
HAL Id: hal-01264530
https://hal.science/hal-01264530

Submitted on 29 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TUNeEngine : An Adaptable Autonomic Administration
System

Alain Tchana, Suzy Temate, Laurent Broto, Daniel Hagimont

To cite this version:
Alain Tchana, Suzy Temate, Laurent Broto, Daniel Hagimont. TUNeEngine : An Adaptable Auto-
nomic Administration System. International conference on soft computing and software engineering
(SCSE 2013), Mar 2013, San Francisco, CA, United States. pp. 1-9. �hal-01264530�

https://hal.science/hal-01264530
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12510

The contribution was presented at SCSE 2013 :
http://www.softengconf.com/

To cite this version : Tchana, Alain and Temate, Suzy and Broto, Laurent and
Hagimont, Daniel TUNeEngine : An Adaptable Autonomic Administration System.
(2013) In: International conference on soft computing and software engineering
(SCSE 2013), 1 March 2013 - 2 March 2013 (San Francisco, CA, United States).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

TUNeEngine: An Adaptable Autonomic Administration System

Alain Tchana, Suzy Temate, Laurent Broto, Daniel Hagimont

Toulouse University, IRIT Laboratory

Toulouse, France

first.last@enseeiht.fr

Abstract—The Autonomic Administration technology has
proved its efficiency for the administration of complex com-
puting systems. However, experiments conducted with several
Autonomic Administration Systems (AAS) revealed the need to
adapt the AAS according to the administrated system or the
considered administration facet. Consequently, users usually
have to adapt even to re-implement the AAS according to
their specific needs but these tasks require high expertise on
the AAS implementation that users do not necessarily have. In
this paper we propose a service-oriented components approach
to build a generic, flexible, and useful AAS. We present an
implementation of this approach, the design principles and
the prototype called TUNeEngine. We illustrate the flexibility
of this prototype through the administration of a complex
computing system which is a virtualized cloud platform.

Keywords-Autonomic Administration; Adaptable System;
Components Model

I. INTRODUCTION

These last decades, computer systems became increas-

ingly sophisticated and thus more complex to manage. The

autonomic administration technology, introduces in 2003 by

IBM[1], has proved its efficiency to cope this complex-

ity. It consists in the substitution of human administrators

by computer programs, called Autonomic Administration

Systems (or AAS for short)[1][2][3], in order to perform

usual administration tasks while limiting as much as possible

human interventions. Since the introduction of this tech-

nology, we observed an increasing number of AAS project

which can be classified into two categories: specialized AAS

and generic AAS. The former includes AASs which are

developed for administrating a specific application (or type

of applications) [5][6], or dedicated to a specific facet of

administration (e.g. deployment) [7]. Regarding the second

category, it includes AASs whose ambition is to handle any

type of applications [8][9].

Our research team has developed two AASs, Jade [10]

and TUNe [9], with the ambition to make them generic.

Both TUNe and Jade are based on the Fractal component

model. Jade required high expertise on Fractal and Java from

the administrator, so TUNe was developed to raise the level

of abstraction of Jade to make it more usable. Section II

presents an overview of TUNe. We experimented TUNe

with different types of applications: multi-tier (JEE) [9],

large scale [19], and virtualized applications [11] and we

noticed that TUNe was not as generic as we had liked it

to be. We observed that when we move from one type of

applications on to another one, we usually had to change

TUNe deeply to take into account the new administrations

needs. For example, virtual machines have the specificity

to be software which behave like machines but TUNe was

implemented in such a way that it differentiated machines

from software and thus did not allow to take virtual machines

duality into account. Therefore, to enable virtual machines

administration, we changed the machines and the software

behaviors in TUNe. The main problem is that this adaptation

required the modification of the overall system and this is

rarely accessible for an administrator whose expertise is out

of the scope of developing an AAS. Based on our experi-

ments, it emerges that this problem results from three points:

(1) strong implementation hypothesis; (2) unsuitable design

choices and (3) difficulty of use. Section II-B details each

of these three points. This problematic is also observed on

others AASs such as Rainbow [8], Unity [13] or Accord [14]

(Section VI presents some research works on this topic).

In previous work [15], we proposed a model driven

approach to address this problem. Briefly, this approach

consists in using Domain Specific Languages (DSL) to

express specific administration policies according to the

considered type of applications. These specific policies must

then be implemented by a higher flexible and adaptable

AAS. Section II-C summarizes our general approach which

is divided into two parts, the DSL description part and

the generic AAS they have to rely on. This paper presents

the second part of this approach: the implementation of a

higher flexible AAS which can be adapted without having

an expert knowledge of its implementation. More precisely,

the contributions of this paper are:

• we propose a set of guidelines which can be seen

as design principles that the development of a higher

flexible and adaptable AAS can follow (presented in

Section III).

• we propose a prototype of such a AAS whose imple-

mentation is based on a service-oriented components

model (presented in Section IV).

• We evaluate the flexibility and the adaptability of our

prototype over the administration of a complex envi-

ronment: a virtualized cloud platform, including hosted

applications (presented in Section V).

We conclude in section VII.

II. BACKGROUND AND PROBLEMATIC

A. Background: the TUNe AAS

An autonomic administration system (AAS) is a system

which is able to perform administration tasks (Deployment,

configuration, repairing . . .) in an automatic way with no

need of human interventions. TUNe is an AAS which

follows the Kephart’s AAS [1] model, generally known

in the literature under the term MAPE-K (Figure 1). The

AAS monitors the runtime environment via probes. The

latter inform the AAS (with notifications) about particular

situations (e.g. machines failure). When the AAS decide

to react to probes notifications, it performs some recon-

figuration programs which affect the runtime environment

through actuators. Among the existing AASs, TUNe is one

of those which provide all of the administration services:

wrapping (make a legacy element administrable by the

AAS), deployment (make legacy files/binaries available in

the runtime environment), and dynamic (re)configuration

at runtime (capability to dynamically perform a set of

actions in the runtime environment). In order to facilitate

its use, TUNe provides high level languages to describe the

mentioned administration services, in lieu of low level API

generally provided in others AASs. TUNe’s languages are

based on UML (widely used by administrators) and each

language is dedicated to an administration service:

Wrapping: as its ancestor Jade, TUNe is a component

based AAS where each administrated element (hardware or

software) is encapsulated (wrapped) in a component [16].

To encapsulate an element means to capture its properties

and behaviours in order to provide a data structure (called

component) which represents this element in the AAS.

Then, the AAS lays on the component model’s APIs to

easily perform administration tasks. This approach has been

proved in other AASs such as Rainbow [8] (developed by

IBM). TUNe provides wrapping features through out two

languages. The first one, called Architecture Description

Language (ADL), is used to describe administrated elements,

their properties and the relationships between them. This

language uses the graphical UML class diagram, which is

much more intuitive than a traditional ADL (which is XML

like). The second language is textual and called Behavior

Description Language (BDL). It is used to express the

behavior of administrated elements.

Deployment: even if the same language is used for

wrapping software or wrapping machines, TUNe differen-

tiates the wrapping of software elements from wrapping

of infrastructure elements (machines). They are expressed

differently via particular properties. The deployment of a

software element on a machine (or group of machines)

element is expressed by a relationship (UML link) between

the two elements.

Figure 1. Kephart’s AAS Model

(Re)Configuration: to describe reconfigurations pro-

grams, TUNe provides a language called Reconfiguration

Description Language (RDL) which uses the graphical UML

activity diagram. An RDL expression is identified by the

name of the event/notification that will trigger its execution.

It is a set of sequential or parallel actions whose execution

will be carried out on the runtime environment.

This section is not intended to present in detail the TUNe

system. For more information, the lecturer can refer to [9].

B. Problematic

As mentioned in the introduction, we are interested in

generic AAS. TUNe, as well as Jade, belongs to this cate-

gory. Although experiments conducted with TUNe validated

both the principles of autonomic administration and the

component-based approach, they also underlined its limi-

tations. Providing a unique system to manage any type of

applications implies that the system must be able to take

into account the variation of the administration needs. In

addition, one important constraint that the system should

be aware of is its usability. It should be useful for users,

which often have no knowledge on its implementation.

However, the experiments we conducted with several AAS,

particularly with TUNe and Jade, showed that the second

constraint is not respected. Indeed, when moving from an

application area on to another, either the system can not be

adapted (e.g. Rainbow with virtualized applications) or its

adaptation is very difficult for users (e.g. TUNe with large

scale and virtualized applications).

In TUNe (as well as others AASs), the behavior of

some administrated elements is hard coded in the system

through wrapping). That is the case of machines which

are not administrated as software element. But, what about

elements such as virtual machines, which are both software

and machines? In the Accord system for example, probes

elements are administrated differently from others software.

The user have to implement them in the AAS. But, what

about applications which are built as black box, including

their own monitoring mechanism (e.g. the MySQL server

with its MySQL-Safe probe)? In addition, Most of the

existing AAS define and impose the administration services

they provide. However in some situations these services are

not needed or not sufficient. For example, the deployment

service is not necessary when administering elements such

as printers, which are not deployable (as software).

The causes of these limitations can be summarized as

follows:

• Inadequacy of the administration languages makes the

AAS not useful in certain situations. It is not relevant

to use an unique set of languages for describing all type

of applications.

• Strong AAS’s implementation hypothesis makes dif-

ficult to integrate new administration behaviours for

some type of administrated elements.

• Unsuitable AAS design makes difficult to adapt the

AAS’s services without changing others.

Regarding these problems, the need of a real adaptable and

usable AAS remains topical. The next section presents a

novel approach to cope these problems.

C. General approach

Our main objective is the construction of an adaptable

and usable AAS regardless of the application domains.

Administration needs vary according to the application do-

main or the considered administration facet (deployment,

(re)configuration . . .). This implies that the construction of

a generic AAS should rely neither on any administration

language nor on any application domain to avoid complex

and difficult to use AAS. To achieve this, we provide on top

of the AAS a stack of Model Driven Engineering (MDE)

tools allowing to easily define specific administration lan-

guages according to the administrated application. Figure 2

summarizes the general approach we use. We try to provide

DSL tools which allow administrators to designed their own

administration languages in order to capture all the speci-

ficities of their administrated applications. These designed

languages will therefore be involved in some projection (or

model transformation) process by the AAS at the bottom

level to perform the autonomic administration.

In summary, administrators will be distinguished into two

groups: (AdminGroup1) those who design DSL (step 1)

and implement the projection to the AAS (step 2); and

(AdminGroup2) those who use DSL (step 3) to describe the

environment (software and hardware) to be administrated

by the AAS (step 4). The first part of this approach (proof

of concept) has been presented in previous works [18][15].

It concerns the implementation of the MDE tools level. The

projection of DSLs requires that the AAS be as more flexible

and adaptable as possible. The purpose of this paper is the

design and the implementation of such an AAS.

Figure 2. The general approach to implement a flexible and generic AAS

III. DESIGN PRINCIPLES

Our experiments in the implementation of AASs allow us

to identify a set of design principles (guidelines) that the

development of a higher flexible AAS should respect:

• Uniformity: We define a uniform AAS as a system

in which differences in role between administered ele-

ments are not hard coded in the AAS. In other words, it

is an AAS which uses the same internal representation

for any administered element regardless of its nature

(hardware or software).

• Adaptability: An adaptable AAS can evolves accord-

ing to the needs of administrators. We identify two

aspects of adaptability. (1) Adaptation of the AAS’s

implementation: the capability to modify, replace or

add new services without full knowledge of the AAS’s

implementation. (2) The AAS’s ability to adapt itself

when administrated elements change. Hence, the AAS

will be able to administrate a set of static or evolving

elements (by adding software, machines or reconfigu-

ration programs).

• Interoperability and Collaboration: The administra-

tion of an environment can require the assistance of

others AASs or systems. We consider that an AAS

is interoperable/collaborative if it is able to exchange

informations and administration orders with external

systems.

• Service-oriented component based: Any service

(wrapping, deployment, configuration, etc) of the AAS

should be implemented by a well identified component

or set of components.

Although all these design principles are orthogonal, the

adaptability one is central for the flexibility of the AAS.

1) Uniformity: The recommendation that we propose is:

the AAS should not be aware of the role of the elements it

administrates. This recommendation is reflected in the AAS

by using an uniform representation for any administered

element (software, probes, machines, etc). To illustrate the

importance of this recommendation, lets us explain two

examples which show that an administrated element can

play simultaneously several roles. Hence, if the role is hard

coded in the AAS, how will elements with several roles be

managed?

The execution of a software is a relationship between

two entities: the Execution Unit (EU) and Executed Element

(EE). The EU hosts and executes the EE. In an adminis-

tration environment, the hardware always plays the role of

EU. Sometimes, software can also act as EU, it is the case

with virtual machines. Let us consider the virtual machines

example. In one hand, in the relationship [physical machines;

VM] the VM is considered as a software from the point of

view of the physical machine which hosts the VM. In the

other hand, in the relationship [VM; software], the VM acts

as an EU from the point of view of the software hosted

in the VM. In the same vein, we have J2EE application

servers such as JBoss. For the same reasons as the VM,

these servers are software. However, their functionality in a

J2EE application is to host servlets: they are called servlets

containers. They implant all mechanisms for servlets execu-

tion and access. For these reasons, they can be considered

as EU towards servlets.

2) Adaptability: AAS Services Adaptability. Like any

computer program, the development of an AAS includes two

actors: (1) users (who are administrators in our context) and

(2) the AAS’s developers. In most cases, the two actors are

separated and do not have the same skills. The former has

expertise on the application he wants to administrate while

the latter master the development techniques of an AAS.

On this basis, we define the adaptability of the services of

an AAS as its ability to be updated by actors of type (1)

without the intervention of actors of type (2). This will allow

the AAS to be more generic and flexible. It is one solution

among several. let us explain why we use this as a response

to implement a generic and flexible AAS.

A generic solution is to provide low-level API to admin-

istrators to implement new requirements. This solution is

provided by the Jade system [10] with the Fractal API. This

solution is intended for warned administrators, what limits

its wider usage.

The answer to the limits of the above solution is the provi-

sion of higher level tools close to the administrators domain

of application. It reduces the AAS’s level of genericity by

restricting it to a specific application domain. This is the

case in the TUNe system which is limited to cluster-type

master-slave applications.

The latest solution combines the provision of a high level

of abstraction to the genericity of the AAS. It is partially

based on the adaptability of the AAS and the providing of

higher level tools for expressing administration needs.

Extensibility Since the AAS is not able to predict all

achievable administration operations for any type of appli-

cation, its adaptability should predispose it to integrate new

modules for example to take into account new functions or

new needs such as the expansion of the environment. For

example, allowing migration in virtualized environments in

TUNe results in the integration of a new function migrate.

In summary, we identify three types of extensions that the

adaptable AAS should provide:

• The extension of the physical environment: dynamic

addition/removal of execution unit (e.g. machines).

• The extension of the software environment: dynamic

addition/removal of software. This includes both soft-

ware which were known in advance by the AAS, and

those which description will be integrate in the AAS

during its execution. TUNe only provides the former

extension capability.

• The extension of reconfiguration policies: it is the

ability of the AAS to integrate new administration

policies during its execution.

3) Interoperability and Collaboration: The interoperabil-

ity of a computer system is its ability to interact with others.

Under certain conditions, we use the term ”collaboration”

to refer to interoperability. Indeed, we define collaboration

as the connection of several AAS of the same type, while

interoperability (more general) brings together several AAS

with different types and different designs.

Collaboration in TUNe, as proposed in [19] for adminis-

tering large-scale applications address a particular problem:

scaling of TUNe. It would not apply to the cloud. Indeed,

[19] proposes a collaboration between multiple instances of

TUNe sharing the administration of large scale application

and described by a single administrator. Then all TUNe

instances work together to accomplish the administration

of the application (which is very large here, thousands

of items). Moreover, the communication mechanism be-

tween instances are hard coded. However, this solution [19]

presents a preliminary step of the collaboration of a AAS.

In the case of cloud environment for example, its usage is

effective only through collaboration between AAS at the

infrastructure level and those at the hosted application level.

These AAS have completely different natures. So, they have

to be design with interoperability features.
4) Service-oriented component based: contrarily to the

TUNe system which uses components only to encapsulate

the administrated elements, we propose to apply this ap-

proach to the development of the AAS itself. Any ser-

vice (wrapping, deployment, configuration, etc) of the AAS

should be implemented by a well identified component or set

of components. This recommendation led us to the service-

oriented component architecture shown in Figure 3. Broadly,

this architecture is organized around a data structure (called

here RS, for Representation System) which contains both

the administered elements (software and hardware) and the

administration policies. The AAS receives administration

requests/orders from external system/human via its compo-

nent External Communicator. Then, the AAS constructs

an internal representation (wrapping) of the administrated

environment. This task is done by the RS Manager. After

this phase, the AAS is able to carry out others administration

tasks which are: the deployment, realized by the Deployment

Manager; reconfiguration notifications (from the adminis-

trated environment) handling, realized by the Event Receiver

and Event Manager; and performing administration poli-

cies (e.g. (re)configuration actions), realized by the Policies

Manager. Next sections present in details an implementation

of this architecture called TUNeEngine.

IV. TUNEENGINE PROTOTYPE: A HIGHER FLEXIBLE

AND ADAPTABLE AAS

This section presents the implementation of each compo-

nent of the architecture shown in Figure 3, and how they

interact to perform the AAS. This implementation is based

on the Fractal [16] component model, which was improved

in the TUNe system.

A. External Communication

The first step when using an AAS for administering an

application is the submission of the administrated envi-

ronment by an administrator (human) or an external sys-

tem. This environment includes both the description of the

administrated element (hardware and software) and also

administration/reconfiguration policies. In the reverse direc-

tion, the AAS can initiate communication with an external

environment. This is the case for instance when it requests

(by collaboration) the services of an external system (e.g.

another AAS) to accomplish or complete an administration

task. The ExternalCommunicator component in the archi-

tecture implements this service, which represents a dialogue

between an external actor (human or computer system)

and the AAS. According to the type of the player, the

ExternalCommunicator uses two internal components: the

Command Line Interface (CLI) and the Collaborator. The

former deals with human actors, while the latter deals with

others systems.

The ExternalCommunicator is able to handle several

types of administration orders. Each of them queries a

particular component of the AAS. For example the de-

ployment order will be treated by the DeploymentManager

component. In order to identify the target corresponding

component, the ExternalCommunicator is equipped with

an interpreter: CmdInterpreter. As common interpreter, the

latter verifies the syntactic and semantic compliance of

supplied orders. It then invokes the AAS component which

is capable of performing the administration order.

B. Wrapping

Once the administrated environment is transmitted to the

AAS, it builds an internal representation of this environment:

called the Representation System (RS). The latter represents

the knowledge base of the AAS. The RSManager compo-

nent provides this service. It lies on two components: the

Parser and the Wrapper.

The Parser identifies in the submitted environment, the

list of elements to be administrated by the AAS, their

properties, and the relations between them. It can be orga-

nized into several Parsers in order to also take into account

elements such as administration policies (or programs). For

each identified element, the Parser asks the Wrapper to build

its internal representation.

Building the representation of an element in the AAS

means encapsulate its behaviour in a data structure that will

facilitate its administration. This operation is also named

wrapping. Wrapping elements can be software, machines,

links, or elements/actions forming an administration pro-

gram. Regarding the uniformity criteria we have presented

in Section III-1, the Wrapper is in charge of it. Hence, the

implementation of TUNeEngine uses (as we have recom-

mended) the same data structure for encapsulating any type

of elements. Finally, the encapsulated elements are kept in

the RS component.

The RS component plays two roles. Firstly, it represents

the data structure which contains the encapsulated elements.

Secondly, it provides introspection features to parse its

content. It is called upon by other AAS’s components to get

particular informations on an administrated element (proper-

ties, reconfiguration actions, etc). For example, the Wrapper

can request references of two elements when building a

binding between them.

C. Deployment

After the wrapping, the deployment phase effectively

begins the administration process. It is provided by the De-

ploymentManager component, which process is described

as follows:

• The choice of the execution support (ES). It is per-

formed by the NodeAllocator component. It determines

the appropriate location for the deployed element. It

lays on the RS to have informations about available ES

and then returns one or many ES as needed.

• ES initialization: performed by the Deployer. It ini-

tializes the communication between the AAS and the

ES: the communication protocol (ssh, rsh, etc) and

the authentication informations. These informations are

provided by introspecting the ES. The initialization

allows the AAS to remotely access the ES.

• Getting and installing binaries of the deployed element.

It is provided by the BinaryManager. Firstly, it makes

available binary files needed to run the administrated

element on the remote ES (e.g. installing packages in

Linux). Then, it organizes the files according to the

installation tree required by the administrated element.

Figure 3. Architecture of TUNeEngine

Conversely, note that the components presented above also

perform the undeployment operation. In this case, the

NodeAllocator releases the ES after it has been cleaned by

the BinaryManager.

D. Configuration and Startup

The configuration and the startup phases come after the

deployment. Because they are similar in nature (execution

of the startup/configuration programs), the AAS uses the

same component (PoliciesManager) to achieve them. These

phases start when the AAS receives an administration order

from the ExternalCommunicator. The execution of an ad-

ministration policy (which is a program, a set of actions) is

performed into two steps:

• interpretation of the configuration/startup program: con-

ducted by the ProgramInterpreter. Remember that

programs (as well as administrated elements) reside in

the RS. The ProgramInterpreter parses the program in

order to identifies the list of actions to perform.

• execution of actions identified in the previous step:

realized by the Executor. For each action, the Executor

introspects the RS in order to identify elements refer-

enced in the action. It then lays on the RemoteCon-

nector component to remotely execute the action on

the runtime element (software or hardware).

E. Reconfiguration

After the administrated elements has been started, then

comes their administration which consists in monitoring

them in order to inform the AAS in case of particular

changes. The realization of this task does not belong to

the AAS. It is the responsibility of the administrator to

define among its administrated elements, some particular

ones which play the role of probe. Indeed, in order to provide

a generic AAS, we make no difference between probes

and other administrated elements (all are seen as a black

box). However, the AAS provides the mechanism to realize

communication between administrated elements and itself

(through out notifications).

For reconfigurations, the communication is initiated by the

administered element, from its ES to the machine which runs

the AAS (the administration machine). The EventDriver

component of the AAS is used by the administrated element

to emit notifications (also called events) from the ES to the

administration machine. Events are received to the admin-

istration machine by the EventReceiver which forwards it

to the EventManager. The latter decides if the treatment

of the event is necessary. This decision depends on the

state of elements in the RS. If the treatment is considered,

it chooses the appropriate reconfiguration program which

execution will resolve the reported problem. Finally the

PoliciesManager performs the execution of the program, as

we have described in the previous section.

V. USE CASE: AUTONOMIC MANAGEMENT OF CLOUD

PLATFORMS

To illustrate the adaptability of our prototype

TUNeEngine, we use it to administrate a cloud

computing [20] platforms as well as the hosted applications.

A. Evaluation Context

A cloud computing platform is a hosting center which

objective is to share the same infrastructure to several

applications belonging to distinct users, who are billed in

a pay-as-you go model. It is generally based on the virtu-

alization [12] technology (capability to run simultaneously

several OS, called virtual machines, on the same machine)

which facilitates and improves the cloud provider benefits

(by increasing the hosting capacity). We choose this use case

because it brings variable administration needs we can meet

in several types of applications. This section presents them

and how the TUNeEngine prototype is adapted to address

them.

Figure 4 presents a simplify architecture of a cloud

computing infrastructure where AASs are needed. It can be

interpreted as follow:

• At the infrastructure level: we have one or several

AASs instances which manage VMs runtime, VM file

systems, VM network, resource allocation to VM and

monitoring.

• At the application level: we have one AAS instance

per application. They are able to interact with the

infrastructure’s AAS instances in order to start or stop

VMs. For this evaluation, we suppose that applications

which are hosted in the cloud are multi-tier type such

as JEE.

B. Administration needs and Adaptation in TUNeEngine

Administration Need 0:

Any component of the Cloud architecture should be consid-

ered, either as an administrated element (e.g. VM and VM

file systems) or as a reconfiguration program (components

which manage VM file system storage, network initializa-

tion, and VM life cycle). This need is taken into account in

the AAS by the RS component.

Administration Need 1:

The communication between the cloud and its clients should

be done in a comprehensive way. A widely used API to

achieve this is the REST protocol (e.g euca2ools [21]). This

is implemented in the AAS by adapting the Collaboration

component.

Administration Need 2:

The administration of the cloud infrastructure can require

several instances of AAScloud when the infrastructure is

very large (thousands of machines). Indeed, a single instance

can leads to a bottleneck. Therefore, the instances should

be able to collaborate with each other in order to achieve

the administration of the overall infrastructure. This requires

some adaptations of the AAS: sharing the RS data structure

between all AAScloud; adapting the Collaboration compo-

nent for collaboration, and adapt the Event Driver to identify

the appropriate AAScloud instance when an event is emitted

from the runtime.

Administration Need 3:

By definition, the cloud should be able to start new VMs

when an application requests for new resources. Since the

AAScloud keeps a representation of each element it man-

ages, archiving the addition/removal of new virtual machines

implies that the AAScloud should be able to dynamically

integrate/remove elements to its RS component. This is not

the case when administering static environments. This need

is also presented at the AASapp. Indeed, exploiting the cloud

advantages such as the facility to allocate or free resources

in terms of minutes (instead of days in an IT company), the

cloud customers generally implements their application with

elastic behaviour. In order word, they start their application

with minimal resources and adapt them (by adding/removing

resources) according to the workload. For example, in a

JEE e-commerce application, the number of data base server

increases/decreases according to the workload of the number

of Internet traffics on the application.

Administration Need 4:

Traditionally, applications run on physical machines. In a

virtualized cloud, they run on VMs. However, VMs are

also applications since they run on physical machines. In

summary, we have a stack of runtime environments: cloud

customers applications on VMs, and VMs on physical

machines. This reflects in the AAScloud by its ability to

consider a VM both as a software element and as an

execution support. This requires the adaptation of both the

Wrapper (for the encapsulation of VMs) and the Deployer

(for the deployment of VMs) components.

Administration Need 5:

Finally, the administration of the cloud environment requires

the integration of several reconfiguration policies. These are

defined as programs and integrated in the RS component.

Here is a non exhaustive list of them:

• Elasticity: the addition/removal of components both on

AAScloud and AASapp instances.

• Machines allocation: what is the best machine to host

VMs while minimizing the total number of machines

used in the cloud. This is often called VM placement.

• VMs migration: increase the hosting capacity of the

cloud is one of the most import objective of the cloud

provider. This is generally improved using live VM

migration [12] to group applications on a minimum

number of machines.

VI. RELATED WORKS

Among existing AAS, few has the vocation to adminis-

trate several type of applications. Rainbow [8] is one of the

first AAS in this category. Its architecture is organized into

two parts: the first part implements the basic functionality

of self-administration while the second part implements the

services which is adaptable. Except for the lack of the

deployment and the collaboration services, the architecture

of Rainbow is close to the architecture we present in this

paper. Rainbow provides two languages which are hard

coded and not adaptable. It organizes the RS into two

categories: one for software and the other for machines

elements. Moreover , it hard codes the difference between

machines, software and probes elements. The latter are not

considered as manageable element. There is no uniformity

in Rainbow.

Accord [14] is a generic AAS in the same vein as

TUNe. It considers administrated elements as black boxes.

However, it does not take into account the administration

of machines element. Similarly to Rainbow, it makes a

difference between software that perform business functions

and probes acting as monitor. The development of Accord

does not follow a component-based approach. There is no

way to change/replace/add new features by an administrator.

Unity [13] is the first AAS developed after the intro-

duction of the autonomic administration principles in 2003.

Similarly to what we proposed in this paper, Unity uses

Figure 4. The evaluation use case: a simplify organization of a cloud platform

a component model for both its implementation and the

encapsulation of administered element. It defines a particular

data structure, which is hard coded, for each type of element

it administrates. A well known behaviour is associated to

each of them. Although Unity allows dynamic integration

of new elements at runtime (reconfiguration programs, ma-

chines, or software), it does not provide any way to adapt

its components.

These last years have seen some research work on the

implementation of adaptable AASs. As we propose in this

paper, most of them are based on component model and

Model Driven Engineering. [22] describes a general ap-

proach to generate specific AASs from DSL which describes

an application domain. It only focuses on the description of

the model-driven part while we address in this paper the

implementation of the adaptable AAS. Ceylon project [23]

attempts to build a generic and flexible AAS. It proposes a

service-oriented component approach to do that. It focuses

on the communication workflow in the AAS. No architecture

of the Ceylon system is provided. [24] completes the work

proposed by Ceylon. It defines some design patterns for

the implementation of a generic AAS. Most of them are

presented in our work (e.g. AAS extensibility). [25] proposes

a framework which is similar to Ceylon.

VII. CONCLUSION AND PERSPECTIVES

This work is part of the general approach we adopted

in [18] for the construction of a generic and useful AAS.

This approach includes two stages: (1) use of the model-

driven technology (through DSLs) to raise the AAS’s level

of abstraction and (2) lay on a high flexible and adaptable

AAS to support any administration needs. After the pre-

sentation of the first stage in a previous work [15], this

paper has focused on the second stage. We proposed some

design principles that the development of such AASs should

follow. These are uniformity (the behaviour of a type of

administrated elements should not be hard-coded in the

AAS), adaptability (any service of the AAS is adaptable

without knowledge on the entire implementation of the

AAS), and collaboration/interoperability (the AAS is able

to communicate with external systems). We described the

implementation of a prototype, TUNeEngine, based on a

service-oriented component approach. This prototype has

been evaluated through the administration of a virtualized

cloud computing platform, including the applications it

hosts. As future work, we plan to combine the two stages of

the approach in order to provide the full generic and useful

AAS we claim for.

ACKNOWLEDGMENT

The work reported in this paper benefited from the support

of the French National Research Agency through project

SelfXL (ANR-08-SEGI-017-04).

REFERENCES

[1] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. In IEEE Computer Magazine, 36(1), 2003.

[2] Paul Horn. Autonomic computing: IBM’s Perspective on
the State of Information Technology. posted at 2007-07-30
09:52:32 by IBM.

[3] Richard Murch. Autonomic Computing. published by IBM
press, 2004.

[4] Mohammed Toure, Girma Berhe, Patricia Stolf, Laurent Broto,
Noel Depalma, and Daniel Hagimont. Autonomic Management
for Grid Applications. Proceedings of the 16th Euromicro
Conference on Parallel, Distributed and Network-Based, pp.
79-86, 2008.

[5] Julie A. McCann, Gawesh Jawaheer, and Linxue Sun. Patia:
Adaptive Distributed Webserver (A Position Paper). Proceed-
ings of the The Sixth International Symposium on Autonomous
Decentralized Systems, 2003.

[6] Julie A. McCann, Gawesh Jawaheer, and Linxue Sun. Patia:
Adaptive Distributed Webserver (A Position Paper). Proceed-
ings of the The Sixth International Symposium on Autonomous
Decentralized Systems, 2003.

[7] Benoit Claudel, Guillaume Huard, and Olivier Richard, Taktuk,
adaptive deployment of remote executions, in the Proceedings
of the ACM international symposium on High performance
distributed computing, pp. 91-100, New York, NY, USA, 2009.

[8] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley
R. Schmerl, and Peter Steenkiste, Rainbow: Architecture-Based
Self-Adaptation with Reusable Infrastructure, in the IEEE
Computer, Vol. 37, Issue 10, pp. 46-54, 2004.

[9] Laurent Broto, Daniel Hagimont, Patricia Stolf, Noel Depalma,
and Suzy Temate, Autonomic management policy specification
in Tune, in Proceedings of the ACM symposium on Applied
computing, pp. 1658-1663, Fortaleza, Ceara, Brazil, 2008.

[10] Sara Bouchenak, Fabienne Boyer, Sacha Krakowiak, Daniel
Hagimont, Adrian Mos, Stefani Jean-Bernard, Noel de Palma,
and Vivien Quema, Architecture-Based Autonomous Repair
Management: An Application to J2EE Clusters, in Proceedings
of the Symposium on Reliable Distributed Systems, pp. 13-24,
Orlando, FL, USA, 2005.

[11] Alain Tchana, Suzy Temate, Laurent Broto, Daniel Hagimont,
Autonomic resource allocation in a J2EE cluster, in EEE Inter-
national Conference. Utility and Cloud Computing, Chennai,
Inde, 2010.

[12] Paul Braham, Boris Dragovic, Keir Fraser, Steven Hand,
Tim Haris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew
Warfield, Xen and the art of virtualization, in Proceedings of
the ACM symposium on Operating systems principles, pp. 164-
177, New York, USA, 2003.

[13] David M. Chess, Alla Segal, Ian Whalley, and Steve R. White,
Unity: Experiences with a Prototype Autonomic Computing
System, in Proceedings of the International Conference on
Autonomic Computing, pp. 140-147, New York, USA, 2004.

[14] Hua Liu, Manish Parashar, Accord: A Programming Frame-
work for Autonomic Applications, in IEEE Transactions on
Systems, Man and Cybernetics, Part C: Applications and
Reviews, Vol. 36, Issue 3, pp. 341-352, 2006.

[15] Suzy Temate, Laurent Broto, Alain Tchana, and Daniel Hagi-
mont, A High Level Approach for Generating Model’s Graphi-
cal Editors, in Proceedings of the International Conference on
Information Technology: New Generations, pp. 743-749, Las
Vegas, Nevada, USA, 2011.

[16] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien
Quéma, and Jean-Bernard Stefani, The FRACTAL component
model and its support in Java: Experiences with Auto-adaptive
and Reconfigurable Systems, in Softw. Pract. Exper., vol. 36,
ISSN: 0038-0644, pp. 1257-1284, 2006.

[17] Object Management Group, Inc., Unified Modeling Language
(UML) 2.1.2 Superstructure, in the Final Adopted Specifica-
tion, 2007.

[18] Benoı̂t Combemale, Laurent Broto, Xavier Crégut, Michel J.
Daydé, and Daniel Hagimont, Autonomic Management Policy
Specification: From UML to DSML, in Proceedings of the
Model Driven Engineering Languages and Systems, pp. 584-
599, Toulouse, France, 2008.

[19] Mahamadou Toure, Patricia Stolf, Daniel Hagimont, Laurent
Broto, Large Scale Deployment, in Proceedings of the Inter-
national Conference on Autonomic and Autonomous Systems,
pp. 78-83, Cancun, Mexico, 2010.

[20] Rajkumar Buyya, Chee Shin Yeo, and Srikumar Venugopal,
Market-Oriented Cloud Computing: Vision, Hype, and Reality
for Delivering IT Services as Computing Utilities, in Proceed-
ings of the International Conference on High Performance
Computing and Communications, pp. 5-13, DaLian, China,
2008.

[21] Euca2ools User Guide, in
http://open.eucalyptus.com/wiki/Euca2oolsGuide, visited
April 2012.

[22] Holger Kasinger and Bernhard Bauer, Towards a model-
driven software engineering methodology for organic comput-
ing systems, in Proceedings of the 4th IASTED International
Conference on Computational Intelligence, IASTED/ACTA
Press, pp. 141-146, Calgary, Alberta, Canada, July 2005.

[23] Yoann Maurel, Ada Diaconescu, and Philippe Lalanda, CEY-
LON : A service-oriented framework for building autonomic
managers, in Proceedings of IEEE Conference and Workshops
on Engineering of Autonomic and Autonomous Systems, Uni-
versity of Oxford, England, March 2010.

[24] Sylvain Frey, Ada Diaconescu, and Isabelle Demeure, Ar-
chitectural Integration Patterns for Autonomic Management
Systems, in Proceedings of IEEE International Conference and
Workshops on the Engineering of Autonomic and Autonomous
Systems, Novi Sad, Serbia, April 2012.

[25] Radu Calinescu, Implementation of a Generic Autonomic
Framework, in Proceedings of the International Conference
on Autonomic and Autonomous Systems, Gosier, Guadeloupe,
March 2008.

