
HAL Id: hal-01264573
https://hal.science/hal-01264573

Submitted on 29 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GeoLoc: Robust Resource Allocation Method for Query
Optimization in Data Grid Systems

Igor Epimakhov, Abdelkader Hameurlain, Franck Morvan

To cite this version:
Igor Epimakhov, Abdelkader Hameurlain, Franck Morvan. GeoLoc: Robust Resource Allocation
Method for Query Optimization in Data Grid Systems. 10th International Baltic Conference on
Databases and Information Systems, Baltic DB&IS 2012, Jul 2012, Vilnius, Lithuania. �10.3233/978-
1-61499-161-8-29�. �hal-01264573�

https://hal.science/hal-01264573
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12377

The contribution was presented at Baltic DB&IS 2012
 http://www.mii.vu.lt/BalticDBIS2012/

To cite this version : Epimakhov, Igor and Hameurlain, Abdelkader and Morvan,
Franck GeoLoc: Robust Resource Allocation Method for Query Optimization in
Data Grid Systems. (2013) In: 10th International Baltic Conference on Databases
and Information Systems (Baltic DB&IS 2012), 8 July 2012 - 11 July 2012 (Vilnius,
Lithuania).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

�

�

GeoLoc: Robust Resource Allocation
Method for Query Optimization in Data

Grid Systems�

Igor EPIMAKHOV���, Abdelkader HAMEURLAIN�, Franck MORVAN�

a Institut de Recherche en Informatique de Toulouse IRIT,

Paul Sabatier University, 118 Route de Narbonne, 31062 Toulouse, France

{Igor.Epimakhov, Abdelkader.Hameurlain, Franck.Morvan}@irit.fr

Abstract. Resource allocation (RA) is one of the key stages of distributed query processing
in the Data Grid environment. In the last decade were published a number of works in the
field that deals with different aspects of the problem. We believe that in those studies
authors paid less attention to such important aspects as definition of allocation space and
criterion of parallelism degree determination. In this paper we propose a method of RA that
extends existing solutions in those two points of interest and resolves the problem in the
specific conditions of the large scale heterogeneous environment of Data Grids. Firstly, we
propose to use a geographical proximity of nodes to data sources to define the Allocation
Space (AS). Secondly, we present the principle of execution time parity between scan and
join (build and probe) operations for determination of parallelism degree and for generation
of load balanced query execution plans. We conducted an experiment that proved the
superiority of our GeoLoc method in terms of response time over the RA method that we
chose for the comparison. The present study provides also a brief description of existing
methods and their qualitative comparison with respect to proposed method.

Keywords: Data grid systems, resource allocation, distributed query processing and
optimization, incentive-based scheduling, extended classic scheduling, allocation space
definition, intra-operation parallelism degree determination.

Introduction

One of the most important problems of query processing in the Data Grid environment
is Resource Allocation (RA) - assignment of resources to the query operations. Being
sent by the user, a query is processed by one of the Data Grid nodes, which takes the
role of scheduler for the query. The problem lies in the fact that for the placement of an
operation we need to select a subset of nodes among a set of Data Grid nodes, that the
placement on this subset will minimize execution time of the query. In addition, each
node in the Data Grid environment has its own static characteristics, such as CPU
performance, amount of memory, bandwidth of I/O system and network; and dynamic

�� �������������������
1

This work was supported in part by the French National Research Agency ANR, PAIRSE Project,
Grant number -09-SEGI-008.

2
Corresponding author

�

�

characteristics: a current load of each of these mentioned resources. Another important
aspect is distribution of relations over the nodes as well as their replication. Large scale
of the Data Grid systems is also complicates the problem of RA, practically
eliminating a possibility of using of exhaustive search algorithms.

After analyzing a number of papers on the subject [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 18, 19, 20, 21, 23, 24], we conventionally distinguish two fundamentally
different approaches [6]: incentive based [4, 13, 20, 24] and extended classic [1, 2, 5, 7,
8, 9, 10, 16, 19, 21, 23]. Their main difference lies in the cooperation type between the
scheduler node and candidate nodes for hosting operations. The first approach is based
on the use of some virtual incentives that encourage nodes to participate in query
optimization and execution processes. The second approach involves some internal
discipline or subordination of the set of candidate nodes.

In [6] we have considered and analyzed a number of proposed methods,
highlighting some of advantages and disadvantages of each method. In considered
studies were presented various solutions for resolving the RA problem taking into
account different specific characteristics of Data Grid environments. We believe that in
those studies was paid little attention to such aspects as the definition of allocation
space (AS) and determination of the optimal degree of parallelism.

In this paper we propose a RA method named GeoLoc. It uses classical approach
with a static RA scheme. The main ideas are:

• Restriction of the set of candidate nodes (allocation space) based on the
selection of nodes that are geographically close to data sources.

• The criterion for determining an optimal degree of intra-operation parallelism
based on parity between the total capacity of source nodes and the total
capacity of nodes performing the join operation.

• The ranking function, which estimates overall capacities of nodes for the
execution of query operations.

The present work deals with a multi-join query. Our algorithm is based on the
"greedy" principle of nodes selection using an estimated overall capacity of each node.
The scheduler sequentially optimizes each operation in the query plan. The degree of
parallelism for each operation is determined by adding nodes one by one until the
optimality criterion is fulfilled. We conducted an experiment using our own developed
Data Grid simulator, which confirmed that the query execution plan generated by
GeoLoc is more efficient in terms of execution time comparing to the method proposed
by Gounaris et al. [10] (hereafter “reference method”). However, its optimization
process is also more expensive.

The paper is organized as follows: for the first, section 1 presents a brief
comparison of our method with existing works presented in the literature. Then, an
approach for allocation space restriction will be introduced in section 2. A detailed
description of GeoLoc algorithm is provided in section 3. And before presenting our
conclusions, we provide in section 4 results of performance evaluations of the proposed
method in comparison with the reference method [10].

�

�

1. Related Works

In recent years were published several works covers the issue of RA in the Data Grid
environment, we will consider some of them. [1, 2, 5, 7, 8, 9, 10, 16, 19, 21, 23]

There are three main strategies that are being studying in literature in parallel [6]:
static, dynamic and hybrid, each of which has its own specific characteristics that
determine its ability to respond to changes of a dynamic environment and its ability to
use different forms of parallelism for query optimization.

First strategy consists in performing RA once before query execution phase basing
on the information of resources that is available at the moment of scheduling. In [10]
was offered an elegant method with the static strategy that exploits practically all types
of parallelism. In the beginning the algorithm obtains an optimized query execution
plan with a degree of independent intra-operation parallelism equal to 1 (each operation
assigned to a single node for its implementation). Than for the most expensive
operations, it improves the parallelism in the loop by appointing one additional node to
perform optimizing operation on each step. The loop continues until degree of
parallelism of the operation becomes optimal. Another static method presented in [19],
where authors proposed a scheduler that uses inter-query and intra-query parallelism.
Intra-query parallelism is limited only by partitioned intra-operation and pipeline
parallelism. There is iterative algorithm, which takes the query bushy tree and
parallelizes each operation on the optimal number of nodes. In order to provide load
balancing, scheduler selects firstly the nodes that do not perform any operations with
the requested relation at the moment. Very interesting static method was proposed in
[16]. Like GeoLoc, it operates with estimated overall capacities of nodes based on its
parameters and parameters of queried relations. But it implements only an independent
inter-operation parallelism. The optimization algorithm builds a logical tree for a query,
then for each relation of the query it selects, as a source, only one best node.

For resolving the RA problem, solutions are often based on the graph theory. Good
work in that way of research was presented in [21]. Authors consider as a problem the
static RA of a set of independent jobs with intensive usage of large volumes of data. As
an objective they take maximization of throughput. Multiple data sources and
computing resources are considered independently, even if they are physically located
at the same node. A set of data sources and computational resources is represented as a
weighted graph. For the calculations algorithm selects computational resources closest
to the data sources. The problem was reduced to a Set Covering Problem and was used
a well-known algorithm for its solution.

Dynamic strategies of RA in Data Grids are also presented in the literature [1, 2,
23] but does not get much support in the scientific community. The strategy consists in
performing separate optimization of each query operation after finalizing the execution
of previous ones. This approach deals with dynamicity of a Data Grid environment
better than pure static methods, but its capacity to reflect to system changes is limited
by the moments between operations when it can modify the plan. Also the method is
limited in using of the pipeline parallelism.

The third hybrid RA strategy can be considered as an extension of the static
strategy, which proposes to complement an initial static allocation with the dynamic
reallocation that could reflect to changes of the environment and modify the plan during
the query execution phase. It gained much attention in the recent works [5, 7, 8, 9] and
we believe that it is a very promising strategy in the dynamic large scale environment.
An interesting solution implementing the strategy was proposed in the work [5]. The

�

�

method is based on the greedy RA algorithm, which selects nodes with maximal
throughput capacities, known from previous queries executions. The method includes a
dynamic load balancing algorithm on the basis of the algorithm Eddies, which allows
transferring the load between nodes during operation execution without interrupting the
operation.

Another important characteristic of RA methods is the organization of a control
structure of query scheduler. Most of methods are based on the centralized scheduling,
relying upon the central Data Grid scheduler [1, 2, 5, 16, 19, 21, 23], using a global
catalog that provides complete information about all nodes and relations of the
environment or even about network topology and interconnection links [21]. One of
advantages of that approach is the possibility to exploit an inter-query parallelism that
is impossible in decentralized approaches. But, in our opinion, centralized scheduling is
a very risky solution in the large scale dynamic environment, because in that case the
functionality of whole system depends entirely on the reliability of the single control
element. That is why our method is based on the decentralized approach that we
consider the most effective solution in the Data Grid .

Also we believe that it is important to base a method on the realistic hypothesis
about distribution of relations in the Data Grid. For example, a number of methods [1,
2, 16, 19, 21, 23] do not take into account distributed relations, considering only its
duplication. In contrast, in GeoLoc method we utilized distribution and duplication of
relations, which is not only more realistic, but also raises the efficiency of our
algorithm. The principle was implemented also in some other methods [5, 10].

In our opinion, the two points of interest got little attention in all reviewed works:
definition of allocation space (AS) and criterion of determination of a parallelism
degree. For the AS definition, the typical solution is to consider all existing nodes as
candidates [21] or to restrict the search space only by nodes that initially contain a
requested data [16, 19]. The first solution is not realistic in a large scale environment
and the second is too strong restriction that may decrease the efficiency of RA. That is
why we proposed our definition of allocation space, considering two categories of
candidate nodes: source nodes and nearest nodes.

For determination of parallelism degree, some authors propose to increment
iteratively parallelism of an operation, finishing the process when adding another node
to allocation plan does not give any more profit [5, 10]. In [19] presented an algorithm
of load balancing of query plan, which reassigns nodes among operations from less
complex to more complex ones. Our method differs from the above-mentioned by using
the criterion of parity between scan and join operations, which permit to generate load
balanced query plans with response time close to optimum.

2. Allocation Space

Allocation space (AS) is a set of nodes, which are considered as candidates for the
query placement in the Data Grid. In a large-scale environment for solving the problem
of RA we cannot consider as candidates the entire set of existing nodes. This would
make the task of the optimal placement extremely time-consuming and expensive. The
only one solution is to limit the AS by those nodes that are supposed to be the best
candidates for the processing query.

Admittedly, as candidates for query operations placement we consider initially the
nodes that store fragments of processing relations. Firstly, they naturally act as a data

�

�

source for placement of Scan operations. Secondly, placing on them join operations is
often an effective way to reduce the amount of data transferred over the network. This
is especially important considering that the network connections in a large-scale
environment is the most critical resource that often becomes a bottleneck that limits
performance of the query. This category of nodes we named source nodes.

The second major category of node which we propose to include in the AS is a set
of nodes that are close geographically to the source nodes. We assume that the nodes
that are in a geographical proximity to the source nodes have, in general, less extensive
communication links with them and therefore the data transferring between them is
much faster with fewer loads on the network components. As a consequence, the
nearest nodes are attractive candidates for join operations placement because the
distribution (or redistribution) on them can be done with a much lower cost. Of course,
in our assumption there may be exceptions in particular case, however, we believe that
in general it is realistic and will provide substantial benefits on average. This category
of nodes, we denote nearest nodes.

Discussing the need to use the nearest nodes, we assume that all nodes store
information about their own geographic coordinates, and that other nodes of Data Grid
can use it in the resource discovery phase to determine the geographical proximity.

3. Allocation Algorithm

The problem of query placement consists in finding an optimal placement among a
large set of possible placements and is proven to be NP-complete [12]. There are two
main approaches for resolving this problem: exact methods [22] and heuristics [17].
The first class of methods cannot be applied in large-scale environments because of the
huge number of possible placements. So for resolving the problem of RA in Data Grid
the second approach is a natural choice. It allows us to find quasi-optimal solution in a
short period of time, which is very important because in a dynamically changing
environment, the resource data may become obsolete faster than a slow algorithm finds
an optimal solution.

We decided to use as the base of our method a so-called “greedy” heuristic, which
is widely used in optimization algorithms. We would remind that in our system, we
consider all relations as a number of non-intersecting fragments, each of which is in
general replicated among multiple nodes. The proposed algorithm receives as an input a
set of discovered candidate nodes and as an output it returns a generated execution plan.
For each join operation a separate RA is performed, the result of which - the
intermediate relation - is used as a source in the join operation of a higher level. Thus,
the algorithm passes a logical query tree bottom-up, successively placing resources for
each join operation.

The proposed algorithm consists of two main steps:

1. Definition of the allocation space

2. Parallelism degree determination and generation of an execution plan

We will examine them more in detail in the following subsections.

�

�

2.1. Definition of Allocation Space

As described above, AS includes source nodes and nearest nodes. Preparing of AS in
our algorithm starts with the selection of source nodes. Each node in our system we
consider as a set of hardware resources, such as:

• Network connection bandwidth (Mb/s)

• I/O performance (Mb/s)

• Amount of memory (Mb)

• CPU performance (MOPS)

For node performance estimation, for using it as a source of relation, we take into
consideration only the first two hardware resources (network and I/O). We assume that
each used relation fragment will be read from I/O subsystem and transferred to other
nodes for executing the join operation. I.e. total bandwidth of the node N we estimate
as a minimum between network connection and I/O subsystem bandwidths:

�� � �����	
���
 ������ Where ������ - unoccupied network connection
bandwidth, ����� - unoccupied I/O bandwidth

�	
��� � �� � ����� � �	
 Where � �! - load factor of the network connection,
Net – network bandwidth

����� � �� � �"#� $ �� Where �%& - load factor of I/O bandwidth, IO – I/O
bandwidth

Thus, the node performance index depends directly on the current load of its
resources. For placing Scan operation for each fragment of the relation we select the
one that have the highest performance index (bandwidth), i.e.
�'"(' � �)*��+
 �,
 -
 ���.

After defining the set of source nodes, we can place Scan operations and generate
AS incorporating both source nodes and its nearest nodes. We suppose that the entire
set of nearest nodes for each potential source node is determined at the phase of
resource discovery. Consequently, after selecting source nodes, we can determine a
subset of its nearest nodes.

2.2. Generation of Execution Plan

The algorithm of an execution plan generation is intended for the resources allocation
of a query. Firstly, it selects a subset of nodes from a set of candidate nodes for query
execution, and then it determines an optimal degree of intra-operation parallelism for
each join operation. As an input the algorithm receives a set of candidate nodes (AS)
and characteristics of joining relations and its fragments. At the output, it returns the
final query execution plan with allocated resources.

�

�

GeoLoc algorithm

INPUT: set of candidate nodes, characteristics of relations
OUTPUT: query execution plan

BEGIN

1. FOR each join / 0 1 DO

2. Count the time of source relations read and transferring, Tscan_exec

3. DO

4. Choose the most efficient node Neff from a set of AS for placing join
operation

5. Add Neff to the join allocation plan, Pjoin

6. Estimate the execution time of join, Tjoin_exec
7. WHILE (Tjoin_exec > Tscan_exec)
8. Add Pjoin to the query allocation plan, Pquery
9. ENDFOR

END

As a result, the algorithm sequentially adds one node at each iteration until the
estimated execution time of the join operation becomes equal to the estimated
execution time of Scan operations . Offering the criterion for determining the degree of
parallelism, we assumed that the join execution time is limited naturally by the time in
which the original relation will be read and send.

It is necessary to clarify the step 4 of our algorithm. To determine the most
productive node we need in the first place to estimate an expected load of the operation
on node’s calculation resources. We propose the following formulas:

�23 � �23"� 4 �23#5� �
6+ 4 6, � �

�
4 �� $

� � �
�

4
67�859�
�

�.

Where NET is the amount of data sent in both directions over the network
connection; :+, :,- sizes of the first and the second relations involved in the join; S -
size of the fragment stored at this node; N - the current degree of parallelism; :;�<=>! -
size of relation obtained after joining of :+ and :,.
�� � ��?7"�� 4 ��7�@A

� BCD�6+ 4 6, ��2�
E� 4BCD�67�859� �BCD��2� � 6+ � 6,
 E�
 E�
4 � 4BCD.�6+ 4 6, ��2�
 E�

Where IO is the number of data reads and writes through the I/O subsystem; MEM
is the amount of free available memory.

In these formulas, we assumed that:

• Each relation is distributed by N equal parts.

• Hybrid Hash Join algorithm is used.

• The result of each join is always retransferred from the node.

• All available memory can be used for full or partial storage of source relations
and the resulting relation, reducing the data transferred through I/O subsystem.

�

�

After calculating an expected load on the resources of the node, execution time
estimation is performed taking into account a current load of resources:

3"# �
��

F26G"# $ �� � �"#�
Where H%&, IJ:K%& and �%& – execution time,
performance and load factor of the I/O
system.

3��� �
�23

F26G��� $ �� � �����
4 L)
	�MN Where H �!, IJ:K �! and � �! – execution

time, performance and load factor for the
network connection. latency – latency of the
connection;

37�859� � BCD.�3"#
 3���� Where H;�<=>! - execution time estimation.

After generating an execution plan for a join operation, the algorithm is repeated
for a next join until the resources will be assigned for all operations. Meanwhile, nodes
that store obtained intermediate relations from previous operations are used as source
nodes in subsequent operations.

4. Performance Evaluation

We have conducted an experiment to determine the effectiveness of the proposed RA
method. We used our Data Grid simulator, which allows simulating RA methods in a
large-scale environment. The main parameters that we used for the simulation are
shown in Table 1.

Table 1. System configuration and database parameters.

Parameter� Value�

Node CPU performance 10 – 1 000 MIPS
Node I/O performance 10 – 90 Mb/s;
Node memory amount 0,001 – 40 Mb
Node network connection bandwidth 10 – 60 Mbit
Node network connection latency 0.5 s
Relation number of attributes 10
Relation size of attribute 300 Bytes
Relation cardinality of attributes 0.3 – 0.9
Relation size of tuple 3000 Bytes
Relation number of tuples in relation 1000 – 11000
Relation size 3Mb – 33Mb
Relation fragments number 10
Relation duplicates number 10

Simulation model and system parameters discussed in detail in [6]. Measurements
were performed by running a series of 100 queries for various levels of complexity. As
simple queries we considered queries with 1 and 2 joins, average - 3-5 joins, complex –
6-7 joins.

�

�

In our experiment we compared the methods by two principal parameters:
optimization time that reflects the duration of RA process and response time that we
count as a sum of optimization and execution times. Also was counted a speed-up for
each of measured parameters as a biggest value divided by a smallest one.

4.1. Performance Analysis

For our comparison we decided to use the reference method [10], implementing it on
the basis of the greedy heuristic. This method uses all kind of parallelism, but its
allocation space is limited by source nodes only.

Reference algorithm

INPUT: initial query execution plan (with minimal degree of parallelism), set of candidate nodes
OUTPUT: query execution plan

BEGIN

1. Plan = Initial plan
2. LOOP

3. X = MostCostlyOperation(Plan)
4. IF X is Optimized THEN EXIT LOOP

5. DO

6. Increase the degree of parallelism of X
7. UNTIL PerformanceIncrease(X) < Threshold
8. Mark operation X as Optimized
9. ENDLOOP

END

From our point of view, it is quite representative for the classical approach of RA.

Figure 1. Optimization time.

As seen in Fig. 1, GeoLoc method has considerably higher computational
complexity. This is because it uses a much larger set of candidates including not only

0,005 0,027 0,032

0,14

1,03

1,48

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

Simple Average Complex

Reference Method

GeoLoc

O
pt

im
iz

at
io

n
ti

m
e

(i
n

se
co

nd
s)

�

�

nodes that store data, but also nearest nodes, which firstly complicates the search and
secondly allows to use a higher degree of parallelism.

Figure 2. Speed-up of optimization time.

Fig. 2 shows a slight increase in the speed-up between the methods with increasing
complexity of the query. We can conclude that for queries of all complexities the
method of GeoLoc requires significantly more time in the optimization phase.

Figure 3. Response time.

As seen in Fig. 3, the method of GeoLoc has significantly less response time than
the reference method. During the experiment we found out that our algorithm uses
much higher (by order of magnitude) degree of intra-operation parallelism then the

26,2

37,8

46,2

0

5

10

15

20

25

30

35

40

45

50

Simple Average Complex

S
pe

ed
-u

p
of

 o
pt

im
iz

at
io

n
 ti

m
e

141,1

1 535,4

2 454,1

48,1

276,0
410,8

0

500

1000

1500

2000

2500

3000

Simple Average Complex

Reference Method

GeoLoc

R
es

po
ns

e
 ti

m
e

(i
n

se
co

nd
s)

�

�

reference method because of larger set of candidate nodes. This is the main reason of its
advantage in response time. Another reason is the using of nearest nodes for join
operation placement that provides faster data transmission.

Figure 4. Speed-up.

Fig. 4 shows the increase of the speed-up between the methods with increasing
complexity of the query. For queries of any complexity, our method shows a significant
advantage over the reference method by the response time.

5. Conclusion

In the present study we proposed the GeoLoc method that consists of two parts. First
part is an algorithm for determining the AS based on geographic proximity to the
source nodes of relations. Second part is an algorithm of execution plan generation that
uses our proposed parallelism degree determining criterion. In the experiment our
method shows a significant advantage over the classical method for performance
evaluation in terms of response time. However the query optimization time increased
tenfold. Nevertheless, we believe that the level of complexity of the GeoLoc algorithm
is acceptable for use in a large-scale Data Grid.

In this paper we have dealt with two of the three [11] characteristics of Data Grid:
a large scale and heterogeneous nodes. In the future we will extend the proposed
method for resolving the third significant problem of Data Grid – dynamicity.

References

[1] Huajun Chen and Zhaohui Wu. Dartgrid III: A semantic grid toolkit for data integration. In Proceedings
of the First International Conference on Semantics, Knowledge and Grid, SKG ’05, pages 12–, Washington,
DC, USA, 2005. IEEE Computer Society.

2,9

5,6
6,0

0

1

2

3

4

5

6

7

Simple Average Complex

S
pe

ed
-u

p

�

�

[2] Huajun Chen, Zhaohui Wu, Yuxin Mao, and Guozhou Zheng. Dartgrid: a semantic infrastructure for
building database grid applications: Research articles. Concurr. Comput. : Pract. Exper., 18:1811–1828, 2006.
[3] Rogério Lus de Carvalho Costa and Pedro Furtado. Scheduling in grid databases. Ín Proceedings of the
22nd International Conference on Advanced Information Networking and Applications - Workshops, pages
696–701, Washington, DC, USA, 2008. IEEE Computer Society.
[4] Rogerio Luis de Carvalho Costa and Pedro Furtado. Runtime estimations, reputation and elections for top
performing distributed query scheduling. In Proceedings of the 2009 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid, CCGRID ’09, pp. 28–35, Washington, USA, 2009. IEEE.
[5] V. F. V. Da Silva, M. L. Dutra, F. Porto, B. Schulze, A. C. Barbosa, and J. C. de Oliveira. An adaptive
parallel query processing middleware for the grid. Concurrency and Computation: Practice and Experience,
18(6):621–634, 2006.
[6] Igor Epimakhov, Abdelkader Hameurlain, Tharam Dillon, and Franck Morvan. Resource scheduling
methods for query optimization in data grid systems. In Johann Eder, Maria Bielikova, and A Tjoa, editors,
Advances in Databases and Information Systems, volume 6909 of Lecture Notes in Computer Science, pages
185–199. Springer Berlin / Heidelberg, 2011.
[7] Anastasios Gounaris, Norman W. Paton, Rizos Sakellariou, Alvaro A. A. Fern, Jim Smith, and Paul
Watson. Modular adaptive query processing for service-based grids, 2007.
[8] Anastasios Gounaris, Norman W. Paton, Rizos Sakellariou, and Alvaro A. A. Fernandes. Adaptive query
processing and the grid: Opportunities and challenges. In DEXA Workshops, pages 506–510, 2004.
[9] Anastasios Gounaris, Norman W. Paton, Rizos Sakellariou, Alvaro A. A. Fernandes, Jim Smith, and Paul
Watson. Practical adaptation to changing resources in grid query processing. In Proceedings of the 22nd
International Conference on Data Engineering, ICDE ’06, pages 165–, Washington, DC, USA, 2006. IEEE
[10] Anastasios Gounaris, Rizos Sakellariou, Norman W. Paton, and Alvaro A. A. Fernandes. Resource
scheduling for parallel query processing on computational grids. In GRID, pages 396–401, 2004.
[11] A. Hameurlain, F. Morvan, and M. El Samad. Large scale data management in grid systems: a survey.
In Information and Communication Technologies: From Theory to Applications, 2008. ICTTA 2008, pp 1 –6.
[12] Oscar H. Ibarra and Chul E. Kim. Heuristic algorithms for scheduling independent tasks on nonidentical
processors. J. ACM, 24(2):280–289, April 1977.
[13] Hesam Izakian, Ajith Abraham, and Behrouz Tork Ladani. An auction method for resource allocation in
computational grids. Future Gener. Comput. Syst., 26:228–235, February 2010.
[14] Hesam Izakian, Ajith Abraham, and Václav Snásel. Comparison of heuristics for scheduling
independent tasks on heterogeneous distributed environments. In CSO (1), pages 8–12, 2009.
[15] Congfeng Jiang, Cheng Wang, Xiaohu Liu, and Yinghui Zhao. A survey of job scheduling in grids. In
Proceedings of the joint 9th Asia-Pacific web and 8th international conference on Advances in data and web
management, APWeb/WAIM’07, p. 419–427, Berlin, Heidelberg, 2007. Springer-Verlag.
[16] Shuo Liu and Hassan A. Karimi. Grid query optimizer to improve query processing in grids. Future
Gener. Comput. Syst., 24:342–353, May 2008.
[17] Judea Pearl. Heuristics: intelligent search strategies for computer problem solving. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1984.
[18] Xiao Qin. Design and analysis of a load balancing strategy in data grids. FGCS, 23:132–137, 2007.
[19] Khin Mar Soe, Aye Aye Nwe, Than Nwe Aung, Thinn Thu Naing, and Ni Lar Thein. Efficient
scheduling of resources for parallel query processing on grid-based architecture. In Information and
Telecommunication Technologies, 2005. APSITT 2005 Proceedings. pp. 276 –281, 2005.
[20] Michael Stonebraker, Paul M. Aoki, Witold Litwin, Avi Pfeffer, Adam Sah, Jeff Sidell, Carl Staelin,
and Andrew Yu. Mariposa: a wide-area distributed database system. The VLDB Journal, 5:048–063, 1996.
[21] Srikumar Venugopal and Rajkumar Buyya. An scp-based heuristic approach for scheduling distributed
data-intensive applications on global grids. J. Parallel Distrib. Comput., 68:471–487, April 2008.
[22] Gerhard J. Woeginger. Exact algorithms for np-hard problems: A survey. In Combinatorial optimization
- Eureka, you shrink!, pages 185–207. Springer-Verlag New York, Inc., 2003.
[23] Zhaohui Wu, Huajun Chen, Changhuang Changhuang, Guozhou Zheng, and Jiefeng Xu. Dartgrid:
Semantic-based database grid. In International Conference on Computational Science, pages 59–66, 2004.
[24] Lijuan Xiao, Yanmin Zhu, L.M. Ni, and Zhiwei Xu. Incentive-based scheduling for market-like
computational grids. Parallel and Distributed Systems, IEEE Transactions on, 19(7):903 –913, 2008.

