
HAL Id: hal-01264574
https://hal.science/hal-01264574v1

Submitted on 29 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SCoRe: a Self-Organizing Multi-Agent System for
Decision Making in Dynamic Software Developement

Processes
Noelie Bonjean, Marie-Pierre Gleizes, Christine Maurel, Frédéric Migeon

To cite this version:
Noelie Bonjean, Marie-Pierre Gleizes, Christine Maurel, Frédéric Migeon. SCoRe: a Self-Organizing
Multi-Agent System for Decision Making in Dynamic Software Developement Processes. International
Conference on Agents and Artificial Intelligence (ICAART 2013), Feb 2013, Barcelone, Spain. pp.288-
293. �hal-01264574�

https://hal.science/hal-01264574v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12369

The contribution was presented at
 http://www.icaart.org/?y=2013

To cite this version : Bonjean, Noelie and Gleizes, Marie-Pierre and Maurel,
Christine and Migeon, Frédéric SCoRe: a Self-Organizing Multi-Agent System for
Decision Making in Dynamic Software Developement Processes. (2013) In:
International Conference on Agents and Artificial Intelligence (ICAART 2013),
15 February 2013 - 18 February 2013 (Barcelonne, Spain).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

SCoRe: a Self-Organizing Multi-Agent System for Decision Making in
Dynamic Software Developement Processes

Noélie Bonjean1, Marie-Pierre Gleizes1, Christine Maurel1, Frédéric Migeon1

1Institut de Recherche en Informatique de Toulouse (IRIT),

Université de Toulouse, France
Firstname.Name@irit.fr

Keywords: method fragments; adaptive multi-agent system; method process

Abstract: Software systems are becoming more and more complex. A common dilemma faced by software engineers

in building complex systems is the lack of method adaptability. However, existing agent-based methodologies

and tools are developed for particular system and are not tailored for new problems. This paper proposes a

new tool based on SME for self-constructing customized method processes. Our approach is based on two

pillars: the process fragment and the MAS meta-model. These two elements are both defined and considered

under a specific agent-oriented perspective thus creating a peculiar approach. Our work is based on the self-

organization of agents, making it especially suited to deal with highly dynamic systems such as the design of

an interactive and adaptive software engineering process.

1 Introduction

In the Multi-Agent community, it is now obvious

to consider that Multi-Agent Systems (MAS) are a

relevant means to design complex systems. Their fea-

tures fit well the openness, the big number of enti-

ties and of interactions and the non linearity which

characterize complex systems. The MAS community

has been prolific to define software engineering meth-

ods (Bergenti et al., 2004; Henderson-Sellers and

Giorgini, 2005) in order to guide designers with re-

spect to the wide range of MAS properties. Facing the

numerous methods, a development team needs help

to choose and to execute the relevant process accord-

ing to the development context which is defined by

the System Under Study (SUS) characteristics as well

as the team capabilities and preferences. Moreover,

this process may need to combine advantages of sev-

eral other ones (for example, requirements analysis

in TROPOS method and self-adaptation in ADELFE

method (Morandini et al., 2009)). It also may need

adaptation during design time to reflect SUS and team

instability. Therefore, our goal is to provide new tools

for designing complex systems where the method

must be adapted to the development context.

Coming from Situational Method Engineering re-

search (Henderson-Sellers and Ralyté, 2010), the aim

of decomposing processes into pieces is to adapt the

process to the characteristics of the business problem

and to the level of expertise of engineer teams (Ralyté,

2004). A process can then be defined by assembling

the pieces of methods, called fragments, in order to

suit the context (the situation) changes. The Agent-

Oriented Software Engineering (AOSE) community

contributed to this research splitting up methods into

fragments and providing precise descriptions of them

(ADELFE, INGENIAS, PASSI, SODA, TROPOS...).

This kind of work is mainly done in the Foundation

for Intelligent Physical Agents1 (FIPA) context.

Currently some propositions to combine frag-

ments have been already made, but they are mainly

based on the know-how of the method engineers. This

is the case with the ProDe (a Process for the Design

of Design Processes) (Seidita et al., 2010) approach.

In this paper, we propose an automatic way to design

a method process based on MAS technology. The

process is constructed by combining fragments ”on

the fly” to self-adapt to the specific situation of the

project.

We propose an original system called SCoRe

(Self-Combined method fRagments) to automatically

build a self-adaptive design process where each frag-

ment is encapsulated in an autonomous agent. It

relies on the self-organization of its agents, making

this approach especially suited to deal with highly

dynamic systems such as the design of an interac-

tive and adaptive Software Engineering Process (SEP)

1http://www.fipa.org

(Bernon et al., 2005).

This paper is organized as follows. First, section

2 explains the aim of this system. Then, section 3

introduces the system of SCoRe and details the be-

havior of the involved agents as well as their inter-

actions. Section 4 focuses on tests and explains the

results obtained. Finally, section 5 describes related

works before concluding in section 6.

2 Requirements and Characteristics

of SCoRe

The contribution of the work explained in this

paper, lies in the self-adaptive multi-agent sys-

tem implementation for self-composition and self-

organization of method fragments. This section

presents the challenges.

2.1 Adaptation

While the demand for specific, complex and var-

ied system continues to grow, current methods in

the MAS domain remain limited and sometimes not

well adapted. For example, in order to propose

a simulation-based process for the development of

MASs which incorporates a simulation phase for the

prototyping of the MAS being developed and for

functional and non-functional validation, PASSIM

(Cossentino et al., 2008) was obtained by integrat-

ing method fragments from PASSI for carrying out

the analysis, design and coding phases, and the Dis-

tilled State Charts (DSC)-based simulation method

for supporting the simulation phase. The need for

well-defined guidelines that will make the develop-

ment process more efficient and more effective has

become crucial. Currently, there is no single method-

ology that can be uniquely pointed as ”the best”. Until

now method adjustments to the specific requirements

and constraints are mixed in ”local” adaptations and

modifications of existing one. In order to succeed

in creating good situational methods, i.e., methods

that best fit given situations, fragment representation

and cataloguing are very important activities. In par-

ticular, the fragments (sometimes addressed as pro-

cess fragments, method fragments or chunks) have

to be represented in an uniform way that includes all

the necessary information that may influence their re-

trieval and assembling.

2.2 Fragment Standardisation

Method fragments are first identified by examining

existing methods. These method fragments are made

according to templates defined by repository design-

ers. Therefore the choice of fragments granularity re-

lies on designers. According to the Rational Unified

Process, the methods are defined following different

levels of granularity: phase, activity and step. The

granularity issue of these method fragments presents

important challenges. The ”step” level involves a spe-

cific and fiddly task but also requires perfect knowl-

edge of methods and long work. This fragmentation

is very fine-grained and provides a greater number

of fragments. For instance, in ADELFE, the analy-

sis phase is composed of four activities, the first of

which is Analysis of domain. Analysis of domain con-

sists in two steps: Identify the active and passive enti-

ties and Study interactions between the entities. These

steps are related and interdependent. This low level

of granularity is therefore useless and inaccurate in

this situation. On the other hand, the ”phase” level of

granularity could form huge complete fragments. The

coarse-grained granularity promotes the redundancy

issue. The duplication of activities or steps may occur

with high granularity. By consequences, an activity

or step may be included in different fragments. The

risk that this happens grows up with the level of gran-

ularity. In addition, the assembling possibilities are

therefore minimized.

2.3 Complexity

Currently, ten AOSE methods are fragmented, each

one composed of approximately twenty fragments.

Such fragments constitute the root constructs of the

method itself and they have been extracted by consid-

ering a precise granularity criterion: each group of ac-

tivities (composing the fragment) should significantly

contribute to the production/refinement of one of the

main artefacts of the method (for instance, a diagram

or a set of diagrams of the same type). Following this

assumption, fragments obtained from different meth-

ods are based on a similar level of granularity.

Besides, to design a process manually means

studying for the compatibility of each fragment with

the others i.e. approximately twenty thousand possi-

ble combinations. Although this number can be de-

creased by the knowledge and the know-how of pro-

cess engineers, the work remains long and irksome.

It is why we propose to design the system SCoRe to

self-combine and self-organize fragments.

2.4 User Requirements

In our approach, a new complete process is self-

designed contingent on a situation. A complete pro-

cess enables engineers to visualise all activities and to

have a whole view of the process. SCoRe focuses on

adaptation during process execution. At every step,

the development team is advised by SCoRe on its next

fragment choice according to the running features. If

the features evolve, this advice may therefore differ

from the following fragment initially suggested.

The studied solution is based on the fragments

agentification in order to self-design an adaptive pro-

cess. This choice is justified by the problem complex-

ity which is mainly due to the huge number of frag-

ments. Indeed, a complex system cannot currently be

designed without bug caused by designers. Assisting

the designer during the system utilization would re-

duce the number of bugs and make the system most

suitable to the current situation. The adaptation is

therefore required. As for components assembling,

the fragments combination needs features. In our

approach, they correspond to MAS Metamodel Ele-

ments (MMME). Two fragments are therefore com-

bined if one produces the MMME required by an-

other.

3 Combining Method Fragments

with an Adaptive Multi-Agent

System

The general structure of the Self-Combined

method fRagments (SCoRe) proposed is described in

this section, before detailing the behaviors and the in-

teractions of the agents composing it.

3.1 SCoRe Components

We consider a method process as a set of assem-

bled method fragments which are linked through their

own required or produced MMMEs. Establishing a

method process consists in combining some of the

fragments taking into account the user-defined objec-

tives and knowledge.

The main goal of SCoRe is to suggest a tailored

process. For that, SCoRe learns the context to ap-

ply on fragments, in order to sustain this evolution.

SCoRe acts without relying on a model of the pro-

cesses, meaning that it is only able to take into ac-

count the users’ knowledge and objectives, and to ob-

serve the evolution of the running process on which

MMMEs are available, in order to decide on the frag-

ments to add. The best possible running process is

therefore designing according to a context.

Therefore, to build a process, we mainly need to

know the objective and the knowledge of the user (de-

signer) and the context.

3.1.1 Users’ Objectives and Knowledge

In order to design a tailored process, SCoRe requires

some information about the wanted system and about

the users. Actually, these informations enable to se-

lect fragments which make up the suggested pro-

cess. On the one hand, the user has to give his/her

knowledge about the known technologies, methods

and paradigms. Figure 1 shows an example of char-

acteristics and we do not provide here the exhaustive

list of characteristics. On the other hand, the user has

to describe briefly, in a given form provided in figure

2, the intended system by defining the field of appli-

cation, the phase corresponding to the initial and final

work product and the type of system.

Figure 1: Example of users’ characteristics

Figure 2: Example of system characteristics

3.1.2 Context

The context is a set of elements external to the activity

of an entity. It describes the environment wherein the

entity evolves. Moreover, the context has an influence

on the process of fragments selection.

In processes under construction, the context is

made up of users’ objectives and knowledge, avail-

able fragments and the elements included in the run-

ning process.

Figure 3: Example of agents and their relationships in SCoRe

3.1.3 Agents

SCoRe is composed of four distinct kinds of

agents, following a perception-decision-action lifecy-

cle, which cooperate according to the adaptive multi-

agent systems theory described in (Capera et al.,

2003). The basic idea underlying this cooperation

consists, for every agent in an adaptive multi-agent

system, in always trying to help the agent which en-

counters the most critical situation from its own point

of view.

Figure 3 gives the structure of SCoRe designing

a method process. The different types of agents in-

volved are shown, as well as the links modelling the

existing interactions between them. Actually, SCoRe

is made up of the following agents:

• MAS Metamodel Element (MMME): required

or produced by a Running Fragment, its aim is

to choose which fragment it will be linked to. A

MMME is connected with all the waiting frag-

ment and the Running Fragments which are in-

cluded in the running process and which produce

or consume it.

• Waiting Fragment (WF): its purpose is to inte-

grate its instances (running fragment) in a process

once it is in an adequate situation. They are linked

to the MMMEs and a set of context.

• Running Fragment (RF): it aims at finding its

localization inside the running process. A RF is

linked with the MMMEs encompassed in the run-

ning process that it produces or requires.

• Context (C): related to a fragment, it aims at

evaluating its relevance according to the MMMEs

already involved in the running process and the

users’ objective and knowledge. The context

agent is related to a fragment for which it eval-

uates its relevance to be added in the running pro-

cess.

3.2 General Behavior of SCoRe

3.2.1 Prerequisite

Some prerequisites are necessary for the execution of

SCoRe. Actually, in order to help the fragments se-

lection in SCoRe, the user has to fill in two forms

about its objectives and its knowledge. Firstly, the

user completes its knowledge that will be mainly used

to select fragments. Secondly, the user characterizes

the wished system. From the ticked fields, the initial

and final MMMEs are extracted. Actually, according

to user’s knowledge and the initial and final phase se-

lected, MMMEs are included in the running process

by SCoRe.

3.2.2 Starting of the Running Process

Construction

When the user provides the prerequisite items, Wait-

ing Fragment agents and their Context agents are cre-

ated. They know each other however the Waiting

Fragment agents don’t know the others Waiting Frag-

ment, and their associated Context agents don’t know

each other.

Besides, the MMMEs corresponding to users’

problem are created with the acquaintance of the

available Waiting Fragments and they are then in-

cluded in the running process. The construction of

the running process starts therefore with the MMMEs.

These MMMEs are said initial and final. While a

MMME aims at being linked to at least two frag-

ments, i.e. one which produces it and one which con-

sumes it, an initial, respectively final, MMME aims at

being linked to at least one fragment which consumes

it, respectively produces it.

The initial and final MMME start the running pro-

cess construction by interacting with all the waiting

fragments.

3.2.3 Running Process Construction

As it is shown in figure 3, an agent communicates to

some others agents. The first agent interactions cor-

respond to the initial and final MMME looking for a

fragment. When a waiting fragment receives a mes-

sage from a MMME agent, it solicits their own con-

texts. The context self-evaluates itself. Then it an-

swers by giving its relevance to the waiting fragment

which sends it to the MMME in turn. According to

the different answers, one of the requesting MMME

selects a waiting fragment. The selected waiting frag-

ment is then ready to create a running fragment. The

created running fragment is added in the running pro-

cess. Being related to input and output MMMEs,

when a running fragment is added in the running pro-

cess, it links itself to the MMMEs already present in

the running process. If one of its MMMEs is miss-

ing, the running fragment creates it. Then, the created

MMME agent is added in the running process. The

MMME agents request the waiting fragment agents

until to be satisfied.

Next sections will provide a more detailed de-

scription of these agents behaviors and interactions.

3.3 Behavior of the Agents

The behavior of an agent is a life cycle consisting of

the sequence: (i) perception of the environment (in-

cluding communication aspects), (ii) decision that al-

lows it to identify the state in which it lies and ac-

tions to be performed, (iii) execution of decided ac-

tions. The life cycle starts when the agent is created

and completes when the agent dies.

Besides, an agent that intervenes in an AMAS is

composed of different parts that produce its behav-

ior: skills, aptitudes, the interaction language, world

representations, Non Cooperative Situations, and crit-

icality and/or confidence.

For an agent, criticality represents the degree of

non-satisfaction of its own goal. It enables an agent to

determine the relative difficulty of agents in its neigh-

borhood. Evaluation methods and calculation of the

criticality are specific to each type of agent. The con-

fidence of an agent is an internal measure that pro-

vides information on the reliability of the decision on

actions intended.

These two notions guide the behavior of the

SCoRe agents and will be presented in the following

subsections.

3.3.1 The MMME Agents

The MMME agents represent the links between run-

ning fragment agents. Their individual goal is to be

incorporated in the running process. The MMMEs

behavior is represented by an automaton with two

states: non incorporated and incorporated. The non

incorporated state corresponds to a MMME linked to

at least one running fragment which respectively pro-

duces or consumes it. In this state, it requests new

fragments (respectively a consumer or a producer).

It is looking for a relevant fragment to which it can

be linked. Actually, it requests all waiting fragments.

The relevant waiting fragments answer it by giving

their confidence. The confidence of the waiting frag-

ment provides information on its reliability proposi-

tion. The most relevant fragment will be chosen by

the MMME agent for being a potential fragment to be

added in the running process and the MMME updates

its confidence with the maximum of the relevant frag-

ment confidence. Let C fF = {C f1...C fn} be a set of

the relevant fragments confidence and C fe the confi-

dence of the MMME e, then:

C fe = Max(C fF)

Furthermore, these agents are able to evaluate

their own criticality. It is a ratio of the number of

waiting fragment answers over its number of executed

lifecycle.

For the MMME e, let Ae be its number of wait-

ing fragments answer, Le be its number of executed

lifecycle and Cre be its criticality, then:

Cre = Ae/Le

Therefore, the MMME agents cooperate to choose

the most relevant fragment among the ones suggested

according to their own criticality.

The incorporated state is reached when the

MMME agent is linked with at least two fragments:

one consumer and one producer. The initial or final

MMMEs provided by the designer have only to be

linked respectively to at least one producer and one

consumer.

3.3.2 The Waiting Fragment Agents

Each waiting fragment agent has an associated set of

context agents. Their goal is to be integrated in a

process once it is in an adequate situation. For that,

when a waiting fragment agent receives requests from

MMMEs which are looking for a fragment, it for-

wards the request to its context agents, if the wait-

ing fragment agent considers itself as a potential so-

lution. A waiting fragment agent considers itself to be

solution if the requesting MMME belongs to its own

required or provided MMME. Then, the waiting frag-

ment agent waits the answer from its context agents.

It updates its confidence and sends it to the MMME.

Its confidence is calculated in adding the confidence

received from the context. Should the opposite oc-

curs, the waiting fragment agent sends an answer to

MMME with no relevance. Let C fC = {C f1...C fn}
be a set of the context confidence and C f f the confi-

dence of the waiting fragment f , then:

C f f =
n

∑
i=0

C fi

Moreover, a waiting fragment agent can be selected

to be inserted in the running process. Actually, when

the waiting fragment agent receives a message from

the MMME to inform it that it is selected, the wait-

ing fragment agent creates a running fragment agent.

Moreover, it sends the information to its context

agents as a feedback.

3.3.3 The Running Fragment Agents

A running fragment agent is created by a waiting frag-

ment agent which represents it in the running pro-

cess. It is introduced on time in the process. Its aim

is to be incorporated in the running process. Its be-

havior changes according to its current state and its

perception. The current state of a running fragment

agent corresponds to non incorporated and incorpo-

rated. Actually, a running fragment agent is said in-

corporated when all the required MMMEs are in the

incorporated state and at least one of the provided

MMMEs is incorporated. Otherwise its state is non

incorporated and the running fragment agent makes

links with each MMME agent existing in the running

process on which a link is physically possible. More-

over, when the running fragment agent is inserted in

the running process, it adds the required or produced

MMMEs which are missing in the running process.

Furthermore, these agents are able to evaluate their

own criticality. It is calculated from the criticality

of required or produced MMME(s) and their current

state.

Let CrC = {Cr1...Crn} be a set of the provided or

required MMME criticality and Cr f the criticality of

the running fragment f , then:

Cr f =
n

∑
i=0

C fi

3.3.4 The Context Agents

The goal of the context agents is to represent a situ-

ation leading to a specific method process. They do

not aim to model what is happening inside the sys-

tem, but rather aim at selecting the fragment to add

in the current situation to reach the objectives. When

such an agent finds itself in its triggering situations, it

notifies the waiting fragment agent, by submitting its

confidence according to its own knowledge.

In order to know when the fragment is relevant, a

context agent relies on two different sets of informa-

tion. First, a collection of input values represents the

set of user and system characteristics. This element

enables the context agent to know if it has to be trig-

gered or not. Besides, a context agent possesses a set

of forecasts, which describes the impact of the action

proposed on the satisfaction of the both user and sys-

tem characteristics. Moreover, a context agent pos-

sesses a set of metrics, which describes the impact of

the action proposed on the running process (Bonjean

et al., 2012). Those input values are modified during

the life of a context agent. According to its behav-

ior, from different feedback that it receives, a context

agent adjusts its confidence, a value representing its

relevancy to add the waiting fragment to which it is

linked.

Finally, the behavior of a context agent is repre-

sented by an automaton. Each state relates its cur-

rent role in the MAS. A total of three different states

exist: disabled, enabled and selected. The context

agent can switch from a state to another thanks to the

messages it receives from other agents in the system.

A disabled context agent considers itself non-relevant

in this specific situation. An enabled context agent

thinks that it is relevant and potentially deserves to be

selected. It then computes its confidence and sends it

to the corresponding waiting fragment agent. Finally,

a selected context agent is validated by a waiting frag-

ment agent and its associated fragment is added in the

running process. This selected context agent has then

to observe the consequences of its actions in order to

reinforce or to update its confidence.

Let f be the fragment linked to the context x, let

Pf = {p1...pm} be a set of its characteristics and E f

be the proportion of its required or produced MMMEs

already included in the running process.

Let Pu = {p1...pn} be a set of users’ characteris-

tics and U f the proportion of matching between to the

fragment and users characteristics.

U f =
Pf ∩Pu

Pf

Let Crx be the criticality and Cox the confidence

of the context x, we calculate:

Crx = (U f +E f)∗Cox

4 Results and Analysis

The test coverage we wanted to obtain is about

correctness and adaptability. The correctness of a

method is asserted when it is said that the method

is correct with respect to a specification while the

adaptability is asserted when a method adapts itself

efficiently and fast to changed circumstances. Before

presenting the test cases that we defined, we discuss

of the specificity of method engineering.

The designed method is conceived of not a single

interdependent entity but as a set of disparate frag-

ments. Therefore, in order to show the correctness of

a new method process, the method has to be evaluated

by method engineers. There are two ways of evaluat-

ing a method, which can be complementary. The first

one is based on empirical studies that have been con-

ducted by many practitioners and researchers. The

second one can be obtained more automatically from

metrics or impartial indicators (Bonjean et al., 2012).

This kind of experience is complex and can take a

long time to obtain sufficient results. As a conse-

quence, we firstly focus on the functional adequacy

and the dynamic adaptation to specific situation.

The first test has been carried out with known

method processes to show the correctness of SCoRe.

We show that Score enables to compose a known

method back from its fragments. Concerning adapt-

ability test, we conducted them with fictive processes.

Combining known methods are very complex task.

Until now, the inter-operability and semantic match-

ing of fragments from different known methods stay

an important challenge. Actually, in this problem,

some works base on standardisation of fragments no-

tion and of their description. For this reason, we sim-

ulate methods. Therefore we used fictive processes

which have been simplified. Actually, they are de-

fined in the following way. They are composed by

four fragments while a known method is made up of

approximately twenty fragments. These tests show

how SCoRe is able to adapt itself: on the one hand,

how SCoRe adapts itself to a context and on the other

hand, how SCoRe adapts itself to design a new tai-

lored method process.

4.1 Without Users’ Characteristics

Preliminary results show the correctness of SCoRe.

The first test aims at verifying that the system self-

designs and proposes a complete method process. In

this case, at the set-up, all fragments from a repository

obtained from current methods such as ADELFE2 IN-

GENIAS (Pavòn et al., 2005) TROPOS (Bresciani

et al., 2004) and PASSI (Cossentino et al., 2006)

are provided without order. The test is validated if

SCoRe is able to combine a predefined process as en-

tire ADELFE or PASSI process. In order to have this

result, we have tagged the initial and final MMME to

force SCoRe to choose the corresponding fragments.

During the execution, the SCoRe agents interact and

the expected process is built up again. SCoRe enables

to design a known process.

We execute two different tests :

1. the initial MMME correspond to ADELFE prob-

lem and the final MMME is the Cooperative Agent

Behavior Code. After the execution of SCoRe, the

ADELFE process is proposed.

2. the initial MMME correspond to PASSI problem

and the final MMME is the PASSI Code. After

the execution of SCoRe, the PASSI process is de-

signed.

Thus, the test shows the accuracy of the agents be-

havior. SCoRe is therefore able to propose a complete

process.

Figure 4: Test With Hand-made Users’ Characteristics

4.2 With Users’ Characteristics

From now on, in these tests, we simulate two short

fictive processes. These processes named A and B are

defined to illustrate the test results. A is broken into

four fragments a1, a2, a3, a4 where all fragments are

sequential except for a2 and a3 which are alternative.

The process B is broken in four sequential fragments

2ftp://ftp.irit.fr/IRIT/SMAC/DOCUMENTS/RAPPORTS/

b1, b2, b3 and b4. The processes are depicted in figure

4.

The previous test showing the capability of SCoRe

to design a complete process, the following tests ex-

tend it by taking into account the users’ characteris-

tics during the fragments selection. The users’ char-

acteristics are integrated iteratively. Actually, they are

firstly used to select a process and they are secondly

used to select tailored fragments composing the pro-

cess.

4.2.1 With Hand-made Users’ Characteristics

This test extends the first one, by using hand-made

users’ characteristics as in figure 1. In this case, the

aim of the experiments is to check if SCoRe design

a method process corresponding to the users’ charac-

teristics. The input values corresponding to a pool of

users’ characteristics of each context are defined be-

fore the simulation, and remain unmodified during its

run. The context agent submits a higher confidence

when its knowledge matches with the users’ charac-

teristics. In any situation, we controls that the sys-

tem advises the most adapted process. In this case,

the waiting fragment agents represent only the frag-

ments from the independent fictive processes A and B.

We simulate both processes with the initial MMME:

user’s problem and the process A provides the final

MMME: Product A while the process B provides the

final MMME: Product B.

Figure 4 shows the obtained processes during this

test. We execute three different tests :

1. the user knows the method A and its technologies

and paradigms. From the user’s objective and his

characteristics, the initial MMME correspond to

user’s problem and the final MMME is the Prod-

uct A. After the execution of SCoRe, the method

process A is designed (see the bleu process in fig-

ure 4).

2. the user knows the method B and its technologies

and paradigms. From the user’s objective and his

characteristics, the initial MMME correspond to

user’s problem and the final MMME is the Prod-

uct B. After the execution of SCoRe, the method

process B is designed (see the green process in

figure 4).

3. the user knows both method A and B and their

technologies and paradigms. After the execution

of SCoRe, one of the two method process is de-

signed (see figure 4).

As a result, one method process is chosen as the

most adapted for the specified situation. Score en-

ables therefore to adapt a proposed process to the

users’ characteristics.

4.2.2 With Adaptive Users’ Characteristics

This test extends the previous one by implementing

the adaptive behavior of the agents. It aims to com-

bine some processes. In this case, fragments from

different processes are assembled in order to obtain

a new process more adapted. The initial and final

MMMEs are common to the both processes. More-

over, required MMMEs can be provided by a frag-

ment from another process. We supposed that the pro-

vided fragments from A and B are compatible with

each other and a part of them with the user’s capabili-

ties. Actually, figure 5 shows the existing dependency

between the fragments from the both processes.

In this test, according to users’ characteristics,

SCoRe is able to produce a new process based on

fragments from both initial processes in addition to

processes already known. Actually, figure 5 shows an

example of obtained result where the new process (the

bleu one) is composed of a1, b2, a3 and b4. Accord-

ing to users’ characteristics, this process is advised as

the most accurate.

Figure 5: Test With Hand-made Users’ Characteristics

5 Related Works

In this paper, we have presented a new approach

for modelling and self-composing method fragments.

Apart from application field, several recent works

exploit the lessons of adaptive self-organizing natu-

ral and social system to enforce self-awareness, self-

adaptability, and self-management features in dis-

tributed system. We mention below only the works

closest to our approach. The most strictly related ap-

proaches are concerned with the problem of dynam-

ically composing and adapting fragments or compo-

nents.

Some approaches of components agentification

have been developed. They aim at allocate compo-

nents to agent properties such as autonomy and in-

teraction. (Kuikka and teknillinen tutkimuskeskus,

1999) proposes a pattern of components agentifica-

tion which aims at integrating components. Another

approach uses an extension of ContractNet protocol

for finding components in libraries (Hara et al., 2000).

A function which deals with request as message is

added in the components stored in libraries as an

agent. The agents have knowledge about specificity

of the component and its ability to answer a need.

Our proposition has the same goal with a view to

distribute not only fragments research but also their

adaptation and their composition. This allocation of

reuse process enables several assembling strategies

for instance.

Besides, Web Services represent today’s reference

standard technology for the set up of distributed sys-

tems that need to support machine-to-machine inter-

action among heterogeneous applications distributed

over a network. The automatic composition and adap-

tation of services has been explored using a variety of

AI planing engines. A review of further automated

service composition methods may be found in (Rao

and Su, 2005). In (Thomas et al., 2009), a set of

workflow fragments are composed in ad hoc wire-

less mobile environments. A workflow fragment is

a set of tasks linked together with conditions. Actu-

ally each task has preconditions (input) and postcon-

ditions (output) related to this execution. Two work-

flow fragments are linked if the precondition of one is

the same as the postcondition of the other one. This

approach aims at designing dynamic construction of

custom, context-specific workflows in response to un-

predictable and evolving circumstances by exploiting

the knowledge and services available within a given

context. For that, a graph made up of all workflow

fragments is built up before exploring and pruning it.

The composition issue is simplified. Actually, on the

one hand, the workflow is defined as a directed acyclic

graph with vertices denoting tasks and edges defining

an execution order along with the flow of data and

control and, on the other hand, the conditions have

a unique name in a workflow fragment. As presented

approaches, ours is based on current data base of frag-

ments and on MAS metamodel elements as input and

output. It proposes an automation of method frag-

ments composition. The way to integrate the method

fragment in the process is different. Actually, in run-

ning development, our approach can take into account

process adaptation according to development context.

6 Conclusion and Future Works

This paper presentes SCoRe, an adaptive multi-

agent system, which designs a tailored process by

combining fragments together. Each agent compos-

ing the adaptive multi-agent systems follows a local

and cooperative behavior, driven by the use of their

confidence. The four different kinds of agents, com-

posing the SCoRe system, were defined in order to

self-design and self-combine a tailored method pro-

cess without relying on the method engineer. The re-

sulting behavior of the SCoRe system is the ability

to design process and adjust the proposed process ac-

cording to the characteristics of application domain

and users profile. This first prototype allowed to en-

hance our experience on practical problems such as

metamodel compatibility, parameters composition or

fragments adaptation to specific field.

However, there is still room from improvements

in some aspects of this approach. For example, the

inter operability and the semantic matching of frag-

ments from different methods are still missing. In

this problem, some works axis on standardisation of

fragments notion and of their description. The meta-

model definition or ontologies for software process

could be used. Another approach from model-driven

engineering is the Model Transformation By Example

(Kappel et al., 2012). The concept is to make easier

model transformation writing without generic model

in favour of requested generated transformation. Thus

fragments drawing on similar metamodels could be

made up automatically.

Moreover, another important point is the evalua-

tion of the designed process. Actually, despite the

proposal of elaborate new tailored method processes,

methods are built intuitively by adopting some frag-

ments from different methods. It is therefore difficult

to evaluate and compare methods. In order to made

a right choice, it is necessary to evaluate the method

obtained with SCoRe.

Finally, this SCoRe system will be confronted to

real users’ problems with known method fragments,

in order to allow its comparison with existing meth-

ods.

REFERENCES

Bergenti, F., Gleizes, M., and Zambonelli, F. (2004).
Methodologies And Software Engineering For Agent
Systems: The Agent-oriented Software Engineering
Handbook. Kluwer Academic Pub.

Bernon, C., Camps, V., Gleizes, M.-P., and Picard, G.
(2005). Engineering Adaptive Multi-Agent Systems:
The ADELFE Methodology . In Henderson-Sellers,

B. and Giorgini, P., editors, Agent-Oriented Method-
ologies , volume ISBN1-59140-581-5, pages 172–
202. Idea Group Pub, NY, USA.

Bonjean, N., Chella, A., Cossentino, M., Gleizes, M.-P.,
Migeon, F., and Seidita, V. (2012). Metamodel-Based
Metrics for Agent-Oriented Methodologies (regular
paper). In International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS),
Valencia, 04/06/2012-08/06/2012.

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J.,
and Perini, A. (2004). Tropos: An agent-oriented soft-
ware development methodology. Autonomous Agent
and Multi-Agent Systems (8), 3:203–236.

Capera, D., Georgé, J.-P., Gleizes, M.-P., and Glize, P.
(2003). The AMAS Theory for Complex Prob-
lem Solving Based on Self-organizing Coopera-
tive Agents. In International Workshop on The-
ory And Practice of Open Computational Systems
(TAPOCS at IEEE 12th International Workshop
on Enabling Technologies: Infrastructure for Col-
laborative Enterprises (WETICE 2003) (TAPOCS),
Linz, Austria, 09/06/2003-11/06/2003, pages 389–
394, http://www.computer.org. IEEE Computer Soci-
ety. Pages de la publication : –.

Cossentino, M., Fortino, G., Garro, A., Mascillaro, S., and
Russo, W. (2008). Passim: A simulation-based pro-
cess for the development of multi-agent systems. In-
ternational Journal on Agent Oriented Software Engi-
neering (IJAOSE).

Cossentino, M., Sabatucci, L., and Seidita, V. (2006).
Method fragments from the passi process. Technical
Report RT-ICAR-21-03, Istituto di Calcolo e Reti ad
Alte Prestazioni - Consiglio Nazionale delle Ricerche.

Hara, H., Fujita, S., and Sugawara, K. (2000). Reusable
software components based on an agent model. In
Proceedings of the Seventh International Conference
on Parallel and Distributed Systems: Workshops, IC-
PADS ’00, pages 447–, Washington, DC, USA. IEEE
Computer Society.

Henderson-Sellers, B. and Giorgini, P. (2005). Agent-
oriented methodologies. Information Science Refer-
ence.

Henderson-Sellers, B. and Ralyté, J. (2010). Situational
method engineering: State-of-the-art review. J. UCS,
16(3):424–478.

Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W.,
and Wimmer, M. (2012). Model transformation by-
example: A survey of the first wave. In Dsterhft, A.,
Klettke, M., and Schewe, K.-D., editors, Conceptual
Modelling and Its Theoretical Foundations, volume
7260 of Lecture Notes in Computer Science, pages
197–215. Springer Berlin / Heidelberg. 10.1007/978-
3-642-28279-9 15.

Kuikka, S. and teknillinen tutkimuskeskus, V. (1999). A
Batch Process Management Framework: Domain-
specific, Design Pattern and Software Component
Based Approach. VTT publications. Technical Re-
search Centre of Finland.

Morandini, M., Migeon, F., Gleizes, M.-P., Maurel, C.,
Penserini, L., and Perini, A. (2009). A goal-oriented
approach for modelling self-organising mas. In

Aldewereld, H., Dignum, V., and Picard, G., editors,
Engineering Societies in the Agents World X, volume
5881 of Lecture Notes in Computer Science, pages
33–48. Springer Berlin / Heidelberg.

Pavòn, J., Gòmez-Sanz, J. J., and Fuentes, R. (2005).
The ingenias methodology and tools. In Agent Ori-
ented Methodologies, chapter IX, pages 236–276.
Henderson-Sellers.

Ralyté, J. (2004). Towards situational methods for infor-
mation systems development: Engineering reusable
method chunks. Procs. 13th Int. Conf. on Information
Systems Development. Advances in Theory, Practice
and Education, pages 271–282.

Rao, J. and Su, X. (2005). A Survey of Automated Web
Service Composition Methods. In LNCS, volume
3387/2005, pages 43–54. Springer.

Seidita, V., Cossentino, M., Galland, S., Gaud, N., Hilaire,
V., Koukam, A., and Gaglio, S. (2010). The meta-
model: a starting point for design processes construc-
tion. International Journal of Software Engineering
and Knowledge Engineering, 20(4):575–608.

Thomas, L., Wilson, J., Roman, G.-C., and Gill, C. (2009).
Achieving coordination through dynamic construc-
tion of open workflows. In Proceedings of the
10th ACM/IFIP/USENIX International Conference on
Middleware, Middleware ’09, pages 14:1–14:20, New
York, NY, USA. Springer-Verlag New York, Inc.

