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Estimation Performance for the Bayesian
Hierarchical Linear Model

Mohammed Nabil El Korso, Rémy Boyer, Pascal Larzabal and Bernard-Henri Fleury

Abstract—Bayesian hierarchical modelling is a well established
branch of Bayesian inference. In this letter, we derive and study
the estimation performance for the Bayesian hierarchical linear
model. Specifically, we consider a linear model with hierarchical
priors for the involved amplitude and noise vectors. We provide
closed-form expressions of the Bayesian Cramér-Rao bound
(BCRB) for the following settings: (i) an arbitrary prior and
hyper-prior and (ii) a Gaussian-Y prior for the amplitudes,
while the prior of noise is a Gaussian-X in both cases. Gaussian-
X means that the conditional prior given the hyper-parameter
is Gaussian and X is the hyper-prior. For the hierarchical
distribution associated with spherical invariant random variables,
the BCRB has a compact closed-form expression and enjoys
several interesting properties that are discussed. Finally, we
provide a theoretical analysis of the statistical efficiency of the
linear minimum mean square error estimator in the low and
high noise variance regimes when the hyper-parameters are
stochastically dominant.

I. INTRODUCTION

Bayesian hierarchical linear modeling [8]–[11] is one of
the major success stories of modern Bayesian inference [1]–
[3]. A wide range of applications have emerged, for instance
in frame-based theory [12], compressed sensing [4,5,13,14],
source localization [15], astronomical data analysis [16],
neuro-imaging [7] and wireless communications [6,17].

In the literature, we can find a plethora of estimators of the
parameters of the Bayesian hierarchical linear model (BHLM),
among them the linear minimum-mean-square error (LMMSE)
estimator that will be discussed later. In order to benchmark
the performance of such estimators we present analytical
expressions of Bayesian lower bounds on their mean square
error (MSE) [18,19]. Bayesian lower bounds are of practical
interest since, given an estimator, they indicate how close to
optimum this estimator performs and indirectly whether some
improvement is still possible. They also allow to design the
linear model in such a way to obtain the best achievable
accuracy [20,21].
Among the large choice of the possible lower bounds, we
focus our attention on Van Trees’ Bayesian Cramér-Rao bound
(BCRB) [18] for the estimation of the amplitude and noise
parameters/hyper-parameters for the BHLM in the two fol-
lowing contexts:
(i) Unspecified arbitrary prior and hyper-prior for the ampli-

tudes and Gaussian-X noise prior.
(ii) Gaussian-Y amplitude prior and Gaussian-X noise prior.
With Gaussian-X we mean that the conditional prior given
the hyper-parameter is Gaussian and X is the hyper-prior
distribution. The proposed approach has two main advantages:
(i) the closed-form expressions can provide useful information

on the nature of the parametric estimation problem in the
context of the BHLM and (ii) the computational complexity
of the proposed bounds is low, whereas the complexity of
computing the MMSE is often prohibitive due to the posterior
mean that it involves.

II. HIERARCHICAL BAYESIAN LINEAR MODEL

To specify the BHLM, we consider the linear model [4]–[7]

y = Hα+ n (1)

where y ∈ RN is the observation vector, H denotes a known
deterministic real N × K matrix and α = [α1 . . . αK ]T ∈
RK is the vector of amplitudes. We assume a two-layer
hierarchical prior for the parameter (vector) of interest α.
Specifically, the prior of α depends on an hyperparameter
γ = [γ1 . . . γK ]T with a specified prior. With this assumption
the joint probability density function (pdf) of [αγ] is of the
form p(α,γ) = p(α|γ)p(γ). The noise vector n follows a
Gaussian-X distribution, meaning that n|λ ∼ N (0, λ−1IN ),
where the noise precision λ follows a given distribution X
with pdf p(λ). The unknown parameter vector, θ, consists of
the vector of amplitudes, their hyper-parameters and the noise
precision, i.e., θ = [ψT λ]T with ψ = [αT γT ]T . The joint
pdf of (y,θ) reads

p(y,θ) = p(y|α, λ)p(α|γ)p(γ)p(λ). (2)

In writing (2) we make the additional assumption that the
hyper-parameters γ and λ are independent. This pdf together
with (1) specify the BHLM.

III. BCRB FOR THE BHLM WITH GAUSSIAN-X NOISE

Let θ̂ = θ̂(y) be an estimator of θ. Its MSE fulfils the
inequality E

{
(θ − θ̂)(θ − θ̂)T

}
≥ C = J−1, where C

denotes the BCRB matrix and J is the Bayesian information
matrix (BIM) for θ [18].

Under weak regularity assumptions on p(y,θ) in (2), we
have the following result.

Result III.1. The BCRB matrix for the BHLM with Gaussian-
X noise distribution reads

C = J−1 = bdiag {Cψ,ψ,Cλ,λ} (3)

where bdiag denotes the block diagonal operator and

Cψ,ψ =

[
Cα,α Cα,γ
Cγ,α Cγ,γ

]
. (4)
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Cα,α =

[
E{λ}HTH+ E

{
J
(α,α)
P

}
− E

{
J
(α,γ)
P

}(
E
{
J
(γ,γ)
P

}
+ J

(γ,γ)
HP

)−1
E
{
J
(α,γ)
P

}T ]−1
, (5)

Cγ,γ =
[
E
{
J
(γ,γ)
P

}
+ J

(γ,γ)
HP

]−1(
I+ E

{
J
(α,γ)
P

}T
Cα,α E

{
J
(α,γ)
P

}(
E
{
J
(γ,γ)
P

}
+ J

(γ,γ)
HP

)−1)
, (6)

Cα,γ = −Cα,α E
{
J
(α,γ)
P

}[
E
{
J
(γ,γ)
P

}
+ J

(γ,γ)
HP

]−1
, Cλ,λ =

(
E
{
−∂2log p(λ)

∂λ2

}
+
N

2
E
{
λ−2

})−1
(7)

The terms Cα,α, Cα,γ , Cγ,γ , and Cλ,λ are given in (5)-(7),
with the expressions for J

(.,.)
P and J

(.,.)
HP reported in Appendix

VIII-A.

Proof. See Appendix VIII-A.

Remark III.1. Due to the block structure of the BCRB matrix
(3), the optimal estimation error of the noise hyperparameter
and the optimal estimation errors of the amplitudes and their
hyper-parameters are uncorrelated.

IV. BCRB FOR THE BHLM WITH GAUSSIAN-Y
AMPLITUDE AND GAUSSIAN-X NOISE PRIORS

In this section, we consider case (ii) where the amplitudes
follow a Gaussian-Y distribution, while noise is assumed to
be Gaussian-X distributed. This means that the conditional
pdf of the amplitudes and the noise are Gaussian given the
hyper-parameters γ and λ, respectively [2,9,23]. In this case,
Result III.1 particularizes as follows:

Result IV.1. Let assume that α|γ ∼ N (0,diag{γ}), with
diag denoting the diagonal operator, and that the hyper-
parameters γi, i ∈ {1, . . . ,K} are independently drawn from
a distribution X with pdf p(λ). Then, the diagonal elements
of the matrices in (5)-(7) have the closed-form expressions
given in (10)-(11) for i ∈ {1, . . . ,K}. In these expressions,
Hi = [hj : j ∈ {1, . . . ,K}\{i}], with hk, k ∈ {1, . . . ,K},
denoting the k-th column of H, and Di is the (K−1)×(K−1)
diagonal matrix

Di = diag
{
[D]jj : j ∈ {1, . . . ,K}\{i}

}
(8)

= diag
{
E
{
γ−1j

}
: j ∈ {1, . . . ,K}\{i}

}
(9)

with D = E
{
J
(α,α)
P

}
given in Appendix VIII-B.

Proof. See Appendix VIII-B.

Remark IV.1. (i) The Gaussian zero-mean amplitude prior
assumption implies that the optimal estimation errors of the
parameters and hyper-parameters are uncorrelated.
(ii) The optimal estimation error of the hyper-parameters is
no longer a function of their corresponding parameters.

Remark IV.2. e
- In the low noise variance regime the BCRB for αi has the
simple expression

BCRB(αi) ≈
1

E {λ}
∥∥P⊥Hi

hi
∥∥2 (12)

where P⊥Hi
denotes the orthogonal projector on 〈Hi〉⊥.

- The optimal estimation performance of the hyper-parameters
is independent of noise.

A. BCRB for spherically invariant random amplitudes

In this section, we focus on the derivation of closed-form
expressions of the BCRB matrix when the amplitude vector
is a spherically invariant random variable (SIRV) [26]. This
choice is motivated by the popularity of this model in engi-
neering and signal processing applications [4]–[7,27]–[32].
The modelling of a SIRV (also called Gaussian scale mixture
in the literature, e.g., [17]) is done by considering a two-
scale compound-Gaussian process containing two components,
which are commonly referred to as the texture and the speckle
terms, such that p(α|γ) =

∏K
i=1 p(αi|γi) with αi =

√
γixi,

i ∈ {1, . . . ,K}. In our context the speckle term, xi, is assumed
to follow a Gaussian distribution with zero mean and unit
variance, whereas, the positive texture term, i.e. γi > 0,
follows a given a priori distribution Y with pdf p(γi). From
p(α|γ), notice that this coincides with the BHLM with a
Gaussian-Y amplitude distribution.

In the following, we consider the so-called generalized
inverse Gaussian (GIG) distribution, denoted by GIG(ρ, φ, ω)
with parameters ρ, φ and ω defined in [35] as hierarchical
prior for the amplitudes. The GIG distribution encompasses the
well-known gamma and inverse-gamma distributions, which
lead to, respectively, a multi-variate K-distributed and multi-
variate student-t amplitude vector. Both models are known to
be well adapted to practical scenario [3]. The next result gives
a closed-form expression of the BCRB in the aforementioned
case, see Appendix VIII-C for the proof.

Result IV.2. The entries of the BCRB matrix associated
with the BHLM (1) with Gaussian-GIG amplitudes, i.e.,
γi ∼ GIG(ρi, φi, ωi), and Gaussian-X noise precision are
given by (10) for the amplitudes where E

{
γ−1i

}
= Mi =√

ρi
φi

Kωi−1(
√
ρiφi)

Kωi (
√
ρiφi)

, [Di]jj =Mj and

BCRB(γi) =
φiKωi(

√
ρiφi)

ρi
((
ωi − 1

2

)
Kωi−2(

√
ρiφi) +

√
ρiφiKωi−3(

√
ρiφi)

)(13)

where Kµ(.) is the modified Bessel function of the second kind
of order µ.

In the following, we use Result IV.2 to derive the BCRB
for the amplitudes for some special cases of the GIG prior
distribution listed in [34]. Note that we merely need to derive
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Cαi,αi , BCRB(αi) =
E{λ}−1

hTi

(
I−Hi

[
HT
i Hi + E{λ}−1 Di

]−1
HT
i

)
hi + E{λ}−1 E

{
γ−1i

} , (10)

Cγi,γi , BCRB(γi) =
(
1

2
E
{
γ−2i

}
− E
{
∂2 log p(γi)

∂2γi

})−1
and Cαi,γi , BCRB(αi, γi) = 0 (11)

Mi, i = 1, . . . ,K. To compute this parameter we shall rely
on some asymptotic approximations of the modified Bessel
function of the second kind. Specifically, from [33, Eq.9.6.8,
Eq.9.6.9] we have for ωi < 0

K0(z) ≈ − ln(z) and Kωi(z) ≈ 2ωi−1γ(ωi)z
−ωi , z small.

(14)
From [33, Eq.9.6.6] and (14) we obtain for ωi < 0

Kωi(z) ≈ γ(−ωi)2−ωi−1zωi , z small. (15)

Making use of (14), (15), and Result IV.2, we obtain analytical
expressions for BCRB(γi) for different settings of the param-
eters ρi, φi, and ωi of the GIG distribution [35]:
• ωi = 0: The hyper-prior GIG(ρi, φi, ωi) coincides with the
Barndroff-Nielsen hyperbolic distribution HBN (φi, ρi) [36].

In this case, Mi =

√
ρi
φi
K−1(

√
ρiφi)

K0(
√
ρiφi)

and

BCRB(γi) =
√
φi

ρ
3/2
i

K0(
√
ρiφi)

K−3(
√
ρiφi)− 1

2K−2(
√
ρiφi)

. (16)

• ωi = − 1
2 : GIG(ρi, φi, ωi) reduces to the Wald distribution,

also known as the inverse-Gaussian distribution, IG(
√

ρi
φi
, φi)

[34]. Making use of [37, A1.5] we obtain Mi = ρi/φi and

BCRB(γi) =
φ

3
2
i

3
√
ρi(1 +

√
ρiφi)

. (17)

• ωi < 0 and ρi → 0: GIG(ρi, φi, ωi) converges to the
inverse-gamma distribution Inv-Gamma(−ωi, φi2 ) with shape
ωi and scale φi

2 . Using (14)-(15) we have Mi ≈ γ(ωi−1)
φiγωi

and

BCRB(γi) ≈
φ2i
4

γ(−ωi)
(ωi − 1

2 )γ(2− ωi) + 2γ(3− ωi)
. (18)

• ωi > 0 and φi → 0: GIG(ρi, φi, ωi) converges to the
gamma distribution Gamma(ωi, ρi2 ) with shape ωi and rate
ρi
2 . Plugging (14) and (15) into Mi and assuming φi is small

we obtain Mi ≈ ρi
2
γ(ωi−1)
γ(ωi)

for ωi > 1 and

BCRB(γi) ≈
4

ρ2i

γ(ωi)

(ωi − 1
2 )γ(ωi − 2)

for ωi > 2. (19)

V. ANALYSIS OF THE LMMSE ESTIMATOR

A. MSE expression
Generalizing the Gauss-Markov Theorem [40] to the

BHLM, the MSE of the LMMSE estimator is given by

MSEL(α̂) = E
{
E
{
||α− α̂||2|γ, λ

}}
= TrE

[
λ−1

(
HTH+ diag

{
(λγ1)

−1
, . . . , (λγK)

−1
})−1]

,

where Tr is the trace operator.

B. Stochastic dominance scenario

We consider the context of stochastic dominance1.
1) Low noise variance regime: In this regime,

we obtain for the GIG prior distribution:

MSEL(α̂) '
∑K
k=1

(
φk
ρk

) 1
2 Kωk+1(

√
ρkφk)

Kωk (
√
ρkφk)

and

Tr (Cα,α) '
∑K
k=1

(
φk
ρk

) 1
2 Kωk (

√
ρkφk)

Kωk−1(
√
ρkφk)

. Thus, the
variance of the LMMSE estimator approaches the BCRB
when |ωi| � 1. For example, among the GIG distribution
family, the Gaussian-gamma and Gaussian-inverse-gamma
distributions fulfill this condition provided the shape parameter
is sufficiently large.

2) High noise variance regime: In this regime, we
have MSEL(α̂) ' E

{
λ−1

}
Tr
[(
HTH

)−1]
, whereas

Tr (Cα,α) ' E {λ}−1 Tr
[(
HTH

)−1]
. From Jensen’s in-

equality [41], E {λ}−1 ≤ E
{
λ−1

}
. Thus the MSE of the

LMMSE estimator is higher than the BCRB. The MSE may
be close to the BCRB for distributions that fulfil E {λ}−1 '
E
{
λ−1

}
, among them the gamma and inverse-gamma distri-

butions.

VI. NUMERICAL INVESTIGATIONS

Due to space limitation, we confine the numerical investiga-
tions to i) compare the BCRBs for two different selections of
the hyper-prior distributions of the amplitudes, i.e. the gamma
and inverse-gamma distributions with different settings of the
shape parameters, and (ii) quantify how close the MSE of
the LMMSE estimator is to these bounds. Fig. 1 depicts the
numerical results.

First of all, Fig. 1 reveals that the BCRB and the MSE
computed using the inverse-gamma prior distribution are lower
than those resulting from using the gamma prior distribution.
As expected, the MSE achieves the BCRB in the asymp-
totic region (low noise variance) and in the so-called non-
informative region (high noise variance). Nevertheless, a cer-
tain gap between the MSE and the BCRB remains in the
transition region. This gap is mainly due to the presence of
outliers in this region, of which the effect is not taken into
account in the BRCB [18].

Fig. 1 also shows that at low SNR the BCRB and the
MSE increase (decrease) as the shape parameter of the gamma
(inverse-gamma) distribution increases. For the gamma distri-
bution this can be explained by the fact that as the shape

1i.e., P (λ−1 ≥ ζ) ≥ P (γk ≥ ζ), ∀ζ, and ∃ζ : P (λ−1 ≥ ζ) > P (γk ≥
ζ). See [24,25] for some practical applications.
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parameter decreases, the prior distribution of the amplitudes
becomes more heavy-tailed. Note that the Gaussian distribu-
tion is the limit of the gamma distribution when the shape
tends to infinity. Thus, the selection of the Gaussian distribu-
tion in the SIRV family leads to the largest BCRB at low SNR
and to the worst performance of the LMSEE estimator in this
regime. This behaviour is expected, as it was already noticed
in the deterministic case, e.g., in [38]. As also expected, when
the SNR is above 0dB the value of the shape parameter is
irrelevant.

Fig. 1: BCRB and MSE of the LMMSE estimator versus the
mean noise precision for different selections of the hyper-prior
distribution for the amplitudes.

VII. CONCLUSIONS

In this paper, we derived closed-form expressions of the
Bayesian Cramér-Rao bounds in the context of Bayesian
hierarchical linear models. We gave special attention to the
commonly used case of Gaussian-Y distributed amplitudes and
Gaussian-X distributed noise precision. We derived a general
form of the Bayesian Cramér-Rao bounds for SIRV distributed
amplitudes and we obtained closed-form expressions for the
generalized inverse Gaussian prior distribution. Furthermore,
theoretical and numerical analyses revealed interesting prop-
erties that were discussed in the paper. Finally, we assessed
how close the derived BCRB is to the MSE of the LMMSE
estimator.

ACKNOWLEDGEMENT

Part of this work was supported by the European Commis-
sion in the framework of the FP7 Network of Excellence in
Wireless COMmunications NEWCOM] (Grant agreement no.
318306), the iCODE institute (ANR-11-IDEX-0003-02), the
TITAN project and the MAGELLAN project(ANR-14-CE23-
0004-01).

VIII. APPENDIX

A. Proof of Result III.1

We assume that the BHLM is identifiable. Under weak
regularity conditions [18] the (2K+1)× (2K+1) BIM reads

J = E
{
J
(θ,θ)
S

}
+ E

{
J
(θ,θ)
P

}
+ J

(θ,θ)
HP + J

(θ,θ)
N . (20)

The four involved matrices are defined as follows:
[J

(θ,θ)
S ]ij = E

{
−∂

2 log p(y|α,γ,λ)
∂θi∂θj

|α,γ, λ
}

, [J
(θ,θ)
P ]ij =

E
{
−∂

2 log p(α|γ)
∂θi∂θj

|γ
}

, [J
(θ,θ)
HP ]ij = E

{
−∂

2 log p(γ)
∂θi∂θj

}
, and

[J
(θ,θ)
N ]ij = E

{
−∂

2 log p(λ)
∂θi∂θj

}
, (i, j) ∈ {1, . . . , 2K + 1}2.

As the noise is assumed to be Gaussian-X , we have
y|α,γ, λ ∼ N (µ,R) with µ = Hα and R =
λ−1IN . Thus, the pdf of observation y conditioned on θ
is solely a function of the amplitudes and the noise pre-
cision. By using the Slepian-Bang formula [22] we ob-
tain E

{
J
(θ,θ)
S

}
= bdiag

{
E
{
J
(α,α)
S

}
,0,E

{
J
(λ,λ)
S

}}
with

bdiag{.} denoting the block diagonal operator. Moreover,
E
{
J
(α,α)
S

}
= E{λ}HTH and E

{
J
(λ,λ)
S

}
= N

2 E
{
λ−2

}
.

Since p(α|γ) is not function of λ, we have E
{
J
(θ,θ)
P

}
=

bdiag


E{J(α,α)

P

}
E
{
J
(α,γ)
P

}
E
{
J
(γ,α)
P

}
E
{
J
(γ,γ)
P

} ,0
 . Because p(γ) is

not a function of α and λ, J
(θ,θ)
HP = bdiag

{
0,J

(γ,γ)
HP ,0

}
and J

(θ,θ)
N = bdiag

{
0,0, J

(λ,λ)
N

}
with J

(λ,λ)
N =

E
{
−∂

2 log p(λ)
∂λ2

}
.

B. Proof of Result IV.1
After some algebraic manipulations, we obtain

[D]ij =
[
E
{
J
(α,α)
P

}]
ij

= E
{
γ−1i

}
δi−j ,[

E
{
J
(γ,γ)
P

}]
ij

= E
{
α2
i γ
−3
i

}
δi−j − 1

2E
{
γ−2i

}
δi−j and[

E
{
J
(α,γ)
P

}]
ij

= −E
{
αiγ
−2
i

}
δi−j , with δ denoting the

Kronecker delta symbol. From

E
{
αki γ

−k−1
i

}
=

{
0 for k = 1,

E
{
γ−2i

}
for k = 2,

(21)

we have E
{
J
(α,γ)
P

}
= 0 and

[
E
{
J
(γ,γ)
P

}]
ij

=

1
2E
{
γ−2i

}
δi−j . Using these last expressions in (5)-(7) yields

Cα,γ = 0 and

Cα,α =
[
E{λ}HTH+ diag

{
E
{
γ−11

}
. . .E

{
γ−1K

}}]−1
,

Cγ,γ =

[
1

2
diag

{
E
{
γ−21

}
, . . . ,E

{
γ−2K

}}
+ J

(γ,γ)
HP

]−1
with [

J
(γ,γ)
HP

]
ij
= −E

{
∂2 log p(γi)

∂γ2i

}
δi−j . (22)

Consider the rearrangement matrix Pi that operates on α as
follows: Piα = [αiα1 . . . αi−1αi+1 . . . αK ]T . Then we have
PiHPTi =

[
hi Hi

]
. Since [CPiα,Piα]11 = [Cα,α]ii, by

following the same methodology as applied in [39] we obtain
(10) after some tedious but straightforward manipulations.

C. Closed-form expression of the BCRB
By making use of the i.i.d. assumption we show readily

that ∂2 log(p(γ|ρ,φ,ω))
∂γ2
i

= (1− ωi) γ−2i − φiγ
−3
i when γi ∼

GIG(ρi, φi, ωi). Inserting in (22) yields
[
E
{
J
(γ,γ)
HP

}]
ii

=

E
{
(ωi − 1) γ−2i + φiγ

−3
i

}
, i ∈ {1, . . .K}. Recall that we

obtained in Appendix VIII-B
[
E
{
J
(α,α)
P

}]
ii

= E
{
γ−1i

}
,[

E
{
J
(γ,γ)
P

}]
ii

= 1
2E
{
γ−2i

}
, i ∈ {1, . . .K}. Result IV.2

follows then from E{γni } =
(
φi
ρi

)n
2 Kωi+n(

√
ρiφi)

Kωi (
√
ρiφi)

.
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