fails for any implementation of recursion, by Lemma 5.6.
Moreover:

Lemma 5.10. With the same hypotheses as in Lemma 5.7, consider a term t
such that all occurrences of x in t are of the form Ix. Then, if some judgement
Γ, xν : Nat ` tα : A is derivable, Supp (ν) is downwards closed for ≺.

Proof. Again, the proof is by induction on t, with the only interesting case being
that of an application:

• if t = Ix, we conclude directly by the previous lemma;
• otherwise, t = u v and Γ, xν : Nat ` tα : A implies that we can derive

judgements of the form Γ0, x
ν0 : Nat ` u([β1,...,βk],α) : B → A and Γj , x

νj :

Nat ` vβj : B for j ∈ {1, . . . , k} where ν =
∑k
j=0 νj ; we conclude by

induction hypothesis applied to u and v, together with the fact that unions
of downwards closed subsets are downwards closed.

�

Corollary 5.11. No term of the form λx t, with t as in the previous lemma is a
valid implemention of recursion.

This concluding result is not fully satisfactory, because there remains the con-
dition that x occurs only as the first argument of I. It is still unclear to us whether
our semantic argument can be refined in order to avoid this hypothesis. Notice for
instance that JIx ∅xKx:|Nl| = {([0, ν] , ν); ν ∈ |Nl|} where [0, ν] need not be uni-
form nor downwards closed for ≺, hence those simple properties are not sufficient
to discriminate between iterator-based terms and recursion operators.

On the other hand, the fact that no term in the iterator variant of system T
defines a recursion operator follows straightforwardly from Parigot’s work on the
encodings of system T in higher order intuitionistic logic [23]: Parigot’s results
entail that no predecessor can be derived from the iterator. A predecessor is a
term p such that pO ' O and p (S t) ' t for all t of type Nat. Such a predecessor
is trivially obtained from the recursor: consider p = λx (Rx (λy y) O). Hence
Parigot’s results subsume both Corollaries 5.8 and 5.11.

Anyway, the results of this section showed how the relational interpretation of
system T reflected this well known computational distinction between iteration
and recursion: Lemmas 5.5 and 5.10 on the one hand, and Lemma 5.6 on the
other hand, provide a semantic insight into the nature of this gap, if not a new
proof of it.
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Related and future work

Our success in defining a semantics of system T in Fin immediately poses the
question of its generalization to other datatypes. The cpo-enriched structure of
Rel allowed for an abstract description of datatypes [30,31] as particular functors
which are monotonic for relation inclusion. In particular, this provided the basis of
a categorical account of container types [32]. In such a setting, it is natural to define
recursive datatypes, such as lists or trees, as the least fixpoints of particular Scott-
continuous functors. The question is then how to transport these constructions to
the finitary setting.

In recent work with Tasson [33], we study two orders on finiteness spaces derived
from set inclusion: the most restrictive one, finiteness extension, was used by
Ehrhard to provide an interpretation of second order linear logic in an unpublished
preliminary version of [9]; the largest one, finiteness inclusion, is a cpo on finiteness
spaces. We study various notions of continuity for functors in finiteness spaces, and
relate them with the existence of fixpoints for these functors. A striking feature
of this development is that we are led to consider the properties of functors w.r.t.
both orders simultaneously: continuity for finiteness inclusion, and monotonicity
for finiteness extension. We prove in particular that every functor obtained by
applying a very generic construction on finiteness spaces satisfies these properties,
and admits a least fixpoint for finiteness inclusion.

We then apply this result to describe a relational semantics of functional pro-
gramming with recursive datatypes, which generalizes the results of the present
paper: the fixpoints of algebraic datatype functors define recursive datatypes with
finitary constructors, destructors and iterators. This paves the way towards a
quantitative semantics of typed recursion, according to the following roadmap:
first find a correct quantitative semantics for constructors vs destructors (zero and
successor vs pattern matching in the case of system T ); then check that the coeffi-
cients involved in the computation of the fixpoint defining iterators remain finite.
We may first apply this strategy to system T . If it proves fruitful, we would then
try to generalize it to recursive algebraic datatypes.

Notice that another standard approach to the semantics of datatypes is to
consider the impredicative encoding of inductive types, e.g. in system F . Such
a semantics in finiteness spaces can be derived from that of second order linear
logic. This is based on a class of functors which, in particular, are monotonic
for the finiteness extension order. Notice however that this does not provide a
denotational semantics stricto sensu: in general, the interpretation decreases under
cut elimination. Moreover, the possibility of defining a quantitative semantics in
this setting is not clear.
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