
HAL Id: hal-01264525
https://hal.science/hal-01264525

Submitted on 29 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Abstraction and Verification of Properties of a
Real-Time Java

Nadezhda Baklanova, Martin Strecker

To cite this version:
Nadezhda Baklanova, Martin Strecker. Abstraction and Verification of Properties of a Real-Time
Java. 8th International Conference on Information in Education, Research, and Industrial Applications
(ICTERI 2012), Jun 2012, Kherson, Ukraine. pp.1-18. �hal-01264525�

https://hal.science/hal-01264525
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12408

The contribution was presented at ICTERI 2012 :
http://www.icteri.org/page/icteri-2012

Official URL: http://dx.doi.org/10.1007/978-3-642-35737-4_1

To cite this version : Baklanova, Nadezhda and Strecker, Martin Abstraction and
Verification of Properties of a Real-Time Java. (2013) In: 8th International
Conference on Information in Education, Research, and Industrial Applications
(ICTERI 2012), 6 June 2012 - 10 June 2012 (Kherson, Ukraine).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Abstraction and Verification of Properties of a

Real-Time Java

Nadezhda Baklanova and Martin Strecker

IRIT (Institut de Recherche en Informatique de Toulouse)
Université de Toulouse⋆

118 route de Narbonne, F-31062 Toulouse CEDEX 9, France
nadezhda.baklanova@irit.fr, martin.strecker@irit.fr

Abstract. We present a tool for analysing resource sharing conflicts in
multithreaded Java programs. Java programs are translated to timed au-
tomata models verified afterwards by the Uppaal model checker. Anal-
ysed programs are annotated with timing information indicating the ex-
ecution duration of a particular statement. Based on the timing informa-
tion, the analysis of execution paths is performed, which gives an answer
whether resource sharing conflicts are possible in a multithreaded Java
program. If the analysis succeeds, resource locks may be eliminated from
the Java program.

Keywords: timed automaton, Java, multithreading, deadlock, resource
sharing conflict, Uppaal.

1 Introduction

Parallel computations quickly develop nowadays, and the problem of effective de-
bugging multithreaded programs arises. It is known to be a very difficult problem
for a software developer, and thorough testing cannot discover all the fatal errors
in a program due to unpredictability of execution. One type of errors are resource
sharing conflicts. In order to avoid them, one may want to guarantee that the
same resource is not accessed by different threads at the same moment of time.
If one concentrates on this aspect, the behavior of a program may be naturally
modelled by timed automata, and then one may find error-prone places in the
program using a timed automata model checker.

In order to achieve this goal, we need to enrich the Java language with an-
notations indicating time information. The annotations show how much time is
required for executing a statement and, consequently, how much time is required
for a thread to have an exclusive access to a resource. It allows to avoid usage of
synchronized statements in programs after verifying that no resource is used
simultaneously by two or more threads. It improves predictability of execution
and guarantees there will be no delays due to locking conflicts. Based on an an-
notated Java program, a timed automaton is generated taking into account the

⋆ Part of this research has been supported by the project Verisync (ANR-10-BLAN-
0310)

time required for execution of statements. Finally, we check the generated au-
tomaton for possible resource sharing conflicts using the Uppaal model checker
in the generated automaton. The transformation sequence is shown in the dia-
gram 1 below.

.java AST TA Uppaal Deadlocks?

Validator

YACC OCaml OCaml

OCaml Model
checker

Fig. 1. Java program verification process

The overall aim is thus to replace a lock-driven protocol for resource conflict
avoidance by a time-driven approach. If a check on the abstract level of timed
automata indicates no resource access conflict, then also the underlying Java
program can be expected to run without conflicting access to resources. In this
case, locking even becomes superfluous. If, however, the check fails, nothing can
be said about the behaviour of the Java program when executed, just like for an
ill-typed program.

The purpose of the present chapter is to sketch the overall approach and
define the correspondence between Java and timed automata, without giving
a proof of the soundness of the abstraction, which remains for future work. A
preliminary version of this chapter has appeared in [1].

1.1 Related Work

There are several tools for scheduling analysis of real-time tasks. Verification
of scheduling strategies with timed automata is considered in [2]. However, it
operates with a high level notion of abstract tasks and does not look inside the
source code. The authors perform schedulability analysis with the fixed-priority
scheduling strategy by translating a system to be verified to a timed automaton
and verifying it afterwards with the Times tool.

Another approach is used in [3,4]. Here SCJ source code analysis is performed
using timed automata. An automaton is generated from the source code, and
every statement is mapped to a certain part of the automaton. The timing
model is based on WCET computation and predefined periods of tasks. The
translation procedure described in [3] contains an inconsistency between Java
semantics and model semantics of the generated system. Locking mechanism
is implemented in Uppaal model as monitors which are incremented when a
lock is acquired and decreased when a lock is released. However, there are no
checks before acquiring the lock in the model. It makes the situation when two
threads have locked the same resource at the same time possible, but it does not
correspond to the JVM behavior. In order to manage this problem we suggest
to define two semantics of Java execution. One treats locks in Java manner, i.e.

checks the resource monitor before acquiring the lock and does not allow double
locking made by different threads. Another one just stores the number of times
a resource lock has been acquired but does not check whether a resource has
already been locked. These two semantics are equivalent for programs without
resource sharing conflicts therefore the programs verified by our tool are correct
during execution on JVM.

An approach in the opposite direction is described in [5]. The authors gener-
ate RTSJ code from a Uppaal model. Uppaal model of a system is supposed to
be verified, and if the generation procedure is assumed to be correct, the output
is a verified RTSJ program.

A translation from SystemC to Uppaal is presented in [6]. One of the pur-
poses of this work is to give a formal semantics to the (only informally defined)
SystemC language. The differences between SystemC and Java, as far as the
translation to Uppaal is concerned, still has to be explored.

In [7] a schedulability analysis of a set of tasks is performed by exhaustive
search combined with Uppaal for determining when the search is complete.
Again, the internal structure of tasks is not taken into account which makes
impossible to do conclusions about thread interactions. The authors listed the
limitations they had encountered: lack of memory and lack of Uppaal integer
range.

The paper [8] contains schedulability analysis of multithreaded SCJ (Safety
Critical Java) programs and takes resource sharing into account. Resources are
considered to be locked during the whole execution of a task. Analysis is per-
formed by Uppaal modeling taking into account the resource locks. This model
is not fine-grained, and the negative result may not be relevant in cases when
developers try to minimize the length of critical sections.

A tool for automatic verifying the determinism of Java programs is described
in [9]. In particular, parallel Java programs are checked for absence of race condi-
tions. It allows not to use Java synchronized statements. The tool does not use
any external checkers, the verification uses the internal abstract representation
of a Java program.

A theoretical approach to managing resources in parallel programs is sug-
gested in [10]. It is based on an enhanced version of rely-guarantee reasoning
and allows to verify memory safety and of parallel programs.

2 Preliminaries

2.1 Real-Time Java

Specification of the Real-Time profile for Java was developed in the first half of
the 2000s and aimed at making work with Java threads predictable and suitable
for real-time applications. The specification addressed defining an explicit sched-
uler and scheduling strategies, advanced memory management and raw memory
access, resource locking taking thread priorities into account, refined notion of
time, several additions for threads, asynchronous event handling etc. [11]. The

real-time specification introduced thread priorities, thread deadlines and explicit
notion of scheduler which did not exist in usual Java.

In the middle of the 2000s the work on the specification of Safety-Critical Java
was started. The main goal was to allow the SCJ applications to be highly reliable
[12]. The SCJ specification defines more strictly the subset of possible programs
and pays a lot of attention to the VM performance requirements [13]. Until now,
there is no reference implementation of SCJ machine, however, there are projects
such as the Open SCJ project 1 aiming at an open-source implementation of SCJ
virtual machine.

2.2 Uppaal

Uppaal is a tool for modeling timed automata and verifying their properties.
A timed automaton [14] is a Büchi automaton enhanced with clocks. States
and edges may have Boolean constraints on clocks called invariants and guards
respectively; edges may also have abstract “actions”. There are two kinds of
possible transitions: delay transition and action transition. During a delay tran-
sition an automaton stays in the same state, and time advances. During an action
transition an automaton takes an edge and changes the state; some clocks may
be reset to 0. A timed automaton is allowed to stay in a certain state as long as
its invariant is true, and an automaton may take a particular edge, if its guard
is true in the current moment of time.

In Uppaal “actions” are concrete arithmetic actions with variables or arrays
whose values are preserved between TA states. Variables and array elements may
also be used in edge constraints.

Properties to be verified in Uppaal are to be expressed in a subset of TCTL
logic allowing a single path quantifier directly followed by a U operator [15].

3 Sample Usage

3.1 Input Program

Before describing our approach more in detail, we illustrate it here with a small
example. The outermost class containing the main method is called Threads.
Two threads t1, t2 are declared in the main method. Run1 and Run2 are nested
classes inside the Threads class implementing the Runnable interface.

Threads ts;

Run1 r1;

Run2 r2;

Thread t1,t2;

ts=new Threads ();

r1=ts.new Run1 ();

r2=ts.new Run2 ();

ts.res=new Res ();

1 http://www.ovmj.net/oscj/

t1=new Thread(r1,"t1");

t2=new Thread(r2,"t2");

Methods called on the thread start are the following:

private class Run1 implements Runnable{

public void run (){

int value ,i;

//@ 1 @//

i=0;

while(i<10){

synchronized(res){

//@ 2 @//

value=Calendar.getInstance ().get(Calendar.MILLISECOND);

//@ 5 @//

res.set(value);

}

try{

Thread.sleep (10);

}

catch(InterruptedException e){

System.out.println(e.getMessage ());

}

//@ 2 @//

i++;

}

}

}

private class Run2 implements Runnable{

public void run (){

int value ,i;

//@ 1 @//

i=0;

try{

Thread.sleep (9);

}

catch(InterruptedException e){

System.out.println(e.getMessage ());

}

while(i<10){

synchronized(res){

//@ 4 @//

value=res.get();

}

try{

Thread.sleep (8);

}

catch(InterruptedException e){

System.out.println(e.getMessage ());

}

//@ 2 @//

i++;

}

}

}

Here res is a resource declared in the main class. Calls of the res.get() and
res.set() methods are “actions” using the locked resources which are preceded
by timing annotations showing the amount of time the “action” requires. During
the translation they are considered to be abstract statements inside the locked
region taking n time units for execution.

Both threads do some “actions” requiring an exlusive lock with the resource
and then sleep for some time. The synchronized statements are a potential
source of resource sharing conflict if both threads wake up simultaneously. One
can see the resource access conflict in the execution timeline 2 showing times
when the threads demand an exclusive lock for the resource.

0 1 8 10 14 21 24 28

Fig. 2. Execution timeline. t1 is dark gray, t2 is gray. Conflict between 24 and
28 is shown in light gray.

res has type Res which is a simple class allowing to read and write to one
field.

class Res{

private int i;

public void set(int j){

i=j;

}

public int get (){

return i;

}

}

3.2 Generated System

On the basis of the annotated program, our framework generates the following
model which is passed to the model checker Uppaal for verification.

The generated timed automata are shown in Figure 3.

annotated0 annotated1

cGlobal<=
curTime[0]+
execTime[0]

annotated2

annotated5

annotated6

cGlobal<=
curTime[0]+
execTime[0]

annotated7
annotated8

annotated9

cGlobal<=curTime[0]+
execTime[0]

annotated10

sync4

syncend4

sleep11

sleep12

cGlobal<=
curTime[0]+
execTime[0]

sleep13

annotated14

annotated15

cGlobal<=curTime[0]+
execTime[0]

annotated16

while3endloop3

START
run[0]

execTime[0]=1,
run[0]=false,
runScheduler=true,
resetRunFlags(0)

cGlobal>=curTime[0]+
execTime[0]&&run[0]
curTime[0]+=execTime[0],
execTime[0]=0,
run[0]=false,
runScheduler=true,
resetRunFlags(0)

run[0]
execTime[0]=2,
run[0]=false,
runScheduler=true,
resetRunFlags(0)

cGlobal>=curTime[0]+
execTime[0]&&run[0]
curTime[0]+=execTime[0],
execTime[0]=0,
run[0]=false,
runScheduler=true,
resetRunFlags(0)

run[0]
execTime[0]=5,
run[0]=false,
runScheduler=true,
resetRunFlags(0)

cGlobal>=curTime[0]+
execTime[0]&&run[0]
curTime[0]+=execTime[0],
execTime[0]=0,
run[0]=false,
runScheduler=true,
resetRunFlags(0)

run[0]
resetRunFlags(0)

run[0]
Threads_monitor[0]++,
run[0]=false,
runScheduler=true,
resetRunFlags(0)

run[0]

Threads_monitor[0]--,
run[0]=false,
runScheduler=true,
resetRunFlags(0)

run[0]
execTime[0]=10,
run[0]=false,
runScheduler=true,
resetRunFlags(0)

cGlobal>=
curTime[0]+
execTime[0]&&
run[0]

curTime[0]+=execTime[0],
execTime[0]=0,
resetRunFlags(0)

run[0]
resetRunFlags(0)

run[0]
execTime[0]=2,
run[0]=false,
runScheduler=true,
resetRunFlags(0)

cGlobal>=curTime[0]+
execTime[0]&&run[0]

curTime[0]+=execTime[0],
execTime[0]=0,
run[0]=false,
runScheduler=true,
resetRunFlags(0)

run[0]
resetRunFlags(0)

run[0]
run[0]=false,
runScheduler=true,
resetRunFlags(0)run[0]

resetRunFlags(0)

run[0]
run[0]=false,
runScheduler=true,
resetRunFlags(0)

run[0]
resetRunFlags(0)

run[0]
resetRunFlags(0)

annotated0 annotated1

cGlobal<=
curTime[1]+
execTime[1]

annotated2

sleep3sleep4

cGlobal<=curTime[1]+
execTime[1]

sleep5

annotated8

annotated9
cGlobal<=curTime[1]+
execTime[1]

annotated10

sync7

syncend7

sleep11

sleep12

cGlobal<=
curTime[1]+
execTime[1]

sleep13annotated14

annotated15

cGlobal<=
curTime[1]+
execTime[1]

annotated16

while6

endloop6

START
run[1]

execTime[1]=1,
run[1]=false,
runScheduler=true,
resetRunFlags(1)

cGlobal>=curTime[1]+
execTime[1]&&run[1]
curTime[1]+=execTime[1],
execTime[1]=0,
run[1]=false,
runScheduler=true,
resetRunFlags(1)

run[1]
execTime[1]=9,
run[1]=false,
runScheduler=true,
resetRunFlags(1)

cGlobal>=curTime[1]+
execTime[1]&&run[1]
curTime[1]+=execTime[1],
execTime[1]=0,
resetRunFlags(1)

run[1]
execTime[1]=4,
run[1]=false,
runScheduler=true,
resetRunFlags(1)

cGlobal>=curTime[1]+
execTime[1]&&run[1]
curTime[1]+=execTime[1],
execTime[1]=0,
run[1]=false,
runScheduler=true,
resetRunFlags(1)

run[1]
Threads_monitor[0]++,
run[1]=false,
runScheduler=true,
resetRunFlags(1)

run[1]

Threads_monitor[0]--,
run[1]=false,
runScheduler=true,
resetRunFlags(1)

run[1]
execTime[1]=8,
run[1]=false,
runScheduler=true,
resetRunFlags(1)

cGlobal>=curTime[1]+
execTime[1]&&run[1]

curTime[1]+=execTime[1],
execTime[1]=0,
resetRunFlags(1)

run[1]
resetRunFlags(1)

run[1]
execTime[1]=2,
run[1]=false,
runScheduler=true,
resetRunFlags(1)

cGlobal>=curTime[1]+
execTime[1]&&run[1]

curTime[1]+=execTime[1],
execTime[1]=0,
run[1]=false,
runScheduler=true,
resetRunFlags(1)

run[1]
resetRunFlags(1)

run[1]
run[1]=false,
runScheduler=true,
resetRunFlags(1)run[1]

resetRunFlags(1)

run[1]
run[1]=false,
runScheduler=true,
resetRunFlags(1)

run[1]
resetRunFlags(1)

run[1]
resetRunFlags(1)

run[1]
resetRunFlags(1)

Fig. 3. Generated automata for threads t1 and t2.

The generated checking function is

int check_Threads(int m[1]){

return forall(i: int [0 ,0]) m[i]<=1;

}

The generated formula for model checking is

A[]check Threads(Threads monitor).

When performing verification withUppaal, this formula is evaluated to false,
and the generated trace for counterexample stops in states aut Run1 t1.annotated9
and aut Run2 t2.annotated8 during the second loop iteration at the time mo-
ment 24.

4 Translation from Java to Abstract Syntax Tree

4.1 Source Language

Considering the idea of “extended Java”, a possibility to write annotations for
every Java statement is added to Java syntax. These annotations contain time
required for executing the whole block or statement next of the annotation. The
annotations have syntax of Java comments, therefore, the annotated programs
can be compiled to bytecode by usual Java compilers. We assume that a devel-
oper has information about execution time of particular statements. The time
in the samples is in abstract time units but one can annotate a program with
real values in microseconds based on computer architecture, compiler version,
running software etc. Annotations may either contain an exact execution time
or an interval in which the execution time lies.

Unfortunately, standard Java annotations cannot be added to arbitrary state-
ments. Even the latest extension of Java annotations implemented in JDK 7 [12]
does not allow to annotate executable statements (assignments, loops, conditions
etc.) which are of the most interest for us. For this reason we used self-written
parser of the “extended Java” language. The parser is written with OcamlYACC
and recognizes Java with several restrictions. The parser produces an AST from
Java code as a set of OCaml objects.

Java programs consist of a number of classes containing methods. Classes
may have fields for storing object information. We concentrate on a subset of
Java containing the most important syntax constructions. Target Java programs
may contain the following statements:

type stmt =

Skip

(* empty statement *)

| Expr of expr

(* expression statement *)

| Assign of var * expr

(* assignment statement: a=5+4; *)

| Seq of stmt * stmt

(* seqence of two statements: a=4; b=5; *)

| Cond of expr * stmt * stmt

(* conditional statement: if(a=1) {...} else

{...} *)

| While of expr * stmt

(* loop statement: while(a<5) {...} *)

| Return of expr

(* value return: return a; *)

| AnnotStmt of annot * stmt

(* annotated statement: //@ 4 @// a=3; *)

| SyncStmt of expr * stmt

(* synchronized statement: synchronized(a){...}

*)

This is the representation of Java statements in AST written as OCaml type.
Internally, statements and expressions have the same type, however, there is a
difference on the semantics level. Expressions are supposed not to produce side
effects whereas statements can induce state changes.

Cast operators are not supported for now. Since we perform static anal-
ysis, dynamic features are excluded, namely, arrays or references to this in-
stead of specifying an object name explicitly. try...catch constructions can
be parsed, however, code in the catch block is not translated, i.e. try block1

catch block2 is considered to be equivalent to block1.
The analysed programs must have a proper structure which would guarantee

the correctness of the generated model. In order to make the AST generator sim-
pler, all used packages are supposed to be imported in the header of a program.
Local variables must be declared in the beginning of methods before statements,
and declaration statements cannot be combined with assignments. This assump-
tion helps to avoid problems with scope of the variables declared in the middle
of a method. It is ensured in the parsing step.

We have developed a number of checking functions for testing the program
correspondence to the structure requirements. These functions work after parsing
on the semantics checking step. They return a Boolean value showing whether a
check was successful. The checking functions traverse a method body recursively
performing checks of the interesting cases. Currently, there are the following
checks:

– checkAliases. The objects which can be accessed by different threads should
not have more than one name, i.e. the correct program should not introduce
aliases for them. If there are aliases in a program, there is no easy way of
determining whether two variables point to the same object. This leads to
inability to know which objects are locked at a particular moment of time.

– checkAnnotCoverage. The whole AST except the main method must be
annotated with timing information. Each leaf or one of its parents must have
an annotation in order to avoid undetermined execution duration. Method
calls currently are not translated. However, since method calls are always
leafs in the AST, we can use timing information instead of looking inside the
method structure. The only exception must be a call of the Thread.sleep

method since it takes time for execution but does not load CPU. Currently,
we do not support wait/notify statements.

– checkSyncArgument. Argument of the synchronized statement is assumed
to be an explicit object name, not an expression.

– checkNestedSyncs. Reentrant locks are not allowed, i.e. when the same
thread acquires lock of the same object several times.

– checkAnnotSync. Annotated statements cannot contain synchronized state-
ments since the automata generator treats annotated statements as atomic
entities. If an annotated statement contains synchronized block, and during
runtime there is a conflict between threads for the locked resource, our model
cannot catch this conflict.

– checkMainMethodPosition. Program main method must be in the first class
in order to make the generator simpler.

– checkThreeadConstructors. Threads are supposed to be declared in the
main method which is an entry point of the program and must be declared
in the first class of a program. The main method cannot contain any code
except thread declarations, initializations and calls for starting the threads.
Threads are assumed to be created with the constructor

Thread(Runnable target , String name),

so the name of the object containing the thread logic is explicitly specified.
Runnable object should implement Runnable interface or extend Thread

class and override run method.

The checkAliases function first builds a list initObjects of the objects
which can be accessed by different threads and then searches for assignments
to these objects other than initializations. If an object is assigned a new ...

expression, check for this assignment succeeds; if the expression which is assigned
contains anything else except a constructor call, check for this assignment fails.

let rec checkAliasesInExpr initObjects=function

|Assign(CallObject(o),e)->

if mem o sharedFields then

(match e with

|CallMethod(New c,f,ps)->true

|Null ->true

|_->false)

else true

For the other cases the function looks inside statement bodies. Below there
are semi-formal rules for these cases.

check e1 check e2
check (Seq e1 e2)

check e1 check e2
check (Cond c e1 e2)

check e

check (While c e)

check e

check (Annot a e)
check e

check (Sync obj e)

The rest of checking functions are evident, and we do not show details of
their implementation here.

5 Translation from Abstract Syntax Tree to Timed

Automaton

5.1 Model of Java Program Execution

Multithreaded Java programs have a scheduler which selects a thread to be
executed in the next moment of time. It non-deterministically selects a thread
from those eligible for execution, and it can suddenly stop thread’s execution
and start executing another thread. Usual Java schedulers do not support thread
priorities or task deadlines.

We model a Java scheduler as a separate automaton with three states:

– waitScheduling, where a scheduler waits for some time before starting the
next scheduling cycle,

– updateStatus, where eligibility status of all threads is updated,
– runThread, where the scheduler gives control to any eligible thread.

If no thread can be scheduled, the scheduler returns to waitScheduling and waits
for some time. Then it tries to schedule some thread again. When scheduled, a
thread executes an atomic action and returns control back to the scheduler. The
scheduler returns to the state updateStatus and updates thread eligibility flags.

waitScheduling

updateStatus

runThread

runScheduler

statusUpdated
schedule()

noScheduled
resetStatusUpdated(),
runScheduler=true

runScheduler
resetStatusUpdated()

cGlobal>=execTime[1]+
curTime[1]&&!isUpdated[1]

isEligible[1]=true,
isUpdated[1]=true,
updateAllStatuses()

cGlobal<execTime[1]+
curTime[1]&&!isUpdated[1]

isEligible[1]=false,
isUpdated[1]=true,
updateAllStatuses()

cGlobal>=execTime[0]+
curTime[0]&&!isUpdated[0]

isEligible[0]=true,
isUpdated[0]=true,
updateAllStatuses()

cGlobal<execTime[0]+
curTime[0]&&!isUpdated[0]

isEligible[0]=false,
isUpdated[0]=true,
updateAllStatuses()

Fig. 4. Model of the scheduler for two threads.

Here, execT ime[i] is an array containing the execution time of the next in-
struction for all threads taken from annotation values. cGlobal is a global clock.
runScheduler is a Boolean flag indicating that it is scheduler’s turn to proceed,
statusUpdated shows that statuses of all threads were updated, isScheduled[i] is
an array indicating whether a particular thread is scheduled for execution. run[i]
is a global Boolean array showing that a thread with number i may proceed.

5.2 Semantics of Annotated Statements

Suppose we have an annotated statement

//@ 5 @//

a = b - 4;

which claims that the statement a = b - 4; takes 5 time units for execution.
This time is considered as exact execution time, i.e. the exact amount of time
when the thread executing this statement loads CPU. We consider the time when
an annotation expires as a hard deadline. If a program does misses this deadline,
the situation is critically incorrect, and the program cannot be verified because
of incorrect annotations.

Formally, a small-step semantics of annotated statements may be written as
following:

G ⊢ (e, s)
δ
−→ (e′, s′) t− δ > 0

G ⊢ (Annot t e; s)
δ
−→ (Annot (t− δ) e′, s′)

t > 0

G ⊢ (Annot t (V al v), s)
t
−→ (V al v, s)

Here G is a generated system, and the relation G ⊢ (e, s)
t
−→ (e′, s′) means there

is a possible reduction of an expression e to an expression e′ which takes time t

and changes state from s to s′.
These rules should be read like

– if an expression e in the body of an annotated statement can be reduced to an
expression e′, and the system state is changed from s to s′, and the reduction
takes δ time units, and the deadline specified in the annotated statement is
not missed, then we may reduce the initial annotated statement to the new
one with the new body, e′, being in the state s′, and the new deadline, (t−δ).

– or, if an expression in the body of annotated statement has already been
reduced up to the end, i.e. to a single value V al v, and the deadline specified
in the annotation is not missed, we may reduce the annotated statement to
the value of its body staying in the same state, and this reduction would
take the rest of time specified in the annotation.

We assume that each thread is executed on its own processor i.e. the execu-
tion is purely parallel. Eligible threads do not wait until other threads free the
processor. As soon as a thread becomes eligible for execution it starts executing.

5.3 Automata Generation

The generator translates each thread of a program to a separate automaton. At
the beginning it creates a set of OCaml objects representing a timed automaton,
and after that the timed automaton is printed in the format recognizable by
Uppaal, which performs model checking.

The Ocaml type for an automaton looks like

type ta = Empty

|TA of (node list) * (urgent list) *

(committed list) * (edge list) * start *

final

Here start and final are start and final states of the timed automaton. The
final state is required because a timed automaton is generated recursively, and it
is necessary to determine where the previously generated parts finish, although
there is no such a notion in the definition of timed automata. Committed and
urgent are state characteristics specific for Uppaal, however, they can be mod-
eled by a standard timed automaton, i.e. they do not increase the expressiveness
of the traditional TA model. Final states of the generated timed automata are
always urgent, that means, the automata are not allowed to rest in these states
for any time. One may find definitions related to timed automata in [15].

Since method calls are not translated, only run methods of Runnable objects
are translated to timed automata because they are the only methods which can
contain executable code. Each thread declared and initialized in the mainmethod
is mapped to a separate automaton (template in the Uppaal terminology). The
system has one global clock and a global array of object monitors.

An object monitor is an integer variable which is incremented when this
object is locked and decremented when the lock is released. In Uppaal model
monitors are implemented as an array of integers, each object is encoded as an
array item; consistency of indices is guaranteed by the automata generator.

All statements except Thread.sleep and the annotated ones are assumed
not to take any time for execution; for this reason all the states without timing
information are made urgent in Uppaal model. Time is not allowed to pass when
an automaton is in urgent state.

Statements annotated with timing information are treated as a “black box”
and are supposed contain synchronized blocks. Otherwise, a possible situation
is when a thread tries to access an object field which is locked by another thread.
In this situation JVM keeps the thread waiting until the lock is released, however,
our translation does not notice this delay and produces an incorrect automaton.

The generated system has one global clock, cGlobal and several auxiliary
variables. There are Boolean flags for each automaton, run and runScheduler,
which are set to true if this automaton may advance in the current time mo-
ment. An integer array curTime represents the time when an automaton en-
tered the state corresponding to an annotation statement. Another integer array,
execTime, stores the duration of the currently executed statement. Finally, an
integer array <class name> monitor stores the number of object locks for each
shared object.

Annotations in Java programs contain relative time but timed automata use
global time, therefore we need to keep track of how much time has passed since
a program has been started. The only statements allowing time to increase are
annotated statements and calls of Thread.sleep. Values for execTime are taken
from timing annotations or method argument. Suppose t was the global time
when an automaton entered a state corresponding to an annotated statement.
When it leaves this state, model time and curTime variable are increased by real
execution time, execTime. curTime values may be different in different automata
but the global time is always equal to curTime when its corresponding automaton
is executing.

Basic items for building timed automata are statements: each statement is
translated into a part of timed automaton.

Translation from AST to timed automata skips field and variable declarations
because they do not change the state of a program. At the same time, all the
objects declared in the main program class get a monitor.

Boolean conditions inside while and if statements are not translated. It is
assumed that any of the two possible ways can be taken during runtime.

Skip and Return statements are mapped to an empty automaton because
they do not influence the state of a program.

The rules for mapping other AST statements to the parts of a timed automa-
ton are listed in the table below.

Table 1. Translation rules.

Assign(v,e): add two urgent
states: ASSIGNMENT1 and
ASSIGNMENT2, which are start
and final, and a transition with a guard
and an update between them. The
guard checks run[i], i.e. whether this
automaton is allowed to proceed in the
current moment of time. The update
sets run[i] to false, runScheduler to
true and other run[j 6= i] to false.

FINAL

START

run[i]

run[i]=false,
runScheduler=true,
resetRunFlags(i)

Seq(c1,c2): suppose a1 and a2 are the
automata for c1 and c2 respectively, add
an edge from final1 to start2, start1 is
the start state, final2 is the final state.
The edge has a guard checking run[i]

and an update setting run[j 6= i] to
false.

final2 start2

final1start1

run[i]
resetRunFlags(i)

Cond(e,c1,c2): suppose a1 and a2 are
the automata for c1 and c2 respectively,
add two urgent states START and
FINAL, which are the start and final
states of the new automaton, and edges
from START to start1 and start2, from
final1 and final2 to FINAL. The
edges from START to start1, start2
have guards checking run[i] and up-
dates resetting run[i] to false,

FINAL

final2start2

final1start1

START

run[i]
resetRunFlags(i)

run[i]
resetRunFlags(i)

run[i]

run[i]=false,
runScheduler=true,
resetRunFlags(i)

run[i]
run[i]=false,
runScheduler=true,
resetRunFlags(i)

runScheduler to true and run[j 6= i] to
false. The edges from final1 and final2
have only guards checking run[i] and
updates setting run[j 6= i] to false. If
one of the branches is absent, e.g. there
is no else branch, a transition from
START to FINAL is added. This tran-
sition has a guard checking run[i]

and updates resetting run[i] to false,
runScheduler to true and run[j 6= i] to
false.

FINAL

final1start1

START

run[i]

run[i]=false,
runScheduler=true,
resetRunFlags(i)

run[i]
resetRunFlags(i)

run[i]
run[i]=false,
runScheduler=true,
resetRunFlags(i)

Loop(e,c1): suppose a1 is the au-
tomaton for c1, add two urgent states
START and FINAL, which are the
start and final states of the new au-
tomaton, and edges from START to
start1, from final1 to FINAL and
from START to FINAL. The edges
from START to start1 and from
final1 to START have guards checking
run[i] and updates resetting run[i]

to false, runScheduler to true and
run[j 6= i] to false. The edge from
START to FINAL has only a guard
checking run[i] and an update setting
run[j 6= i] to false.

FINAL

final1start1

START

run[i]
run[i]=false,
runScheduler=true,
resetRunFlags(i)

run[i]
resetRunFlags(i)

run[i]

run[i]=false,
runScheduler=true,
resetRunFlags(i)

Expr(e): not translated except methods
for thread management. For translation
of Thread.sleep see the Annot item.

Sync(e,c1): suppose a1 is the au-
tomaton for c1, add two urgent states
START and FINAL, which are the
start and final states of the new au-
tomaton, and edges from START to
start1, from final1 to FINAL. We as-
sume that expression e is a field de-
clared in the outermost class. Its moni-
tor is incremented when the edge from
START to start1 is taken and decre-
mented when the edge from final1 to
FINAL is taken. Also, both edges have
guards checking run[i] and updates re-
setting run[i] to false, runScheduler
to true and run[j 6= i] to false.

FINALSTART

final1start1

run[i]

<className>_monitor[j]--,
run[i]=false,
runScheduler=true,
resetRunFlags(i)

run[i]

<className>_monitor[j]++,
run[i]=false,
runScheduler=true,
resetRunFlags(i)

Annot(a,c1), Thread.sleep(a): add
three states: START , MIDDLE and
FINAL, and edges from START to
MIDDLE and from MIDDLE to
FINAL. START and FINAL are the
start and final states of the new au-
tomaton, both are urgent. The edge
from START to MIDDLE has a guard
checking run[i], an update setting
execTime to the execution time indi-
cated in the annotation and another
update setting run[j 6= i] to false. The
edge from MIDDLE to FINAL has
a guard checking run[i] and several
updates. First, there is an update in-
creasing curTime to execTime. Second,
there is an update resetting execTime

to zero. Third, there are updates setting
run[i] to false, runScheduler to true
and run[j 6= i] to false.

FINAL

MIDDLE

cGlobal<=curTime[i]+execTime[i]

START

run[i] curTime[i]+=execTime[i],
execTime[i]=0,
run[i]=false,
runScheduler=true,
resetRunFlags(i)

run[i]

execTime[i]=<annotation>,
resetRunFlags(i)

5.4 Model Checking

Our initial goal was to check whether there are possible resource sharing conflicts
during program execution. Uppaal provides an ability to check properties of
timed automata expressed with TCTL formulas [16]. The basics of TCTL and
its applications are described in [17]. Together with automata code our generator
produces a file with properties to check. The negative property of the generated
system is whether there are two threads accessing the same resource at the same
time. We check the positive variant of it. There is a function check <class name>

checking that all the elements of the monitors array are less or equal to 1. If this
property holds for all states of all possible paths, the system does not have
resource sharing conflicts. In Uppaal syntax the property looks like

A[]check 〈className〉(〈className〉 monitor).

If the property does not hold, Uppaal produces a trace violating the check.

6 Conclusions

We presented the very first steps of an approach for generating timed automata
from Java programs. The Java language is extended with timing annotations,

which makes possible to check resource sharing conflicts and deadlocks in a gen-
erated system. We expect that replacing a lock-controlled resource access policy
by a time-driven approach allows for better temporal and functional predictabil-
ity, while allowing for greater flexibility than, say, synchronous languages.

The approach has been implemented in a prototype tool, and first tests allow
to assume that this approach works. However, the number of states increases
rapidly with the growth of program size. That makes this approach difficult
to apply for large systems. In order to avoid state explosion, large parts of
code should be included into annotated statements. It allows to abstract from
particular statements and generate an automaton with quite a few states.

6.1 Interval Annotations

We have considered an approach to make our analysis more precise. Currently,
an annotation is exact time required for execution of a statement. Certainly, it is
not a realistic model as one can never know before execution itself how much time
it will take. The real execution time depends on the contents of the processor
cache, also on the compiler optimisation level and many other things. For this
reason we considered a simple model where timing annotation is an interval, and
execution time must lie within it. However, this naive model cannot represent the
execution flow correctly; consider an example when a loop body has an interval
annotation.

while (true) {

//@ 3 - 5 @//

... //some actions

}
Fig. 5. Execution timeline for intervals.

On the execution timeline to the right one can see that after the third round
of loop execution the interval of non-determinism became longer than the loop
execution time itself. The better model is still a question for further investiga-
tion; one of the possible examples is the model discussed in [18]. The approach
suggested by the authors is to keep non-determinism for separate steps of execu-
tion, however, sets of instructions have a hard deadline. This may help to solve
the mentioned unlimited growth between best and worst execution time.

6.2 Future Work

Further work may be performed in two directions: Firstly, more Java source code
statements and thread-specific methods should be translated to timed automata.
Secondly, the adequacy of the translation algorithm is expected to be verified
with a proof assistant, based on a formal semantics of Real-Time Java. The final
aim of the future work is to support the constructions of Real-Time Java and
have a formally verified translation procedure.

References

1. Baklanova, N., Strecker, M., Féraud, L.: Resource sharing conflicts checking in
multithreaded Java programs. In: Journées FAC’12. (April 2012)

2. Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: Schedulability analysis of
fixed-priority systems using timed automata. Theor. Comput. Sci. 354(2) (2006)
301–317

3. Bøgholm, T., Kragh-Hansen, H., Olsen, P.: Model based schedulability analysis of
real-time systems. Master’s thesis, Aalborg University (2008)

4. Bøgholm, T., Kragh-Hansen, H., Olsen, P., Thomsen, B., Larsen, K.G.: Model-
based schedulability analysis of safety critical hard real-time Java programs. In
Bollella, G., Locke, C.D., eds.: JTRES. Volume 343 of ACM International Confer-
ence Proceeding Series., ACM (2008) 106–114

5. Hakimipour, N., Strooper, P., Wellings, A.: A model-based development approach
for the verification of real-time java code. Concurrency and Computation: Practice
and Experience 23(13) (2011) 1583–1606

6. Herber, P., Pockrandt, M., Glesner, S.: Transforming systemc transaction level
models into uppaal timed automata. In: Formal Methods and Models for Codesign
(MEMOCODE), 2011 9th IEEE/ACM International Conference on. (July 2011)
161 –170

7. Cordovilla, M., Boniol, F., Noulard, E., Pagetti, C.: Multiprocessor schedulability
analyser. In Chu, W.C., Wong, W.E., Palakal, M.J., Hung, C.C., eds.: SAC, ACM
(2011) 735–741

8. Ravn, A.P., Schoeberl, M.: Cyclic executive for safety-critical java on chip-
multiprocessors. In Kalibera, T., Vitek, J., eds.: JTRES. ACM International Con-
ference Proceeding Series, ACM (2010) 63–69

9. Vechev, M.T., Yahav, E., Raman, R., Sarkar, V.: Automatic verification of deter-
minism for structured parallel programs. In Cousot, R., Martel, M., eds.: SAS.
Volume 6337 of Lecture Notes in Computer Science., Springer (2010) 455–471

10. Tofan, B., Schellhorn, G., Bäumler, S., Reif, W.: Embedding rely-guarantee rea-
soning in temporal logic. Technical Report 2010-07, Informatik (2010)

11. The Real-Time for Java Expert Group: The Real-Time Specification for Java.
(January 2006)

12. The Open Group JSR: JSR-302 Safety Critical Java Technology Specification.
http://jcp.org/en/jsr/detail?id=308 (2010)

13. Henties, T., Hunt, J.J., Locke, D., Nilsen, K., Schoeberl, M., Vitek, J.: Java for
safety-critical applications. 2nd International Workshop on the Certification of
Safety-Critical Software Controlled Systems (SafeCert 2009) (March 2009)

14. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126 (1994) 183–235

15. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In
Desel, J., Reisig, W., Rozenberg, G., eds.: Lectures on Concurrency and Petri Nets.
Volume 3098 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg
(2004) 87–124 10.1007/978-3-540-27755-2.

16. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for real-time systems. In: Logic
in Computer Science, 1990. LICS ’90, Proceedings., Fifth Annual IEEE Symposium
on e. (June 1990) 414 –425

17. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
18. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: a time-triggered language for

embedded programming. Proceedings of the IEEE 91(1) (2003) 84–99

