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ABSTRACT
This paper focuses on the estimation of the phasor parame-
ters in three-phase power systems for smart grid monitoring.
Specifically, it investigates the use of the Conditional Maxi-
mum Likelihood (ML) for phasor parameter estimation. The
contribution of this paper is twofold. First, it presents the
condition on the signal model for identifiability of the phasor
parameters. Then, it shows that the Conditional Maximum
Likelihood estimator has a simple closed form expression,
which can be determined from simple geometrical properties.
Simulation results illustrate the effectiveness of the proposed
approach for the estimation of the phasor amplitude and angle
shift under dynamic conditions.

Index Terms— Phasor Measurement Units, Smart Grid,
Maximum Likelihood, Condition Monitoring.

1. INTRODUCTION

For practical and economical reasons, electrical grids use
three-phase electric power at the generation, transmission
and distribution sides. Under nominal conditions, three-phase
systems are composed of three conductors, each carrying a
50 Hz (or 60 Hz) sine wave. In balanced systems, these sine
waves have the same amplitude but are phase-rotated from
each other by an angle of 2π/3. In practice, many phenom-
ena can introduce deviations from the nominal conditions.
For example, a mismatch between energy generation and
load introduces frequency deviations [1]. Similarly, abnor-
mal grid events, such as voltage sags, introduce three-phase
unbalance [2]. These deviations must be detected at an early
stage to avoid severe consequences. For these reasons, elec-
trical signal monitoring is of main importance for improving
the power grid reliability and enabling energy management
systems.

To monitor the state of the grid, electronic devices called
Phasor Measurement Units (PMUs) are dispersed through-
out the power grid [3, 4]. From a signal processing view-
point, these devices compute for each phase a complex num-
ber dkejϕk called the phasor, where dk and ϕk correspond
to the amplitude and phase estimates of the electrical signal
evaluated at the fundamental frequency. The IEEE Standard

C37.118.1 specifies the performance requirements for pha-
sor estimation [5]. To be compliant with this standard, the
phasor estimator must meet certain requirements in terms of
accuracy and ability to track fast variations. Several tech-
niques have been proposed in the literature for estimating the
phasor. Under stationary conditions, classical techniques in-
clude the Root Mean Square and DFT estimators [2, 6]. Un-
der non-stationary conditions, more sophisticated algorithms
have been proposed. A complete state-of-art can be found
in [7]. From an estimation perspective, it should be men-
tioned that the most challenging requirement is the ability to
track fast variations. Recently, a new estimator based on the
Maximum Likelihood has been proposed for the estimation
of the phasor amplitude [8]. The advantage of this estimator
is twofold. First, by considering the modulated signals as un-
known parameters, it is well suited for signals with amplitude
and or phase modulation. Then, as it is based on the Maxi-
mum Likelihood framework, the proposed estimator has the
attractive property to be asymptotically optimal under some
conditions. Nevertheless, the main limitation of this estimator
is the fact that it assumes a perfect 2π/3 angle shift between
phases. In practice, this assumption limits its use for phasor
estimation.

In this paper, we extend the Conditional Maximum Likeli-
hood Technique in [8] by considering a more general setting,
where both the amplitude and phase of the phasors are un-
known. The contribution of this paper is twofold. First, we
provide the conditions for identifiability of the phasor param-
eters. Then, we show that the phasor parameters can be sim-
ply estimated using basic geometrical properties. This paper
is organized as follows. Section 2 presents the signal model
and section 3 addresses the phasor estimation problem. Fi-
nally, section 4 provides some simulation results.

2. SIGNAL MODEL

In unbalanced three-phase systems, the electrical waveform
on the kth phase can be modeled as (k = 0, 1, 2)

xk[n] = dka[n] cos(φ[n] + ϕk) + bk[n], (1)

where a[n] and φ[n] correspond to the instantaneous scal-
ing factor and instantaneous phase offset, respectively, and



bk[n] is the additive noise. Note that this model is quite gen-
eral and includes all the dynamic scenarios of the IEEE stan-
dard C37.118.1 [5, 5.5.6-5.5.8]. The parameters dkejϕk cor-
responds to the phasor on the kth phase. Let us define c =
[d0e

jϕ0 , d1e
jϕ1 , d2e

jϕ2 ]T the 3×1 column vector containing
the phasors. Then, let us use the notation c(θ) to stress that
this vector depends on several unknown parameters, θ. Using
matrix notations, the three-phase signals can be expressed as

x[n] = A(θ)s[n] + b[n] (2)

where
• x[n] et b[n] are column matrices which are defined as

x[n] ,

 x0[n]
x1[n]
x2[n]

 b[n] =

 b0[n]
b1[n]
b2[n]

 , (3)

• A(θ) is a 3× 2 matrix defined as

A(θ) ,
[
<e[c(θ)] −=m[c(θ)]

]
, (4)

• s[n] is a 2 × 1 column vector containing the direct and
quadrature components i.e.

s[n] ,
[
a[n] cos(φ[n])
a[n] sin(φ[n])

]
. (5)

In this paper, we assume that the noise is a zero-mean, white
Gaussian noise with covariance matrix σ2I. Under this as-
sumption, the goal of this study is to estimate the phasor pa-
rameters, θ, from the three-phase signals without knowing
S , [s[0], · · · , s[N − 1]].

3. CONDITIONAL MAXIMUM LIKELIHOOD

The Conditional Maximum Likelihood (CML) models the in-
phase and quadrature components as unknown deterministic
parameters. This is a reasonable assumption when no a-priori
information is available about the direct and quadrature com-
ponents. However, as the in-phase and quadrature compo-
nents are treated as unknown quantities, there is no guarantee
that the unique identification of the parameters is enabled. For
this reason, we investigate the conditions for parameter iden-
tifiability before addressing the estimation problem.

3.1. Conditions for parameter identifiability

The parameter identifiability requires that

A(θ)S = A(θ2)S2 ⇒ θ = θ2 (6)

where S and S2 are arbitrary 2×N full rank matrix.
As A(θ) is a full rank 3×2 matrix, the orthogonal projec-

tor onto the range of A(θ) can be decomposed as [9, p266]

PA(θ) = A(θ)(AT (θ)A(θ))−1AT (θ) (7)

= I− u(θ)uT (θ) (8)

where u(θ) is the unit-norm eigenvector of A(θ)AT (θ) asso-
ciated with the zero eigenvalue. If u(θ) = u(θ2), it can be
checked that the orthogonal projector onto the range of A(θ)
and A(θ2) are equal i.e. PA(θ) = PA(θ2). Therefore, if it
exists θ2 6= θ such as u(θ) = u(θ2), then it is possible to
find a matrix S2 = (AT (θ2)A(θ2))

−1AT (θ2)A(θ)S such as
the condition in (6) is not satisfied. Therefore, we obtain the
following lemma.

Lemma 1. To enable unique identification of the parameter,
it must exist a one-to-one mapping between u(θ) and θ.

By definition, there is a one-to-one mapping between
u(θ) and θ if the value of θ satisfying uTA(θ) = 0 is unique.
As A(θ) is a 3 × 2 matrix and u a 3 × 1 column vector, the
system uTA(θ) = 0 is composed of two equations. There-
fore, a unique solution requires that θ contains at most 2
(real) unknown parameters. Note that this condition does not
guarantee uniqueness of the solution. Specifically, for partic-
ular phasor models c(θ), it is possible to show that u(θ) = u
for all θ. For example, let us consider the phasor model c(θ)
satisfying [1 1 1]c(θ) = 0 for all θ. This condition implies
that [1 1 1]A(θ) = 0. By identification, we conclude that
the unit-norm eigenvector is equal to u = 1/

√
3[1 1 1]T

regardless the value of θ.

Proposition 1. To enable unique identification of the param-
eters θ, the following conditions are necessary
• C1: θ contains at most 2 (real) unknown parameters,

• C2: the so-called zero sequence component is non-zero for
all θ i.e.

[1 1 1]c(θ) 6= 0 (9)

To illustrate proposition 1, we provide several examples
where the parameter θ cannot be identified.

Example 1. Let us consider the following phasor model

c(α, β) = αejβ

 1
e2jπ/3

e4jπ/3

 , (10)

As θ = {α, β} contains two parameters, condition C1 is satis-
fied. However, as [1 1 1]c(θ) = 0, the second condition does
not hold and θ is not uniquely identifiable.

Example 2. The type-C phasor model of the ABC classifica-
tion is given by [2, Table 6.2]

c(α) =

 1
− 1

2 + jα
− 1

2 − jα

 , (11)

As [1 1 1]c(α) = 0, α is not identifiable. In the ABC classifi-
cation, this problem occurs for sags of type A, C, D, F and G.



3.2. Estimation of the phasor parameters.

Assuming that conditions C1 and C2 hold, we show in this sub-
section that the Maximum Likelihood estimator has a simple
expression. Using the CML, the estimate of the unbalance
parameters is given by [10]

θ̂ = argmin
θ

Tr
[
P⊥A (θ)R̂

]
(12)

where
• R̂ is the sample covariance matrix, which is defined as

R̂ ,
1

N

N−1∑
n=0

y[n]yT [n] (13)

• P⊥A (θ) is the orthogonal projector onto the kernel of
AT (θ), which is defined as

P⊥A (θ) = I− A(θ)
(

AT (θ)A(θ)
)−1

AT (θ) (14)

Using (8) and (14), P⊥A (θ) can be decomposed as

P⊥A (θ) = u(θ)uT (θ) (15)

where u(θ) is the unit eigenvector associated with the null
eigenvalue of A(θ)AT (θ). Using this decomposition, the cost
function in (12) can be simplified as follows

θ̂ = argmin
θ

Tr
[
u(θ)uT (θ)R̂

]
(16)

= argmin
θ

uT (θ)R̂u(θ) (17)

To determine θ analytically, we resort to the invariance prop-
erty of the Maximum Likelihood. First, we estimate u from
R̂, then we estimate θ from û.

3.2.1. Estimation of u

In the first step, we find the value of u that minimizes the cost
function in (17). This problem can be formalized as

û = argmin
u

uT R̂u, subject to uTu = 1. (18)

As the scalar uT R̂u is a Rayleigh quotient, the minimum
is reached at û = g, where g is the eigenvector associated
with the smallest eigenvalue of the sample covariance matrix
R̂ [11, Theorem 4.2.2].

3.2.2. Estimation of θ

In the second step, we extract the value of θ from g. As
u(θ) is the eigenvector of A(θ)AT (θ) associated with the null
eigenvalue, then uT (θ)A(θ) = 0. Replacing θ and uT (θ) by
their estimates, we obtain

gTA(θ̂) = 0. (19)

<e

=
m

g0d0

ϕ0

β02

g
1 d

1

ϕ1
β01g 2

d 2

ϕ2

β12

Fig. 1: Geometrical interpretation of (22) .

It should be noted that this system is the basis of subspace
algorithms such as MUSIC. This system is composed of two
equations involving real numbers. By introducing the com-
plex number j, this equation can be compacted as

gTA(θ̂)

[
1
−j

]
= 0. (20)

Using the definition of A(θ), we obtain Theorem 1.

Theorem 1. The ML estimate of θ, denoted θ̂, is obtained by
finding the value of θ for which the phasors are orthogonal to
the eigenvector g i.e.

gT c(θ̂) = 0. (21)

The orthogonality condition in Theorem 1 has a simple
geometric interpretation. Let us decompose g and c(θ) as g =
[g0, g1, g2]

T and c(θ) = [d0e
jϕ0 , d1e

jϕ1 , d2e
jϕ2 ]T . Note that

for convenience, we write dk and ϕk instead of dk(θ) and
ϕk(θ). Using this decomposition, it follows that

2∑
k=0

gkdke
jϕk = 0. (22)

In the complex plane, this equality corresponds to a triangle
with side lengths dkgk and inner angles given by

β02 = ϕ2 − ϕ0 − π (23a)
β01 = π − ϕ1 + ϕ0 (23b)
β12 = π − ϕ2 + ϕ1. (23c)

This triangle is presented in Fig.1. Using this representation,
the estimation problem can be treated as a geometrical prob-
lem.

3.3. Closed form estimators

In this subsection, we address the two following estimation
problems: i) the estimation of the amplitude parameters d1
and d2 and ii) the estimation of the phase-shift parameters
ϕ1, and ϕ2. In each scenario, the first phase is taken as the
reference i.e. d0 = 1 and ϕ0 = 0



3.3.1. Estimation of the amplitude parameters

In the first estimation problem, the unknown parameters are
θ = {d1, d2}. To estimate d1 and d2, we use the sine rule in
the triangle of Fig.1. After some simplifications, we obtain

d̂1 = − g0 sin(ϕ2)

g1 sin(ϕ2 − ϕ1)
(24a)

d̂2 =
g0 sin(ϕ1)

g2 sin(ϕ2 − ϕ1)
. (24b)

Note that when the angle shift between phases is equal to
2π/3, the triangle in Fig.1 is equilateral. It follows that d̂k =
g0/gk, which corresponds to the particular solution in [8].

3.3.2. Estimation of the phase parameters

In the second estimation problem, the unknown parameters
are θ = {ϕ1, ϕ2}. Using the cosine law, we obtain

g22d
2
2 = g20 + g21d

2
1 − 2g0g1d1 cos(β01) (25a)

g21d
2
1 = g20 + g22d

2
2 − 2g0g2d2 cos(β02). (25b)

Therefore, the angle-shift estimators are given by

ϕ̂1 = arccos
(
g22d

2
2 − g20 − g21d21
2g0g1d1

)
(26a)

ϕ̂2 = arccos
(
g22d

2
2 + g20 − g21d21
2g0g2d2

)
+ π. (26b)

4. SIMULATION RESULTS

In this section, the performances of the amplitude and an-
gle shift estimators are accessed through simulations using
Python/Numpy. The phasor parameters are set to d0 = 1,
d1 = 1.2, d2 = 0.2, φ0 = 0, φ1 = 2.29 rad, and φ2 =
4.68 rad. The instantaneous scaling factor and phase offset
are fixed according to the worst condition of the IEEE Stan-
dard C37.118.1 [5, 5.5.6]

a[n] = 1 + 0.1 cos(2πfmn/Fe) (27a)
φ[n] = 2πf0n/Fe + 0.1 cos(2πfmn/Fe − π) (27b)

where fm = 5Hz, f0 = 50Hz, Fe = 1000Hz. For each
estimator, the Mean Square Error (MSE) is evaluated through
10000 Monte Carlo simulations. The MSE is analyzed and
compared (asymptotically) with the Cramér Rao bounds
for different data lengths and signal-to-noise ratios (SNRs),
where the SNR is defined as

SNR = 10 log

(
trace(A(θ)SSTAT (θ))

3Nσ2

)
. (28)

In the following simulations, the SNR ranges from -20 to
50dB. It should be mentioned that low values of the SNR are

unlikely in power system applications. Figure 2 presents the
performance of the amplitude estimator described in (24). We
observe that the MSE and CRB of d̂2 are lower than that of
d̂1. As reported in [8], this behavior comes from the fact that
d2 < d1. A constant offset between the MSE also suggests
that the ratio MSE[d̂1]/MSE[d̂2] is constant for large val-
ues of SNR or N. Furthermore, we note that the proposed
estimator seems to reach the CRB for SNR→ ∞ but not for
N → ∞, which is compliant with the properties of the Con-
ditional ML [12].

Figure 3 reports on the performance of the angle shift esti-
mator described in (26). We note that the MSE of φ̂1 is lower
than that of φ̂2, except for low N or SNR. Additional simu-
lations suggest that the performances of φ̂1 and φ̂2 are equal
when φ1 = 2π/3 and φ2 = 4π/3. Concerning the CRB, the
proposed estimator is biased for low SNRs, making the com-
parison non-relevant in this asymptotic region. For moderate
and large SNRs, we note that the angle shift estimator has
the same behavior than the amplitude estimator (efficient for
SNR→∞ but not efficient for N →∞).

5. CONCLUSION

This paper has presented a technique based on the Conditional
Maximum Likelihood (ML) for the estimation of the phasor
parameters in three-phase systems. When the identification
is enabled, it has been demonstrated that the ML estimation
of the phasor parameters can be determined by finding a pha-
sor vector orthogonal to an eigenvector of the sample covari-
ance matrix. Furthermore, this problem is transformed into
the determination of the geometrical properties, such as side
lengths and inner angles, of a triangle. This paper has also
demonstrated that the Conditional ML can estimate at most
two parameters. This limitation suggests that additional in-
formation must be incorporated in the signal model for the
identification of all the phasor parameters.
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