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Two symmetrically coupled populations of N oscillators with inertia m display chaotic solutions
with broken symmetry similar to experimental observations with mechanical pendula. In particular,
we report the first evidence of intermittent chaotic chimeras, where one population is synchronized
and the other jumps erratically between laminar and turbulent phases. These states have finite
life-times diverging as a power-law with N and m. Lyapunov analyses reveal chaotic properties in
quantitative agreement with theoretical predictions for globally coupled dissipative systems.

PACS numbers: 05.45.Xt, 05.45.Jn,89.75.Fb

Chimera states are remarkable dynamical states
emerging in populations of coupled identical oscillators,
where the population splits into two parts: one synchro-
nized and the other composed of incoherently oscillating
elements [1]. These states have been initially discovered
in chains of nonlocally coupled oscillators, however they
can equally emerge in models of globally coupled popula-
tions [1–3]. Chimeras have been observed in a repertoire
of different models [2–9], and in various experimental set-
tings, including mechanical [10, 11], (electro-)chemical
[12, 13] and lasing systems [14], among others. Usually,
the incoherent oscillators give rise to regular macroscopic
dynamics which are either stationary, periodic (so-called
breathing chimera) or even quasi-periodic [3, 7]. Only
recently, spatio-temporally chaotic chimeras have been
numerically identified in rings of coupled oscillators [15–
18]. However, a detailed characterization of the dynami-
cal properties of these states have been reported only for
phase oscillators with finite-range interactions: in this
case chimeras are transient, and weakly chaotic [16, 19].
More specifically, the life-times of these states diverge
exponentially with the system size, while their dynamics
becomes regular in the thermodynamic limit. In contrast,
for globally connected populations, chaotic chimeras have
so far only been observed in pulse-coupled oscillators [20]
without further analysis.

In this Rapid Communication, we report the existence
of various irregular solutions with broken symmetry in
an experiment with two mechanically coupled popula-
tions of pendula and analyze in depth a model which
reproduces this complex dynamics. Three pertinent ex-
amples from the experiment, shown in Fig. 1 (a-c), are
of particular interest. The first two examples represent
chimeras: in Fig. 1 (a), the order parameter of the desyn-

chronized population oscillates quite irregularly, while in
Fig. 1 (b) it enters a regime of almost periodic oscilla-
tions. Fig. 1 (c) reports a situation where both popula-
tions are irregularly oscillating. We introduce a simple
model (Eq. (1)) capable of reproducing all these differ-
ent dynamical behaviors, as it can be appreciated by the
simulations reported in Figs. 1 (d-f). The model consists
of two symmetrically globally coupled populations of N
Kuramoto phase oscillators with inertia.

The introduction of inertia allows the oscillators to
synchronize via the adaptation of their own frequen-
cies, in analogy with the mechanism observed in certain
species of fireflies [21]. The modification of the classical
Kuramoto model with the addition of an inertial term
leads to first order synchronization transitions and com-
plex hysteretic phenomena [22–27]. Furthermore, net-
works of phase coupled oscillators with inertia have re-
cently been employed to investigate self-synchronization
in power grids [28–31] and in disordered arrays of Joseph-
son junctions [32]. In absence of dissipation, Eq. (1) re-
duces to the Hamiltonian mean-field model – a paradigm
of long-range interacting systems [33].

Our analysis will mainly focus on the solution shown
in Fig. 1 (a), which we term as an Intermittent Chaotic

Chimera (ICC). This state exhibits turbulent phases in-
terrupted by laminar regimes, analogous to the one re-
ported in Fig. 1 (b). The third state shown in Fig. 1
(c) is a Chaotic Two Populations (C2P) state, here the
erratic dynamics is induced by the evolution of the non-
clustered oscillators belonging to both populations. In
particular, we show that ICCs are transient states for fi-
nite inertia and system size, whose life-times diverge as
a power-law with N and m. Furthermore, in the ther-
modynamic limit the intermittent oscillations disappear
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and the turbulent regime prevails over the laminar one.
The stability properties of the ICC can be ascribed to the
universality class of globally coupled systems [34], which
are distinct from those reported for chaotic chimeras in
chains of oscillators [19]. This result clearly illustrates
that the stability of chimera states strongly depends on
the underlying network topology.
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FIG. 1. (color online) Order parameters R(1) (solid black

curve) and R(2) (dashed red curve) for the two coupled popu-
lations versus time. (a-c) Experimental measurements; (d-f)
numerical simulations of the model (1) with m = 10. Ini-
tial conditions are BSCs for (a,b,d,e) and UCs for (c,f) and
N = 15. The experiments in panels (a-b) (panel (c)) are car-
ried out with f = 160 beats per minute (bpm) and l = 17cm
(f = 184 bpm and l = 25 cm) and experimental time is mea-
sured in seconds.

Experimental setup. The setup is shown in Fig. 2 and
it is identical to the one described in [10]. The experi-
ment is composed of purely mechanical parts – in partic-
ular, following [3], two populations of non-locally coupled
metronomes were considered: within each population os-
cillators were coupled strongly, but were coupled more
weakly to the neighboring population. Metronomes take
the role of self-sustained oscillators [35], whose working
principle is identical to Huygens’ pendulum clocks [36],
except that the escapement in the metronome is driven
by a spring rather than a mass pulled by gravity. While
friction inherent to the mechanical elements attenuates
large-amplitude oscillations toward the unperturbed am-
plitude associated with its unperturbed frequency, small
pendulum oscillations are amplified by the spring that
drives the metronome via its escapement mechanism.
This lends the metronome the characteristics of a self-
sustained oscillator [35]. N = 15 identical metronomes
running with identical frequencies were placed on each
of two aluminum swings suspended by four rods. The
strong coupling within one population is mediated by
the motion of the swing onto which the metronomes
are attached. As one increases the common frequency
f of the metronomes, more momentum is transferred
to the swing, leading to a stronger coupling among the

metronomes. A single swing follows a phase transition
from a disordered to a synchronized state as the cou-
pling within the population increases [35]. The weaker
coupling between the two swings is facilitated by a pair
of tunable steel springs, attached to the adjacent rods
of the opposing swings. The distance of the spring rela-
tive to the pivot can be adjusted: this changes the spring
lever l and the associated torque, thus effectively tuning
the spring coupling strength between the two metronome
populations.

FIG. 2. (color online) Experimental setup: A sketch of the
the mechanical system studied in [10], it is composed of two
swings (A,B) coupled with a spring mechanism, each of which
is loaded with N = 15 metronomes.

The motion of swings and metronomes is visualized by
attaching UV fluorescent spots on swings and metronome
pendula, and the spot motion is digitally recorded using
a DSLR photocamera. Subsequently digital data analy-
sis is used to measure the swing and pendulum motion.
The relative motion of the pendula is reconstructed by
subtraction of the swing coordinates. Amplitudes and
phases are then obtained via Hilbert transformation of
the signal. The phases are used to quantify the level of
synchronization for each population by using the order
parameters defined in the following. For exhaustive de-
tails on the experimental setup and methods, see [10].
Model and Methods. We consider a network of two

symmetrically coupled populations of N oscillators. The

phase θ
(σ)
i of the i-th oscillator in population σ = 1, 2

evolves according to the differential equation

mθ̈
(σ)
i + θ̇

(σ)
i = Ω +

2
∑

σ′=1

Kσσ′

N

N
∑

j=1

sin
(

θ
(σ′)
j − θ

(σ)
i − γ

)

(1)
where the oscillators are assumed to be identical with in-
ertia m, natural frequency Ω = 1 and a fixed phase lag
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γ = π−0.02. The self- (cross-) coupling among oscillators
belonging to the same population (to different popula-
tions) is defined as Kσσ = 0.3 (Kσσ′ ≡ Kσ′σ = 0.2),
with Kσσ > Kσσ′ as in previous studies on chimera
states [3, 37]. We consider two types of initial condi-
tions: i) broken symmetry conditions (BSCs), realized
by initializing the first (second) population with identi-
cal (random) phases and frequencies, which may lead to
the emergence of chimera states, and ii) uniform condi-
tions (UCs) where both populations are initialized with
random values, and can result in a C2P state [38].
The collective evolution of each population will be

characterized in terms of the macroscopic fields ρ(σ)(t) =

R(σ)(t) exp [iΨ(t)] = N−1
∑N

j=1 exp [iθ
(σ)
j (t)]. The mod-

ulus R(σ) is an order parameter for the synchronization
transition being one (O(N−1/2)) for synchronous (asyn-
chronous) states.
The microscopic stability can be measured in terms of

the associated ordered spectrum of the Lyapunov expo-
nents (LEs) {λi} i = 1, . . . , 4N , representing the expo-
nential growth rates of infinitesimal perturbations. The
dynamics is chaotic whenever the maximal LE λM ≡ λ1

is positive. For the studied model, presenting a con-
stant viscous dissipative term, the spectrum satisfies the
following pairing rule [39] : λi + λ4N−i+1 = −1/m.
Therefore the analysis can be limited to the first 2N
exponents. The Lyapunov spectrum can be numeri-
cally estimated by employing the standard method re-
ported in [40]. This amounts to consider for each LE
λk, the evolution of a 4N -dimensional tangent vector

T (k) = {δθ̇
(1)
i , δθ̇

(2)
i , δθ

(1)
i , δθ

(2)
i } i = 1, . . . , N , whose

dynamics is ruled by the linearization of Eq. (1):

mδθ̈
(σ)
i +δθ̇

(σ)
i =

2
∑

σ′=1

Kσσ′

N

N
∑

j=1

A
(σ′σ)
ji (δθ

(σ′)
j −δθ

(σ)
i ) (2)

where A
(σ′σ)
ji = cos (θ

(σ′)
j − θ

(σ)
i − γ). The orbit and the

tangent vectors is followed for a time lapse Ts by per-
forming Gram-Schmidt ortho-normalization at fixed time
intervals ∆t, after discarding an initial transient evolu-
tion Tt. We have employed ∆t = 5 and Tt = 5, 000, for
BSCs we have integrated the system for times 8× 104 ≤
Ts ≤ 3 × 105 with N = 100, . . . , 800 and for UCs for
times 3 × 104 ≤ Ts ≤ 1 × 106 with N = 100, . . . , 400.
The integrations have been performed with a 4th order
Runge-Kutta scheme with time step 5× 10−4.
A characterization of the dynamical evolution on short

time scales can be achieved by considering the probability
distribution function P (Λ) of the finite time LE Λ [41].
The finite time LE is calculated by estimating the ex-
ponential growth rate of the magnitude of the maximal
tangent vector T (1) over finite time windows ∆t, namely

Λ = 1
∆t ln ||T

(1)
i (∆t)|| where ||T (1)(0)|| ≡ 1. In order to

estimate P (Λ), we have collected 100, 000 data points for
each system size, obtained from ten different orbits each

of duration Ts = 100, 000 with ∆t = 10.

Intermittent Chaotic Chimeras. Starting simulations
with BSCs at small masses (m ≤ 4), the system is not
chaotic (as shown in Fig. 3 (a)) and it displays a multi-
tude of coexisting breathing chimeras [3]. Furthermore,
while the synchronous state R(1) = R(2) ≡ 1 remains
stable also in presence of inertia (m > 0), the stationary
chimeras associated to constant order parameters with
R(1) < R(2) ≡ 1 are not any longer observed. For suf-
ficiently large masses, a solution with broken symmetry
emerges, where one population is fully synchronized with
R(2) ≡ 1, while the other population exhibits wide collec-
tive irregular oscillations in the order parameter R(1)(t)
between zero and one, as shown in Fig. 1 (d) and Fig. 3
(b). These are ICCs and they represent the main subject
of this Rapid Communication.
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FIG. 3. (color online) (a) Average maximal LE 〈λ1〉 vs m for
N = 100: black circles (red squares) refer to BSCs (UCs).
(b) Order parameter R (black solid line) and finite time LE
Λ (red dashed line) for the chaotic population vs time t for
N = 200 and m = 10. The corresponding P (Λ) (solid red
line) is shown in (c) with the Gaussian fit (black dashed line).
Inset: probability p0 versus N . The values 〈λ1〉 are obtained
by following each realization for a time span t = 50, 000 and
by averaging over 100 different initial conditions.

As shown in Fig. 3 (b), the erratic oscillations of
R(1) are interrupted by laminar phases, where R(1) stays
in proximity of one displaying small oscillations. This
regime is characterized by a large part of the oscillators
in the chaotic population getting entrained to the syn-
chronous population, apart a few oscillators, which keep
oscillating with distinct identical frequency, but with in-
coherent phases. An analogous regime is also experimen-
tally observed, as reported in Fig. 1 (b), however due
to the smaller size of the populations the amplitude of
the oscillations is larger. Furthermore, by estimating the
finite time LE Λ, we show that the laminar phases are
indeed regular, since they are associated to Λ ≃ 0 (see
Fig. 3 (b)). In particular, the distribution P (Λ), reported
in Fig. 3 (c), reveals a clear peak at Λ = 0, associated to
the laminar regime, superimposed to a seemingly Gaus-
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sian distribution. The probability p0 to observe a laminar
phase can be estimated by integrating P (Λ) within a nar-
row interval around Λ = 0. This probability is reported
in the inset of Fig. 3 (c) for 10 ≤ N ≤ 1600 and it shows
a power-law decay with N for sufficiently large system
sizes, namely N ≥ 50. This is a clear indication that
the laminar episodes tend to disappear in the thermody-
namic limit.

To characterize the erratic phase, we give an estimate
of the average LE Λ(∗) restricted to this phase. This es-
timate has been obtained by evaluating the maximum of
P (Λ) with a Gaussian fit to the data, once the channels
around Λ = 0 were removed. The corresponding data,
reported in Fig. 4 (a) for various N , reveal a clear de-
cay of Λ(∗) as 1/ ln (N). Furthermore, the extrapolated
value of Λ(∗) ≃ 0.022 for N → ∞ is definitely positive,
thus indicating that the chaotic state persists in the ther-
modynamic limit for finite m, contrary to what is usu-
ally observed for the Kuramoto model in [19, 42]. This
logarithmic dependence of the maximal LE λM with the
system size has been previously reported for globally cou-
pled networks in [34], where, for dissipative systems, the
authors have shown analytically that

λM (N) = λ(c) +
D

2
+

a

ln(N)
+O

(

1

ln2(N)

)

; (3)

where λ(c) is the mean field LE obtained by considering
an isolated unit of the chaotic population forced by the
two fields ρ(1) and ρ(2), D is the diffusion coefficient as-
sociated to the fluctuations of λ(c) [34]. In particular, D
can be measured by the scaling of the variance of ln d(t),
where d(t) is the modulus of the Lyapunov vector asso-
ciated to the single forced unity. Namely, for sufficiently
long times it is expected that 〈[ln d(t) − λ(c)t]2〉 ≃ Dt
with the average< · > performed over many realizations.
In the present case, we measured λ(c) ≃ 0.0116(5) and
D ≃ 0.0180(10), thus the expected asymptotic LE should
be λM (∞) ≃ 0.021(1), which is in good agreement with
the previous reported numerical extrapolation as shown
in Fig. 4(a). This represents the first quantitative verifi-
cation of the prediction (3) for a dissipative system with
continuous time and in particular for an intermittent dy-
namics.

A more detailed analysis of the stability of this state
can be achieved by estimating the Lyapunov spectra for
various system sizes: we observe that the spectrum is
composed of a positive part made of N−2 exponents and
a negative part composed of N exponents, see Fig. 4 (b).
Two exponents are exactly zero: one is always present
for systems with continuous time, while the second arises
due to the invariance of Eq. (1) for uniform phase shifts.
The negative part of the spectrum is composed of an
isolated LE, quantifying the longitudinal stability of the
synchronized population, and N−1 identical LEs, which
measure the transverse stability of the synchronous solu-
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FIG. 4. (color online) (a) Λ(∗) (symbols) versus 1/ ln(N) for
50 ≤ N ≤ 1600 and the corresponding fit, the dot-dashed
black curve with the shaded area denotes λM (∞) with its
error bar. (b) Lyapunov spectrum for N = 100, the dashed

red line is λ(s). (c) Positive part of the Lyapunov spectra

for various sizes, the dashed (green) line is λ(c). (d) Average
life-times 〈τ 〉 of the ICC vs N for inertia m = 8 (red squares)
and m = 10 (black triangles). Inset: 〈τ 〉 vs m for N = 30 for
ICCs. The blue dashed line in the main panel (inset) refers
to a power law with exponent 1.60 (2.50). The values of 〈τ 〉
are averaged over 200-3000 different realizations of BSCs and
m = 10 in (a-c).

tion [43]. The value of this negative plateau in the spec-
trum coincides with the mean field LE λ(s) = −0.0266(5)
calculated for an isolated oscillator of the synchronized
population, as shown in Fig. 4 (b).

Furthermore, the central part of the positive spectrum
reveals a tendency to flatten towards the mean field value
λ(c) associated to the chaotic population for increasing
system sizes, see Fig. 4 (c) for N = 200, 400 and 800,
while the largest and smallest positive Lyapunov expo-
nents tend to split from the rest of the spectrum. This
scaling of the Lyapunov spectra has been found to be
a general property of fully coupled dynamical systems.
In particular, the authors in [34, 44] have shown that in
the thermodynamic limit the spectrum becomes asymp-
totically flat (thus trivially extensive), but this part is
sandwiched between subextensive bands containing typ-
ically O(logN) exponents scaling as in Eq. (3) with N .
We can safely affirm that the chaotic population in the
ICC reveals properties which are typical of fully coupled
systems, contrasting with the results reported for chaotic
chimeras emerging in spatially extended systems [16, 19].

Let us now examine if the ICCs are transient states;
indeed, we observe for different masses that the chaotic
chimeras converge to a regular (non-chaotic) state after a
transient time τ . This amounts to the fact that the sys-
tem remains entrapped in a laminar state, which could be
either a fully synchronous regime or a breathing chimera,
without returning to the turbulent phase. We have mea-
sured the average life times 〈τ〉 [45] of the ICCs for two
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masses, namely m = 8 and 10, and various system sizes
5 ≤ N ≤ 150. These results are displayed in Fig. 4 (d).
From the figure, it is clear that for N ≥ 10 one has a
power-law divergence of the synchronization time with
an exponent α ≃ 1.60(5). The divergence of τ is directly
related to the vanishing of the laminar phases (p0 → 0)
observable for N → ∞. Unfortunately, due to CPU lim-
itations we cannot explore larger system sizes to verify
that this scaling is present over more decades. However,
we can safely affirm that these times are not diverging ex-
ponentially with N as reported in [16]. This is a further
indication that our phenomenon has a different nature,
which is deeply related to the topology presently con-
sidered. Indeed, exponentially diverging transients for
metastable states have been usually reported in the con-
text of spatially extended systems [46], while metastable
states with life-time diverging as 〈τ〉 ∝ Nα – with α ≃ 1.7
– have been reported for the Hamiltonian version of our
model [25, 47]. Furthermore, we have tested the depen-
dence of 〈τ〉 on the mass, for one system size, namely
N = 30, and we observe that 〈τ〉 is diverging also as
a power law of m with an exponent 2.50(5) (see inset
of Fig. 4 (d)). It is important to remark that regular
chimeras, appearing for m = 0, are not transient for this
topology, as we have numerically verified.

The Chaotic Two Populations State. With UCs,
the system evolves towards chaotic solutions already at
smaller masses, namely m > 1, as shown in Fig. 3 (a).
With these initial conditions the multistability is strongly
enhanced and many different coexisting states with bro-
ken symmetry are observable, either regular or chaotic.
By focusing on the chaotic solutions, the so-called C2P
state reported in Fig. 1 (c),(f) and Fig. 5 (a), we observe
that in all the cases the oscillators of the two populations
form a common cluster, characterized by a common av-
erage frequency, plus a certain number of oscillators with
larger frequencies (see Fig. 5 (d)). These states resemble
imperfect chimeras recently observed in experiments on
coupled metronomes [11] and in chains of rotators [48].

The C2P states are characterized by a broken sym-
metry since the dynamics of the two populations takes
place on different macroscopic chaotic attractors, as is
clearly observable in Fig. 5 (a) and (b). In particu-
lar, the differences in the oscillation amplitudes of R(1)

and R(2) are due to the different number of oscillators
contributing to the common cluster in the two popu-
lations [22, 23, 27]. The multistability is also reflected
in the associated Lyapunov spectra; three examples are
shown in Fig. 5 (c), their shapes are extremely differ-
ent presenting different numbers of positive and negative
LEs. However, a general result is that the oscillators
contributing to the chaotic dynamics are the ones out of
the common cluster. As shown in [44], the contribution
of each oscillator i to the chaotic dynamics can be mea-
sured in terms of the corresponding squared component
of the normalized maximal Lyapunov vector T (1), namely

ξ
(σ)
i (t) = [δθ̇

(σ)
i (t)]2+[δθ

(σ)
i (t)]2 with ||T (1)(t) = 1||. The

time averaged components of the vector ξ̄i are shown in
Fig. 5 (d), from where it is evident that the contribution
ξ̄i of the oscillators belonging to the common cluster is
essentially negligible.
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FIG. 5. (color online) (a) Order parameters R(1) (black solid

line) and R(2) (red dashed line) vs time; (b) imaginary vs real

part of the complex fields ρ(1) and ρ(2). (c) Lyapunov spec-
tra obtained for 3 different realizations of UCs. (d) Averaged
components ξ̄i (red diamonds) together with the correspond-

ing averaged frequencies of the oscillators ω̄i ≡ dθi

dt
(black

circles) for both populations. All the data refer to C2P states
and to m = 9, the system sizes are N = 200 in (c) and N = 50
in (a),(b),(d). The time averages have been performed a time
T ≃ 5× 104.

Conclusions. We have shown that a simple model of
coupled oscillators with inertia can reproduce the erratic
behaviors observed in our experiment of two coupled pop-
ulations of mechanical pendula. The presence of iner-
tia is a distinctive ingredient to observe the emergence
of chaotic regimes, like ICCs and C2Ps. The detailed
characterization of the ICC dynamics reveals that its
chaotic properties can be interpreted in the framework
of fully coupled dissipative systems [34]. However, our
study extends the validity of the results reported in [34]
to networks with inhomogeneous coupling displaying in-
termittent dynamics. Together with the results reported
in [16, 19] for a ring geometry, this clearly indicates that
the stability properties of chaotic chimeras strongly de-
pend on the underlying network topology. It would be
extremely challenging to investigate if the topology also
influences the stability of non-chaotic chimeras.

Our dissipative model is quite remarkable, since it dif-
fers from a Hamiltonian model only by a constant dis-
sipative term proportional to 1/m that vanishes in the
limit of large inertia. This suggests that for sufficiently
large m dynamical properties characteristic of conserva-
tive models should be observable. Indeed, the Lyapunov
spectrum exhibits a pairing rule [39] similar to that of
Hamiltonian models. Furthermore, ICCs are metastable
states, whose life-time diverges as ≃ N1.6, in analogy
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to quasi-stationary states in the Hamiltonian mean-field
model [33].
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