Selma Djeddai 
  
Mohamed Mezghiche 
  
Martin Strecker 
  
A Case Study in Combining Formal Verification and Model-Driven Engineering ⋆

Keywords: Model Driven Engineering, Model Transformation, Formal Methods, Verification

Formal methods are increasingly used in software engineering. They offer a formal frame that guarantees the correctness of developments. However, they use complex notations that might be difficult to understand for unaccustomed users. It thus becomes interesting to formally specify the core components of a language, implement a provably correct development, and manipulate its components in a graphical/textual editor. This paper constitutes a first step towards using Model Driven Engineering (MDE) technology in an interactive proof development. It presents a transformation process from functional data structures, commonly used in proof assistants, to Ecore Models. The transformation is based on an MDE methodology. The resulting meta-models are used to generate graphical or textual editors. We will take an example to illustrate our approach: a simple domain specific language. This guiding example is a Java-like language enriched with assertions.

Introduction

Domain Specific Languages (DSL) have conquered many different aspects of computer science. They are used in different fields such as aerospace, webservices, multi-media, etc. [START_REF] Van Deursen | Domain-specific languages: An annotated bibliography[END_REF]. Certain DSLs define their semantics in natural languages. However, even though these tend to be quite easy to understand, they usually suffer from incompleteness in some cases and ambiguity in others. Therefore, there emerges a need for defining the formal semantics of DSLs in a mathematically founded framework using proof assistants. Such a phase consists in defining the abstract syntax of a DSL and then grafting a semantics on top of it, using well-understood mechanisms like structural recursion or inductive relations. Such a semantics is often not executable, but other elements of a formal development are, such as compilers or static analyses whose correctness is proved on the basis of the formal semantics.

Interactive proof assistants such as Coq [2] or Isabelle [START_REF] Nipkow | Isabelle/HOL. A Proof Assistant for Higher-Order Logic[END_REF] often use paradigms stemming from functional programming (type systems, function definitions), but they are as such not a programming language. It is however possible to export the formal development to programming languages such as Caml [4] or Scala [START_REF] Odersky | An Overview of the Scala Programming Language[END_REF]. A formally verified compiler, for example, can therefore be effectively executed in a standard programming language.

In order to improve the user interface for interacting with a DSL, we aim at a textual or graphical concrete syntax as provided, for example, by the Eclipse Xtext or GMF environments. Frequent changes of the DSL during the design phase make it necessary to adapt this interface easily and to re-generate it automatically, as far as possible. This paper studies the interplay of these formalisms (see Figure 1), and thus constitutes a first step towards using Model Driven Engineering (MDE) [START_REF] Bézivin | Model driven engineering: An emerging technical space[END_REF][START_REF] Selic | The pragmatics of model-driven development[END_REF] technology in an interactive proof development. The guiding example (see Section 3) is a Java-like language enriched with assertions developed by ourselves for which no off-the-shelf definition exists. This "meta-model" (in MDE parlance) is sufficiently complex to illustrate the method and to be a case study of realistic size for a DSL. However, its formal model can be entirely defined as an inductive datatype (and this is so for most formally defined languages). In this case study, we can therefore not demonstrate some aspects of our work, such as the translation of genuine graph structures that go beyond instances of inductive data types.

Section 2 constitutes the technical core of the article; it describes a translation from data models in the functional programming world, used in verification environments, to meta models in Ecore: the core language of the Eclipse Modeling Framework. We illustrate the methodology in Section 3 with a case study. In Section 4 we compare our work to other approaches, before concluding in Section 5 with perspectives of further work.

From Datatypes to Meta-Models

In this part, we present in detail the translation process from functional data types to meta-models. We start in Section 2.1 by giving an overview of our methodology, then we introduce the source and the target of the transformation in Sections 2.2 and 2.3 respectively. The essence of the translation is further developed in Section 2.4.

Methodology

Model Driven Engineering (MDE) is a software development methodology where the (meta-)models are the central elements in the development process. A metamodel defines the elements of a language. The instances of theses elements are used to construct a model of the language. A model transformation is defined by a mapping from elements of the source meta-model to those of the target meta-model. Consequently, each model conforms to the source meta-model can be automatically translated to an instance model of the target meta-model. The Object Management Group (OMG) [START_REF]OMG: Meta Object Facility[END_REF] defined the Model Driven Architecture (MDA) standard [START_REF] Kleppe | MDA Explained : The Model Driven Architecture : Practice and Promise[END_REF], as specific incarnation of the MDE.

We apply this method in order to define a generic transformation process from datatypes (used in functional programming) to Ecore models. Figure 2 shows an overview of our approach. Using an EBNF representation of the datatype definition grammar [START_REF] Nipkow | Isabelle/HOL. A Proof Assistant for Higher-Order Logic[END_REF], we derive a meta-model of datatypes. This meta-model is the source meta-model of our transformation. We also define a subset of the Ecore meta-model [START_REF] Gronback | Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit[END_REF] to be the target meta-model. In order to perform the transformation, we defined a set of transformation rules (detailed in Section 2.4) that maps components of the meta-model of datatypes to those of Ecore Meta-model. These rules have been implemented in the application presented in Section 3.2. 

Source Meta-Model : The Datatype Meta-Model

Functional programming supplies us with a rich way to describe data structures. However, since some features are not supported by Ecore, we have only defined a subset, that contains the essential elements composing datatypes. Figure 3 depicts the datatype metamodel that is constructed from a subset of datatype's declarations grammar [START_REF] Nipkow | Isabelle/HOL. A Proof Assistant for Higher-Order Logic[END_REF].

A Module may contain several Type Definitions. Each Type Definition has a Type Constructor. It corresponds to the data types' name. It is also composed of at least one Constructor Declaration. These declarations are used to express variant types. Type declarations have names, it is the name of a particular type case. It takes as argument some (optional) type expressions which can either represent a Primitive Type (int, bool, float, etc.) or also a data type defined previously in the module. The list option is used to represent lists in functional programming. The type option feature describes the presence or the absence of a value. The ref option is used for references (pointers).

We enriched the type definition grammar with a new element named Accessor. It is a function introduced by a special annotation (*@accessor*). It allows to assign a name to a special field of the type declaration. This element is essential for the transformation process, its absence would lead to nameless structural features. 

Target Meta-Model: The Ecore Meta-Model

Our target metamodel is a subset of the Ecore metamodel. Ecore is the core language of Eclipse Modeling Framework (EMF) [START_REF] Budinsky | Eclipse Modeling Framework[END_REF]. It allows to build Java applications based on model definitions. It unifies three technologies: Java, XML and UML. Actually, it is possible to describe a model in one of the three technologies and generate it in the other two. It also allows to develop and integrate Eclipse plug-ins.

The Meta Object Facility (MOF) standardized by the OMG defines a subset of UML class diagram [START_REF] France | The UML as a formal modeling notation[END_REF]. It represents the Meta-Meta-Model of UML. Ecore is comparable to MOF but simpler. They are similar in their ability to specify classes, structural and behavioral features, inheritance and packages. -EReferences is comparable to the UML Association link. It defines the kinds of the objects that can be linked together. The containment feature is a Boolean value that makes a stronger type of relations. When it is set to true, it represents a whole/part relationship known as "by-value aggregation" in UML.

From Datatypes to Meta-Models

The transformation method is from functional datatypes to Ecore meta-models.

To precisely define transformation rules, the transformation method is presented in a formal notation by the Tr() function. In each case we start by an informal description, then we present it formally and finally we show an effective exemple.

T r : DataT ypes -→ Ecore M eta-model

The following translation functions are given for a concrete syntax in the style of Caml [4]. Since most functional languages (including the language of proof assistants) have great similarities, the concrete syntax can be mapped to different functional languages.

Rule DatatypeToEClass When the datatype is formed of only one constructor, it is translated to an EClass. The EClass name is the name of the type constructor. In this section, we apply the method presented in Section 2 on a detailed example that consist of a Domain Specific Language. We start by the DSL definition, then we show the architecture of the application before finishing with the effective results of the transformation.

Presentation of the Case Study

We are currently working on a real-time dialect of the Java language allowing us to carry out specific static analyses of Java programs. We only sketch this language here; details are described in [START_REF] Baklanova | Resource Sharing Conflicts Checking in Multithreaded Java Programs[END_REF]. This language is not a genuine subset of Java, since we have added annotations characterizing timing behavior of program parts that are inserted in particular comments into the program. Neither is the language a superset of Java, because we have to impose syntactic restrictions on the shape of the program, and also static restrictions on the number of objects that are allocated. All this made us opt for writing our own syntax analysis, which is integrated into the Eclipse Xtext environment [START_REF]Eclipse Community: Tutorials and documentation for Xtext 2[END_REF]. After syntax analysis and verification of the above-mentioned static restrictions, the program together with its timing annotations is translated to Timed Automata (TA) for model checking. The language is currently not entirely stable and will be modified while we refine and improve the translation from Java to TA, and while the formal model evolves.

The formal aspect comes into play at the following point: We are currently developing a real-time semantics of Java in the proof assistant Isabelle, based on an execution semantics using inductive relations. Performing the translation for the whole language description would generate a huge metamodel that couldn't be presented in the paper. We thus choose to present a only an excerpt of it, corresponding to a method definition.

Figure 6 shows the datatype definitions in the Isabelle proof assistant, where a method definition is composed of a method declaration, a list of variables, and statements. Each method declaration has an access modifier that specifies its kind. It also has a type, a name, and some variable declarations. The stmt datatype describes the statements allowed in the method body: Assignments, Conditions, Sequence of statements, Return and the annotation statement (for timing annotations). In this example we use Booleans, integers, strings for types and values.

Implementation: DatatypesToEcore

Our approach is implemented using the Eclipse environment which includes among others -Eclipse Modeling Framework (EMF) [START_REF] Budinsky | Eclipse Modeling Framework[END_REF]: a framework for modeling and code generation that builds tools and applications based on data models. -Eclipse Modeling Project (EMP) [START_REF] Gronback | Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit[END_REF]: a framework allowing the manipulation of DSLs by defining their (textual/graphical) concrete syntax based on a corresponding metamodel.

Figure 5 shows the architecture of our application. There, green arrows represent model transformations or code generation. The base element is an Isabelle theory where both of the datatypes and the properties to be checked are defined. The corresponding meta-model is generated using the translation function described in Section 2.4. Starting from a generated Ecore meta-model, we use the Xtext tool to define a textual concrete syntax. First, Xtext builds an EBNF grammar depending on the structure of the metamodel. The grammar is then adapted using the right key words of the language, yielding a textual editor as an Eclipse plug-in. 

Applying the Transformation

Figure 6 shows a datatype taken form the Isabelle theory where the verifications were performed. Due to lack of space we do not present them in the paper. This part of the theory was given as input to the implementation of our translation rules presented in Section 2.4. The resulting Ecore diagram is presented in Figure 7.

As it is shown on the figure, data type definitions built only of type constructors (Tp, AccModifier, Binop, Binding) are treated as enumerations in the metamodel. Whereas Datatype MethodDecl composed of only one constructor derive a single class. As for type expressions that represent list of types (like ac-cModifier list in varDecl ), they generate a structural feature in the corresponding class and their multiplicities are set to (0...*). The result of type definitions containing more than one constructor and at least a type expression (stmt and expr ) is modeled as a number of classes inheriting from a main one. Finally, the translation of the int, bool and string types is straightforward. They are translated to respectively EInt, EBoolean and EString. that consists of a generic transformation of UML models to B constructs [START_REF] Idani | A generic process and its tool support towards combining UML and B for safety critical systems[END_REF] and vice-versa [START_REF] Idani | UML models engineering from static and dynamic aspects of formal specifications[END_REF]. The authors propose a metamodel-based transformation method based on defining a set of structural and semantic mappings from UML to B (a formal method that allows to construct a program by successive refinement, using abstract specifications).

Similarly, there is an MDE based transformation approach for generating Alloy (a textual modeling language based on first order logic) specifications from UML class diagrams and backwards [START_REF] Shah | From UML to Alloy and back again[END_REF], [START_REF] Anastasakis | UML2Alloy: A challenging model transformation[END_REF].

Delahaye & al. describe in [START_REF] Delahaye | A Formal and Sound Transformation from Focal to UML: An Application to Airport Security Regulations[END_REF] a formal and sound framework for transforming Focal specification into UML models.

These methods enable to generate UML component from a formal description but their formal representation is significantly different from our needs: functional data structures.

Also, graph transformation tools [START_REF] De Lara | Using AToM 3 as a meta-case tool[END_REF][START_REF] Ehrig | Generation of visual editors as Eclipse plug-ins[END_REF] permit to define source and target metamodels all along with a set of transformation rules and use graphical representations of instance models to ease the transformation process. However, the verification functionality they offer is often limited to syntactic aspects (such as confluence of transformation rules) and does not allow to model deeper semantic properties (such as an operational semantics of a programming language and proofs by bisimulation).

Our approach combines the two views by offering the possibility to define the abstract syntax of a DSL, to run some verifications on the top of it and to generate the corresponding metamodel to graphically document the formal developments. Furthermore, this metamodel can be used to easily generate a textual editor using Xtext facilities.

Conclusion

Our work constitutes a first step towards a combination of interactive proof and Model Driven Engineering. We have presented a generic method based on MDE for transforming data type definitions used in proof assistants to class diagrams.

The approach is illustrated with the help of a Domain Specific Language developed by ourselves. It is a Java-like language enriched with annotations. Starting from data type definitions, set up for the semantic modeling of the DSL we have been able to generate an EMF meta-model. In addition to its benefits for documenting and visualizing the DSL, it is manipulated in the Eclipse workbench to generate a textual editor as an Eclipse plug-in.

Currently, we are working on extending subset of data type definitions by adding a way to transform parameterized types to generic types in Ecore. And coupling our work with the generation of provably correct object oriented code from proof assistants. Moreover, we intend to work on the opposite side of transformation, the possibility to generate data structure definitions from class diagrams.

Fig. 1 .

 1 Fig. 1. Meta-modeling(MM), Verification environment and OO languages

Fig. 2 .

 2 Fig. 2. Overview of the Transformation Method

Fig. 3 .

 3 Fig. 3. Datatype Meta-model

Fig. 4 .

 4 Fig. 4. Simplified subset of the Ecore Meta-model

  T r(tpConstr = cn t 1 ...t n ) = createEClass(); setN ame(tpConstr); T r type (acc i , t i ) / 1 ≤ i ≤ n Example: datatype tpConstr = Cn of int * string * ... * bool Rule DatatypeToEEnum Datatypes composed only of constructors (without typexpr s) are translated to EEnums which are usually employed to model enumerated types in Ecore. There, each constructor from the datatype model is translated into an EEnumLiteral. T r(tpConstr = cn 1 |...|cn p ) = createEEnum(); setN ame(tpConstr); T r constrN m (cn i ) / 1 ≤ i ≤ p T r constrN m (cn i ) = EEnumLiteral(cn i ) / 1 ≤ i ≤ p Example: datatype tpConstr = Cn1 |Cn2 |... | CnN Rule DatatypeToEClasses When constructor declarations are composed of more than one constructor declaration containing type expressions: a first EClass is created to represent the type constructor (tpConstr ). Then, for each constructor, an EClass is created too, and inherits from the tpConstr one. T r(tpConstr = cd 1 |...|cd n ) = createEClass(); setN ame(tpConstr); T r decl (cd i ) / 1 ≤ i ≤ n T r decl : ConstructorDeclaration -→ EClass T r decl (cn i t 1 ...t m ) = createEClass(); setN ame(cn i ); setSuperT ype (EClass(tpConstr)); T r type (acc j , t j ) / 1 ≤ j ≤ m Example: datatype tpConstr = Cn1 of string |Cn2 of int |... |CnN of bool Rule PrimitivTypeToEAttribute If a type expression is formed of a primitive type, the translation function generates a new EAttribute. The name of this EAttribute is the name of its corresponding accessor, and its type is the EMF representation of the the primitive type : EInt for int, EBoolean for bool, EString for string, etc. T r type : (accessor, type) -→ EStructualF eature T r type (acc, primT p) = createEAtrribute(); setN ame(acc); setT ype(primT p EM F ); Example: datatype tpConstr = Cn of int * string * ... * bool Rule TypeToEReference When a type expression contains a type which is not a primitive type, the latter has to be previously defined in the Isabelle theory. Then, a containment link is created between the current EClass and the EClass referenced by type constructor, and the multiplicity is set to 1. T r type : (accessor, type) -→ EStructualF eature T r type (acc, tpConstr) = createERef erence(); setN ame(acc); setT ype (tp constr); setContainment (true); setLowerBound(1); setU pperBound(1); Example: datatype tpConstr = Cn oftpConstr2 Rule TypeOptionToMultiplicity The type expressions can also appear in the form of a type list. In this case the multiplicity is set to 0...*. The type expression type option is used to express whether a value is present or not. It returns None, if it is absent and Some value, if it is present. This is modeled by changing the cardinality to 0...1. T r type : (accessor, type) -→ EStructualF eature T r type (acc, t list) = T r type (acc, t) setLowerBound(0); setU pperBound( * ); T r type (acc, t option) = T r type (acc, t) setLowerBound(0); setU pperBound(1); Example: datatype tpConstr = Cn oftpConstr2 list The last case that we deal with, is type ref which is used to represent pointers. It is translated to references without containments. T r type (acc, t ref) = T r type (acc, t) setContainment(F alse); Example: datatype tpConstr = Cn of tpConstr2 ref 3 Case Study

Fig. 5 .

 5 Fig. 5. Datatype To Ecore implementation architecture

Fig. 6 .Fig. 7 .

 67 Fig. 6. Datatypes in Isabelle

  

⋆ Research supported in part by the project Verisync (ANR-10-BLAN-0310)