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Abstract

Studying the topography of the cortex has proved valuable in order to char-
acterize populations of subjects. In particular, the recent interest towards
the deepest parts of the cortical sulci – the so-called sulcal pits – has opened
new avenues in that regard. In this paper, we introduce the first fully auto-
matic brain morphometry method based on the study of the spatial organi-
zation of sulcal pits – Structural Graph-Based Morphometry (SGBM). Our
framework uses attributed graphs to model local patterns of sulcal pits, and
further relies on three original contributions. First, a graph kernel is defined
to provide a new similarity measure between pit-graphs, with few parame-
ters that can be efficiently estimated from the data. Secondly, we present
the first searchlight scheme dedicated to brain morphometry, yielding dense
information maps covering the full cortical surface. Finally, a multi-scale
inference strategy is designed to jointly analyze the searchlight information
maps obtained at different spatial scales. We demonstrate the effectiveness
of our framework by studying gender differences and cortical asymmetries:
we show that SGBM can both localize informative regions and estimate their
preferred spatial scales, while providing results which are consistent with the
literature. Thanks to the modular design of our kernel and the vast array of
available kernel methods, SGBM can easily be extended to include a more
detailed description of the sulcal patterns and solve different statistical prob-
lems. Therefore, we suggest that our SGBM framework should be useful
for both reaching a better understanding of the normal brain and defining
imaging biomarkers in clinical settings.
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1. Introduction

In the past few years, the topography of the cortical surface has raised
a lot of interest, in particular to find biomarkers of pathologies (Im et al.
(2012); Auzias et al. (2014)) or to detect features associated with functional
specificities (Sun et al. (2012b)). In order to perform automatic morphometry
based on the local organization of the cortex, studying high-level objects
such as cortical sulci allows to alleviate the dependency on the one-to-one
voxel/vertex correspondence which is required in traditional Voxel-Based and
Surface-Based Morphometry (VBM, Ashburner and Friston (2000); SBM
Van Essen et al. (2001)). This has led to the development of Object-Based
Morphometry (OBM, Mangin et al. (2004)), in which each sulcus is described
by a large set of attributes. OBM has been successfully used to characterize
various populations of subjects, for instance by mapping gender differences
Duchesnay et al. (2007) or by distinguishing patients from control subjects
in pathologies such as schizophrenia Cachia et al. (2008) or autism Auzias
et al. (2014).

More recently, a specific attention has been brought to the deepest part
of sulci, either to elaborate theoretical models of cortical anatomy and de-
velopment Régis et al. (2005), or to automatically extract robust cortical
landmarks Meng et al. (2014); Auzias et al. (2015). For the latter, the semi-
nal work of Lohmann et al. (2008) has been particularly important in defining
the concept of sulcal pits, with follow-ups brought by Im et al. (2010) and
Auzias et al. (2015). This provides a finer spatial representation than the
one offered by sulci – because a single sulcus can contain several sulcal pits.
In particular, modelling local patterns of sulcal pits as graphs (see Fig.2) has
proved effective in order to establish links with genetic factors Lohmann et al.
(2008); Im et al. (2011) or characterize groups of patients Im et al. (2012,
2015). These studies are all based on the statistical analysis of between-
subjects comparisons of pit-graphs defined within a pre-determined region of
interest (ROI). These comparisons use a carefully designed similarity mea-
sure described in Im et al. (2011), that relies on a spectral matching method
to define pit-to-pit correspondences between subjects.

The main limitations of this ROI-based method are the following. First,
the effectiveness of the similarity measure of Im et al. (2011) strongly depends
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on the choice of the values of seven hyper-parameters which required a large
set of specific experiments. Secondly, as with any ROI-based approach, one
need to have strong a priori hypotheses to define the location and the size
of the region to study. In that regard, the literature offers very little a

priori information. The few published studies that looked at cortical folding
patterns using sulcal pits examined either brain lobes in Im et al. (2011,
2012) or single sulcal basins Im et al. (2010); Auzias et al. (2015). Since
both these approaches made it possible to detect significant effects at very
different scales, it seems necessary to systematically conduct such study over
a large range of spatial scales.

In order to overcome these limitations, we here introduce Structural Graph-

Based Morphometry (SGBM), which is an extension of the work previously
presented in Takerkart et al. (2015). This framework relies on three main
contributions:

i) The design of a graph kernel that provides a new similarity measure
between pit-graphs and allows – through the vast array of existing kernel
methods Scholkopf and Smola (2001) – to perform various statistical analyses
directly in graph space. This kernel has very few parameters that can be
efficiently inferred from the data.

ii) The definition of a searchlight scheme – the first designed to perform
brain morphometry – that yields information maps estimated from patterns
of sulcal pits constructed at different spatial scales. Searchlight methods,
introduced by Kriegeskorte et al. (2006), consist in fitting a multivariate
statistical model (e.g a classifier) on patterns defined in a local neighborhood,
and repeating this operation in a sliding window fashion to fully cover the
brain. A summary statistic (for instance the accuracy of the classifier) is
then assigned to the center of each neighborhood, thus yielding a spatial
information map that allows the localization of the informative regions.

iii) The construction of a non parametric multi-scale inference strategy
that facilitates this localization by jointly analyzing the searchlight informa-
tion maps obtained at all scales and offers a high detection power. Multi-scale
methods aim at studying phenomena for which the optimal scale to be used
is unknown Koenderink (1984); Lindeberg (1994), as when studying the local
organization of sulcal pits. They have been used in neuroimaging for various
tasks, such as the description of activation patterns in PET (Coulon et al.
(2000)) and fMRI (Operto et al. (2012)) data or the segmentation of sub-
cortical regions in anatomical MRI (Wu et al. (2015)). Etzel et al. (2013)
also suggested that multi-scale strategies could be useful to desambiguate the
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a posteriori interpretation of regions detected by searchlight-based methods,
which we implement here.

SGBM combines these three novelties in order to build a new fully auto-
matic brain morphometry framework. This framework studies local patterns
of sulcal pits by comparing them using our graph kernel, in order to define
a classification-based searchlight scheme that overcomes the limitations of
ROI-based approaches while embedding a multi-scale inference framework.
This makes it possible to detect differences in local folding patterns at dif-
ferent scales between several groups of individuals. In the following, we first
present the SGBM framework step by step, including a detailed description
of our three contributions. We then demonstrate the power of our frame-
work on two classical brain mapping problems for which complex patterns of
anatomical differences have previously been reported in the literature: the
mapping of asymmetries between the left and right brain hemispheres and
the detection of cortical shape differences between male and female subjects.

2. Methods

2.1. Extracting sulcal pits from T1 MR images

In order to obtain the sulcal pits from an anatomical MR image, we first
perform the segmentation of the cortical ribbon and the cortical reconstruc-
tion according to Dale et al. (1999) using the freesurfer image analysis suite
1. Then, we use the method describe in Auzias et al. (2015) to extract the
sulcal pits from the cortical sheet of each subject and the Depth Potential
Function of Boucher et al. (2009) to define a depth feature for each sulcal
pit. This pit extraction method was carefully designed to obtain reproducible
sulcal pits in every cortical region and not only in the deepest sulci, which
is of critical importance to study patterns of pits centered around all cor-
tical locations, as aimed at by the framework introduced in this paper. In
order to compare pits between different subjects of the population S to be
studied, we need to bring them into a common space. We use the cortical
registration algorithm available in freesurfer Fischl et al. (1999) in order to
align the convexity information across individuals after having inflated these
meshes to a sphere. This sphere, onto which all subjects are aligned, will
serve as our common space onto which we project the sulcal pits and basins

1www.freesurfer-software.org
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of every subject, as illustrated on Fig. 1. For each subject s ∈ S, we thus
obtain the set of sulcal pits Ps = {πs

i }
i=Ns

i=1 localized on the sphere and their
corresponding basins {βs

i }
i=Ns

i=1 . Note that the number of pits N s can vary
across subjects.

Figure 1: Left: sulcal pits of one subject, represented on the cortical sheet. Right: after
cortical registration to the template and projection to the common spherical space, in
which inter-subject pits locations are compared.

2.2. Representing folding patterns as pit-graphs

A natural way to formally represent the local folding pattern of a given
part of the cortex is to construct a region adjacency graph from the set of sul-
cal pits and basins located within this region, as proposed in Im et al. (2011).
Given a subset P ⊂ Ps of N pits (N ≤ N s), each pit πs

i ∈ P defines a node of
the graph. The graph edges are then given by the spatial adjacency of their
associated basins: this defines a binary adjacency matrix A = (aij) ∈ R

N×N

(aij = 1 if βi and βj are adjacent, and 0 otherwise), that encodes the spa-
tial organization of the folding pattern. We can then add attributes to each
graph node in order to better characterize the folding pattern. In the present
paper, we use two attributes for each pit: i) its euclidean coordinates on the
common sphere Xi, to compare graph nodes localization across subjects, and
ii) its depth di, because it is an intrinsic characteristic of the pit. The map-
ping from each subject to the common sphere explicitly minimizing metric
distorsions Fischl et al. (1999), this sphere is a good space to compare pits
locations across subjects in a spatially uniform manner. Note that other at-
tributes can be added in the same manner without affecting the rest of the
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method, making these graphs a versatile representation. Let D = {di} ∈ R
N

be the vector of depth values and X = {Xi} ∈ R
N×3 be the matrix of coor-

dinates of all graph nodes. Any pattern of sulcal pits can therefore be fully
represented by an attributed graph defined as G = (P ,A,D,X ). Examples
of sulcal pit graphs are shown on Fig. 2.

Figure 2: Sulcal pit-graphs in the right frontal lobe for four subjects, displayed on the
inflated cortex. The node color encodes the depth of the pit, from blue (shallow) to red
(deep).

2.3. Measuring pattern similarity using a graph kernel

Our first contribution is to introduce a graph kernel that provides a new
similarity measure between pit-graphs. It is adapted from of a graph kernel
that we designed to handle inter-subject variability in fMRI data Takerkart
et al. (2014). In order to compare two pit-graphs G = (PG,AG,DG,XG)
and H = (PH ,AH ,DH ,XH), our kernel exploits the different characteristics
of the graphs by comparing all pairs of nodes (i.e potential edges) gij and
hkl, respectively in G and H. As such, it belongs to the class of walk-based
graph kernels Gärtner et al. (2003) and uses the most elementary walks, of
length one. It combines (see eq. 4) the different features of the graphs by
using several sub-kernels within the convolution kernel framework Haussler
(1999). A first sub-kernel acts on the graph structure itself, by ensuring that
the comparisons are performed only if gij and hkl are actual edges. This is
done with the linear kernel on the binary entries of the adjacency matrices:

ka(gij, hkl) = aGij.a
H
kl, (1)
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which takes the value 1 if aGij = aHkl = 1 and 0 otherwise. A second sub-kernel
uses a product of Gaussian kernels on the coordinates of the nodes of gij and
hkl to compare the locations of edges across subjects:

kx(gij, hkl) = e−‖XG
i −XH

k
‖2/2σ2

x · e−‖XG
j −XH

l
‖2/2σ2

x . (2)

In practice, kx acts as a spatial filter that weights the comparisons of edges
with their proximity, thus eliminating the comparisons of edges that are far
away from eachother while tolerating inter-subject variability (if edges are
close, but not perfectly matched across subjects). Finally, the last sub-kernel
compares the depth attributes using the same principle:

kd(gij, hkl) = e−‖dGi −dH
k
‖2/2σ2

d · e−‖dGj −dH
l
‖2/2σ2

d (3)

Other optional attributes that could be added to further characterize the
sulcal pits would be treated in the same manner.

The full kernel is defined as the combination of all sub-kernels applied on
all pairs of nodes of G and H, which gives in our case:

K(G,H) =

NG
∑

i,j=1

NH
∑

k,l=1

ka(gij, hkl) · kx(gij, hkl) · kd(gij, hkl) (4)

Note that the number of nodes NG and NH in G and H can be different. We
then perform the following normalization

K̃(G,H) =
K(G,H)

√

K(G,G)K(H,H)
, (5)

which ensures that ∀G, K̃(G,G) = 1, i.e that the similarity between a graph
and itself does not depend on the graph.

Note that this kernel has two hyper-parameters σx and σd, which are
the bandwidths of the gaussian sub-kernels that respectively act on the co-
ordinates and the depth features. In order to choose the values of these
parameters, we use an extension of a standard practice whose effectiveness
has been demonstrated in Takerkart et al. (2014): we set σx and σd to the
median euclidean distances between the coordinates and depth attributes of
the nodes in all graphs available at training time. Note that in the case where
the pit-graphs represent local folding patterns, as in the rest of the paper,
the value of σx will adapt to this property of the graphs and consequently,
kx will act as a spatial filter within the neighborhood of interest.
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Figure 3: Illustrations of the pit-based searchlight scheme used in our SGBM framework.
A: The sulcal pits and basins of a set of subjects projected onto the common spherical
space. B: The Fibonacci point set used to sample the sphere. C: Around one of these
points (larger green ball), the local pit-graphs defined for each subject within a spherical
neiborhood (the node color encodes the depth of the sulcal pit). D: Classifying local pit-
graphs into two categories (ex: patients vs. controls). E: Repeating this at all locations
to obtain the searchlight information map: the Fibonacci points are projected onto the
folded (left) or inflated (right) mesh (the sphere color encodes the amount of information
available at this location for the classification task).

2.4. Searchlight mapping

Our second contribution is the definition of a searchlight method (Kriegesko-
rte et al. (2006)) that enables the mapping of cortical shape differences based
on local folding patterns represented as sulcal pit-graphs. In order to con-
struct a searchlight scheme for a given task, one needs to define the five
following items: A: the domain of interest; B: the sampling strategy used to
cover this domain; C: how to define local patterns at each location; D: the
multivariate statistical model that addresses the task itself and E: the sum-

mary statistic to be used to create the information map. We now instantiate
these five items, as illustrated on Fig.3.

In order to define our pit-based searchlight scheme in a domain where
the sulcal pits of all subjects can be compared, we use the common spherical
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space where all subjects have been aligned (see 2.1) as our domain of inter-

est (item A). Then, the Fibonacci point set (Niederreiter and Sloan (1994))
provides a pseudo-evenly distributed sampling of the sphere, with an arbi-
trary number of points Q; this defines the sampling strategy of our searchlight
scheme (item B). For a given location q ∈ {1, · · · , Q} and a given subject
s ∈ S, we then define the set Ps

q,r of sulcal pits located within a radius r

of point q, i.e Ps
q,r = {πs

i ∈ Ps | dist(q, πs
i ) < r}, where dist designates

the euclidean distance between two points. Given this set of pits, we can
directly apply the graph construction scheme described in 2.2 to obtain the
attributed graph that we note Gs

q,r. The set of graphs {Gs
q,r}s∈S defines the

local patterns at location q (item C) that will serve as inputs to the statistical
model defined hereafter.

Equipped with our graph kernel K̃ defined in 2.3, we can use any kernel
method to address a wide range of problems including regression, clustering
or classification. Here, we focus on supervised classification to perform group
discrimination and we use a non linear Support Vector Classifier as our mul-

tivariate statistical model (item D). Such a classifier is easy to estimate by
using K̃, which is a positive definiete kernel, and the so-called kernel trick –
an idea that was introduced in Aizerman et al. (1964). We then assess the
generalization power of the classifier by measuring its accuracy. In practice,
for a given location q and a given value of r, we have a fully labeled dataset
{(Gs

q,r, ys)}
s=S
s=1 at our disposal, where the label ys encodes the group subject

s belongs to (for instance, ys = −1 for a control subject and ys = +1 for
a patient). In order to obtain the accuracy ārq of the classifier, we resort to
a 10-fold cross-validation which offers a good estimate of the true accuracy
Kohavi (1995).

The final step in setting up a searchlight scheme consists in defining a
summary statistic from the output of the statistical model in order to con-
struct the searchlight information map. Because the distribution of ārq is
unknown, we first resort to a permutation scheme in order to estimate it
under the null hypothesis of no differences between groups, as advocated in
neuroimaging in general by Bullmore et al. (1999); Nichols and Holmes (2002)
and more particularly in statistical analyses of searchlight information maps
by Kriegeskorte et al. (2006); Stelzer et al. (2013). Assuming the stationar-
ity of this null distribution over the cortex, we pool together the classifier
results at all searchlight locations to obtain an estimate of the cortex-wise
distribution of ārq. This provides a map of uncorrected point-wise p-values
{prq}q∈[1,··· ,Q]. Then, at each point q, we compute the normal statistic that
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corresponds to prq, which we note zrq ; this non linear transformation is in
fact given by the so-called Inverse Error Function erf−1, also called Nor-
mal Inverse Cumulative Distribution function. We use this zrq -score as our
summary statistic (item E in the definition of our searchlight scheme), which
defines the searchlight information map Zr = {zrq}q∈[1,··· ,Q]. This Zr map
can easily be used to perform inference because we estimated its underlying
distribution, and presents the nice property of being highly contrasted – as
compared with the original accuracy map – thanks to the non linear trans-
formation used to create the zrq -scores. The latter property will be useful at
a later stage in our SGBM framework. The estimation of these information
maps is implemented by the following algorithm, in which card designates
the function that returns the size of the set given in input.

Algorithm 1: Computing the searchlight information map at scale r

Input : a labeled dataset {(Xs, ys)}
s=S
s=1

Input : a set of M permutations {Γj}
j=M
j=1 , Γ1 being the identity

foreach permutation Γj do

foreach searchlight location q do

compute ārq(j) from the re-labeled dataset {(Gs
q,r, yΓj(s))}

s=S
s=1

foreach permutation Γj do

foreach searchlight location q do

prq(j) =
1

Q×M
card({(j′, q′) | ārq′(j

′) ≥ ārq(j))}

zrq(j) = erf−1(prq(j))

this defines the map Zr(j) = {zrq(j)}q∈[1,··· ,Q]

Output: a set of M maps {Zr(j)}j=M
j=1

Output: the map corresponding to the true labels is Zr = Zr(1)

Note that we also compute the set of information maps {Zr(j)}j=M
j=1 ob-

tained for all permutations because they will be used in the following. Also,
by convention, the first permutation is set to be the identity, which means
that the true information map Zr is included in this set as Zr(1).

2.5. Multi-scale spatial inference

In this section, we describe our third contribution, which is a multi-scale
spatial inference strategy that both localizes the regions of the cortex where
folding patterns are significantly different and estimates the spatial scale of
these effects. First, we repeat the previously described searchlight procedure
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for a given set of ρ scalesR
.
= {r1, · · · , rρ}, yielding a set of information maps

{Zr}r∈R, which each comes with its permuted versions {Zr(j)}j=M
j=1 , forming

a full set of M × ρ maps. Detecting at which locations q and scales r the
classifier performance is above chance level – i.e testing zrq > 0, ∀(q, r) – is
a massively univariate inference problem for which it is crucial to correct for
multiple comparisons. Because these information maps exhibit correlations
across both scales and space, an appealing way to deal with the multiple
comparisons problem is to resort to cluster-based statistics, as introduced
in Poline and Mazoyer (1993) and vastly used since in the neuroimaging
literature. Following the non-parametric scheme described in Bullmore et al.
(1999), this can be done in three steps:

❼ applying an arbitrary threshold to a statistical map to form contiguous
regions of supra-threshold locations, classically referred to as clusters;

❼ defining a cluster-wise statistic and computing it for each cluster;

❼ estimating the null distribution of the maximum cluster statistic using
a set of maps obtained by permuting the labels of the observations,
which provides corrected cluster-wise p-values (see Nichols and Holmes
(2002)).

Thanks to the way our zrq statistic was designed (see 2.4), the initial
cluster-forming operation is easy to perform by setting a threshold τ that
corresponds to the desired one-sided uncorrected point-wise p-value; for in-
stance, thresholding at zrq > τ with τ = 3.090 corresponds to prq < 0.001.
Note that because this is true for all values of r, a single threshold value can
be used for all scales. Then, we need to select a cluster-wise statistic. The
most commonly used one is the cluster size – the number of locations inside
a cluster Poline and Mazoyer (1993), but it naturally favors large clusters.
In order to avoid this bias, we use the cluster mass (Bullmore et al. (1999);
Zhang et al. (2009)), i.e the sum of supra-threshold point-wise statistics,
which should better preserve the chances of small clusters to be detected
thanks to the high contrast of our Zr maps. Note that this potential benefit
brought by using the cluster mass – instead of the cluster size – would have
been lesser if we had directly used the accuracy as our summary statistic.
Finally, we introduce two complementary strategies to estimate the empirical
distribution of the cluster-wise statistic in this multi-scale setting. They are
described in the following and summarized on Fig.4.
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Figure 4: Illustrations of the two inference strategies. A: the set of permutations of the labels (each column is a permutation,
black corresponds to y = −1 and white to y = +1; the first permutation in the left-most column contains the true labels).
B: single-scale searchlight information maps, for each scale and each permutation. C & D: single scale clusters, and the null
distributions of their maximum cluster mass, estimated from the set of permuted single-scale clusters at each scale. E, F & G:
multi-scale information maps, multi-scale clusters, and the null distribution of their maximum cluster mass. The distribution
shown in D and G are then used to assess the corrected p-values, respectively for the single-scale and the multi-scale clusters
obtained with the true labels.
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2.5.1. Single-scale clusters with corrections for multiple comparisons across

space and scales

The first strategy consists in defining clusters by independently thresh-
olding each Zr map. We therefore designate these as single-scale clusters in
the rest of the paper. The multi-scale nature of this first inference method
hails from the correction for multiple comparisons, which is performed in two
steps. First, we estimate the null distributions of the maximum cluster mass
separately for each single scale, by pooling the masses of clusters obtained
with all permutations at the considered scale (see Alg. 2). This yields p-
values corrected for the multiple comparisons due to the repetition of tests
in space. Note that it was necessary to distinguish null distributions between
scales because they ended up being fairly different. In a second step, we used
a Bonferroni correction to account for the repetition of tests across scales:
multiplying the p-values obtained in the first step by the number of scales
included in the analysis allows estimating corrected p-values that take into
account the repetition of tests both in space and across scales, which can
then be thresholded at the desired significance level to perform inference.

Algorithm 2: Computing spatially-corrected p-values for single-scale
clusters
Input : a scale r

Input : a set of permuted single-scale maps {{Zr(j)}j=M
j=1 , with the

one obtained with the true labels for j = 1
Input : a threshold τ

foreach permutation j do
apply thresholding on Zr(j) with zrq(j) > τ

get the set of clusters {cji}
i=Nj

i=1 from the thresholded map
foreach cluster c

j
i do

compute cluster mass mj
i =

∑

q∈cji

zrq(j)

compute maximum mass Mj = max
i

({mj
i}

i=Nj

i=1 )

foreach true cluster ci = c1i do
compute cluster mass mi =

∑

q∈ci

zrq(1)

compute corrected p-value pi =
1
M

card({j | Mj ≥ mi})

Output: single-scale clusters with their p-values {ci, pi}
i=N1

i=1

(corrected for multiple spatial testing)
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2.5.2. Multi-scale clusters with corrections for multiple comparisons across

space

Our second strategy starts by designing a statistic that summarizes the
results obtained across all scales at a given location q. Because we expect an
effect to be observable across several consecutive scales, we first compute a
sliding average of zrq across scales. Then, in order to detect effects potentially
present at any scale, we select the maximum value from the results of the
sliding average operation. This gives

ZR
q = max

r∈R
(
1

R

∑

r′, |r−r′|≤R/2

zr
′

q ), (6)

where R represents the size of the averaging window used across scales.
This results in a single multi-scale information map ZR = {ZR

q }q∈[1,··· ,Q],
which summarizes the content of all single-scale maps {Zr}r∈R. We note
{ZR(j)}j=M

j=1 the set of corresponding permuted multi-scale maps. In the
following, we will use the term multi-scale clusters to designate the clusters
obtained by thresholding these multi-scale information maps. By changing
the second input of Alg. 2 to this {ZR(j)}j=M

j=1 set of permuted multi-scale
maps, we can estimate the p-value – corrected for the repetition of tests per-
formed in space – for each multi-scale cluster. Furthermore, at any location
q within a significant cluster, we can estimate the preferred scale of the effect
as the value of r that maximised the sliding average of zrq across scales for
the true labels:

r̂R(q) = argmax
r∈R

(
1

R

∑

r′, |r−r′|≤R/2

zr
′

q ) (7)

3. Experiments and results

3.1. Mapping gender and hemispheric differences

In order to explore the capabilities of our framework, we study two clas-
sical brain morphometry problems: the mapping of gender differences and
cortical asymmetries. Because some neurological disorders are expressed dif-
ferently in males and females (see Ruigrok et al. (2014)) and others are
associated with abnormal cortical lateralization Toga and Thompson (2003),
studying these problems can directly provide information on the pathologies
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themselves. While they have already been studied using automatic morphom-
etry methods such as VBM, SBM and OBM (see 3.3), our SGBM framework
should shed a new light on both questions by examining differences in the
organization of local folding patterns.

For this purpose, we use data from the Open Access Series of Imag-
ing Studies2 (OASIS) cross-sectional database, which offers a collection of
416 subjects aged from 18 to 96. For each subject, three to four individ-
ual T1-weighted MP-RAGE scans were obtained on a 1.5T Vision system
(Siemens, Erlangen, Germany) with the following protocol: in-plane resolu-
tion = 256x256 (1 mm x 1 mm), slice thickness = 1.25 mm, TR = 9.7 ms,
TE = 4 ms, flip angle = 10➦, TI = 20 ms, TD = 200 ms. Images were co-
registered and averaged to create a single image with a high contrast-to-noise
ratio. From this database, we selected two groups of 67 male and 67 female
healthy right-handed subjects, aged 18 to 34.

In practice, for the gender problem, we used the 134 subjects to set up
a binary classification problem, with labels defined by y = −1 for a male
subject and y = +1 for a female. For the asymmetry problem, an extra
pre-processing step was carried out using the symmetric cortical template
described in Greve et al. (2013), as used in Auzias et al. (2015) to study
pit-based asymmetries. We then used the 134 symmetrized hemispheres of
the male subjects to set up a binary classifcation problem where labels are
y = −1 for a left hemisphere and y = +1 for a right hemisphere. For both
problems, we use a Fibonacci point set of size Q = 2500, which provides a
dense enough sampling of the sphere (see Fig. 3) to observe the expected
continuity in the information maps estimated by the searchlight scheme (see
results hereafter). The number of permutations was set to M = 5000, en-
suring that the empirical distributions are accurately estimated. The cross-
validation used to estimate the average classification accuracy was carefully
designed to ensure class balance in both the training and test datasets for
each fold. As with any cluster-based analyses – which represent the vast ma-
jority of spatial inference methods used in neuroimaging, the initial cluster-
forming thresholding has an influence on the final results. With this in
mind, we repeated our analysis with different threshold values and empir-
ically selected the one that gave results which offered a good compromise
between sensitivity and specificity. The results shown hereafter have been

2www.oasis-brains.org

15

www.oasis-brains.org


obtained with a cluster-forming threshold of τ = 3.090, which corresponds
to a thresholding at p < 0.001 on the uncorrected point-wise p-values as-
sociated with the classification score. Finally, we used the following set of
scales in order to study the multi-scale properties of local sulcal patterns:
R

.
= {30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90mm}. Each scale value de-

fines the radius of a searchlight spherical neighborhood that is computed on
the freesurfer sphere, i.e. the common space for all subjects, which has a
100mm radius. The smallest neighborhood (30mm Euclidean radius) is a
spherical cap whose surface area is 2.25% of the sphere surface area. Equiva-
lently, the largest neighborhood (90mm scale) represents 20.75% of the sphere
area. In other words, we use a scale range that varies between 2.25% and
20.75% of an hemisphere surface area. This will yield patterns between the
size of a small gyrus and one of a brain lobe, thus covering the smallest (Im
et al., 2010; Auzias et al., 2015) and largest (Im et al., 2011, 2012) effects
previously reported in the literature when studying sulcal pits.

3.2. Results: methodological considerations

In this section, all the maps presented follow the same format. Each of
the elements of the spherical Fibonacci point set is represented by a small
sphere and projected onto the inflated cortical mesh. This allows for an easy
visualization of the global maps.

3.2.1. Examining raw information maps

In order to assess the results provided by our SGBM framework, we first
qualitatively observe raw single-scale and multi-scale information maps ob-
tained with our pit-based searchlight scheme.

Single-scale maps Zr are shown on Fig. 5. They display some contrast at
all scales r, i.e they contain locations of low and high zrq -values, sometimes
reaching zrq = 5 or more – which corresponds to very significant uncorrected
point-wise p-values (prq < 10−6). We can clearly observe the spatial corre-
lation through the fact that the points of high statistic values are grouped
together. Furthermore, the spatial smoothness of the maps and the size of the
groups of searchlight locations with high zrq -values increase with r, which is a
typical behavior of searchlight information maps Kriegeskorte et al. (2006).
Finally, the persistence of the regions with high zrq -values across several con-
secutive values of r attests of the correlation across scales of the Zr maps,
which also supports the relevance of the construction scheme used to define
the multi-scale statistic ZR

q (see Eq. 6).
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Figure 5: Examples of raw single-scale information maps Zr for different neighborhood
radiuses r (gender differences, external face of the right hemisphere).

We now examine the multi-scale maps ZR, displayed on Fig. 6. Each of
them summarizes the information contained at all scales r ∈ R. For R = 1,
ZR
q is the max of all zrq across all scales r; for R = card(R), i.e for R = 13

in our experiments, ZR
q is the average of zrq across all scales. Overall, these

maps are smoother than the single-scale Zr maps, which is expected because
the construction of the multi-scale statistic ZR

q acts as a smoothing operation
across scales. For the smaller values of R, the contrast of the statistic map is
weaker than the one offered by single-scale maps: some very large portions of
the cortex show high values of ZR

q , which means that the specificity offered by
low values of R is limited. For very large values of R, the maps contain less
locations with high statistical values, which is also expected because in this
case, a high ZR

q -value reflects a phenomena that exist over a larger number
of consecutive scales. Therefore, it seems adequate to use an intermediary
value of R, for which ZR

q averages zrq over a limited number of consecutive
scales.

3.2.2. Qualitative assessment of single-scale clusters

We then examine the single-scale clusters. Figs. 7 and 8 show the clusters
which present a p-value lower than 0.05, after correction for multiple com-
parisons across space and scales with the method described in Section 2.5.1.
For both the gender and asymmetry problems, our framework detects signif-
icant clusters at all scales with r at least 40mm, demonstrating its detection
power. Almost all clusters are persistent across scales, i.e for a given clus-
ter at scale r, there exist clusters at nearby cortical locations for nearby
scales. The clusters detected at finer scales are overall smaller than the ones
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Figure 6: Examples of raw multi-scale information maps ZR (gender differences, external
face of the right hemisphere). Each of these maps summarizes the information from all

single-scale Zr maps shown on Fig 5. This multi-scale statistic depends on the number R
of consecutive scales r over which the single-scale statistic is averaged (see Eq. 6).

detected with larger window sizes. This is caused by the larger smoothing
effect of the large window sizes (as previously observed on the raw maps, see
on Fig. 5); furthermore, we noted that the critical cluster mass correspond-
ing to a corrected p-value of 0.05 (estimated by the procedure described in
Section 2.5.1) increases with the size of the window, which therefore discards
the smallest clusters at large scales. However, some small clusters remain
significant at large scales. This overall demonstrates that our cluster-based
spatial inference strategy is effective; in particular, the use of the cluster
mass associated with our zrq statistic makes it possible to detect clusters at
fine spatial scale and small clusters at larger scales, which is known to be
challenging in practice in such a multi-scale context.

3.2.3. Qualitative assessment of multi-scale clusters

Figs. 9 and 10 show the significant clusters (corrected p < 0.05) obtained
with the method described in 2.5.2, for R ∈ {1, 3, 5, 7, 9, 11, 13}. The ob-
servations made previously on the raw statistic map gets confirmed: some
overly large clusters are detected for the smaller values of R, while nothing
is detected for larger values (R ≥ 11). This confirms that an intermediary
value of R might offer a satisfactory compromise between specificity and sen-
sitivity. This is concordant with the intuition that an effect can live across
several consecutive scales, but not over a very large number of consecutive
scales as sought after with large R values.

3.2.4. Comparing single-scale and multi-scale results

We will now compare the clusters detected by our single-scale and multi-
scale approaches. Our objective is two-fold: i) to assess the consistency, or
lack thereof, of the results of the two approaches, and ii) to facilitate the
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Figure 7: Gender differences. For each value of r, four views are shown, two per hemi-
sphere: the left hemisphere is shown on the left, and the right on the right, with re-
spectively their external and internal faces at the top and the bottom. The significant
single-scale clusters (corrected p < 0.05) are colored with their p-value. Four main clus-
ters, tagged A, B, C and D, appear to be persistent across scales, sometimes after having
merged.
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Figure 8: Asymmetries. For each value of r, the single-scale clusters presenting significant
differences between the left and right hemispheres (corrected p < 0.05) are shown on the
external and internal faces of the left hemisphere. Two main clusters, tagged A and B,
appear to be persistent across scales.
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Figure 9: Gender differences. Simlarly to Fig.7, four views are presented for each value of
R, showing thresholded significant multi-scale clusters (corrected p < 0.05). For R = 7,
four clusters survive, at similar locations as single-scale ones; they are tagged A, B, C and
D, accordingly to Fig. 7.
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Figure 10: Asymmetries. Significant muli-scale thresholded clusters. For R = 7, the
same two clusters as in the single-scale analysis are detected; they are tagged A and B,
accordingly to Fig. 8.
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selection of the value of the R parameter of our multi-scale statistic.
For the gender problem, we examine Fig. 7 (single-scale clusters) and

Fig. 9 (multi-scale clusters). The single-scale approach detects clusters in four
main locations (tagged A, B, C and D on Fig. 7), which are present across
a large number of scales. Their precise location and extent vary smoothly
across scales. For instance, the cluster at location B slightly moves forward
when the scale r increases; some merging phenomena also happen between
clusters, as with the clusters at locations C and D, which are separated at
scales r ≤ 60mm and fused into one larger cluster at scales r ≥ 70mm. The
multi-scale approach detects clusters in similar locations for various values
of the R parameter; however, the results with R = 7 are the only ones for
which there are four separated clusters at the four locations A, B, C and D.

For the asymmetry problem, we examine Fig. 8 (single-scale clusters) and
Fig. 10 (multi-scale clusters). The single-scale approach detects clusters in
two main locations (tagged A and B on Fig. 8), which are present across
almost the full range of scales from r = 30mm to r = 90mm. The clusters
present around these locations also fuse together for r ≥ 80mm. The multi-
scale approach detects clusters in similar locations for various values of the R
parameter; however, only the results obtained with R = 7 and R = 9 provide
two separated clusters for each location A and B.

Overall, both our single- and multi-scale inference strategies offer satis-
factory detection power. The fact that the significant clusters of both ap-
proaches occupy similar locations clearly demonstrates their consistency. In
order to choose the value of the parameter R of the multi-scale strategy, we
showed that choosing an intermediary value provides a good compromise be-
tween sensitivity and specificity, as found in our restults with R = 7 for the
gender differences and asymmetry problems studied here.

3.3. Results: neuroscience considerations

In this section, we examine the neuroscientific relevance of the results
obtained with our SGBM framework for the two problems of gender differ-
ences and cortical asymmetries, based on the multi-scale clusters detected
with R = 7. Each map shown on Figs. 11 and 12 presents the set of search-
light locations (i.e the Fibonacci points displayed on the sphere on Fig. 3)
included in a given significant cluster and projected onto the folded cortical
mesh. This allows for a precise localization of the extent of each cluster on
the cortex which can facilitate the interpretation.
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3.3.1. Gender differences

Gender differences have mostly been studied using standard morphometry
tools such as VBM, with notably a meta-analysis presented in Ruigrok et al.
(2014) and SBM, for instance in Im et al. (2006); Lv et al. (2010)). To our
knowledge, the only sulcus-based study that used OBM is Duchesnay et al.
(2007).

Our SGBM framework detected four clusters that contain the center lo-
cations of searchlight windows in which the patterns of sulcal pits differ
between genders, which are shown on Fig. 11. Cluster A is centered in the
collateral sulcus of the left hemisphere. It is a fairly small cluster comprising
35 searchlight points, with an average preferred scale of r̂ = 60mm (following
the definition of r̂ in 2.5.2). Its localization is consistent with regions that
were significant in Ruigrok et al. (2014); Im et al. (2010); Lv et al. (2010).
Cluster B is located in the right hemisphere, centered around the lateral oc-
cipital sulcus. It comprises 29 searchlight locations, has an average preferred
scale of r̂ = 65mm, and is concordant with very small spots appearing in
the surface based studies only (Im et al. (2010); Lv et al. (2010)). More-
over, the depth difference observed in the lingual sulcus in Duchesnay et al.
(2007) probably contributes to the effect detected in this cluster – which,
in its single scale version at r = 80mm, includes the lingual sulcus on the
internal face (see Fig. 7). Cluster C, located in the right hemisphere, has its
center of mass in the cingulate gyrus. It is a large cluster with 98 searchlight
locations with an average preferred scale of r̂ = 75mm. Finally, cluster D is
a large cluster centered in the middle frontal gyrus, comprising 130 search-
light locations and with an average preferred scale of r̂ = 75mm. Small
regions located within the large clusters C and D were also found significant
in Ruigrok et al. (2014); Im et al. (2010); Lv et al. (2010), demonstrating the
overall consistency of our results with the literature.

3.3.2. Asymmetries

Cortical asymmetries have been studied using a large variety of methods,
from VBM (see Good et al. (2001) for instance) and SBM (in Van Essen et al.
(2012)) to OBM (see Duchesnay et al. (2007)) and sulcal pits characterization
(in Im et al. (2010); Auzias et al. (2015)).

By studying the organization of local patterns of sulcal pits, our SGBM
framework was able to detect two clusters containing the center locations of
searchlight windows in which cortical folding patterns present local asym-
metries, which are shown on Fig. 12. The first one (Cluster A) is a large

24



Figure 11: Gender clusters. Each map presents the Fibonacci points included in a given
cluster, among the four significant clusters detected using our multi-scale statistic ZR and
R = 7. The larger green sphere represents the center of mass of the cluster.
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Figure 12: Asymmetry clusters. These maps each present one of the two significant clusters
detected using our multi-scale statistic ZR with R = 7. The larger green sphere represents
the center of mass of the cluster. For clarity, the map of Cluster B (right) is presented
under two different views.

cluster comprising 295 searchlight locations, with an average preferred scale
of r̂ = 70mm, which is centered around the planum temporale and also en-
compasses the posterior part of the sylvian fissure, the supra-marginal gyrus
and some parts of the superior temporal gyrus and sulcus. These regions are
all individually reported in the literature dedicated to cortical asymmetries
– Van Essen et al. (2012); Im et al. (2010); Auzias et al. (2015), all using
univariate analyses, and Duchesnay et al. (2007), which found a depth dif-
ference in the superior temporal sulcus. This shows that the multivariate
nature of our analysis allows to detect such locally distributed effects among
a complex pattern of sulcal basins. Cluster B comprises 205 searchlight lo-
cations centered around the frontal pole and presents an average preferred
scale of r̂ = 60mm. It includes part of the lateral prefrontal cortex, and ex-
tends on the internal face to the middle part of the cingulate sulcus. These
regions have been consistently detected with morphometry approaches such
as VBM (Good et al. (2001)) and also with the study of sulcal pits frequency
described in Auzias et al. (2015) – which used the same pit extraction algo-
rithm as ours. These concordant results corresponds to the frontal petalia, a
protrusion of the anterior part of left hemisphere towards the right one Toga
and Thompson (2003).
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4. Discussion

We have introduced Structural Graph-Based Morphometry (SGBM), a
new fully automatic brain morphometry framework based on a multi-scale
searchlight scheme that enables to localize differences in graphs of sulcal pits
between populations. This is the first time that a searchlight scheme is de-
signed for anatomical MR images of the brain and embedded in a multi-scale
inference strategy. The main strengths of our framework are i) to capitalize
on structural pattern recognition tools in order to discriminate complex cor-
tical folding patterns represented as graphs of sulcal pits, ii) to overcome the
intrinsic limitations of approaches that focus on a pre-defined region thanks
to the searchlight approach, iii) to embed this searchlight approach into a
powerful cluster-based multi-scale inference strategy.

The results obtained in this paper demonstrate the detection power of
our SGBM framework in order to localize regions where sulcal pit-graphs are
significantly different between groups, thus showing its ability to overcome
the intrinsic limitations of previous ROI-based approaches. The multi-scale
character of our SGBM framework was called for by the lack of a priori
knowledge on the size of the relevant patterns. The multi-scale nature of
these effects is clearly confirmed by our results: on the one hand, single-scale
clusters are detected over a large span of scales, with varying locations and
sizes (see Figs. 7 and 8), and on the other hand, the detection of multi-scale
clusters (see Figs. 9 and 10) shows that these effects are present over several
consecutive scales. These multi-scale clusters also come with an estimate of
the preferred scale of the effect, which vary between 60 and 75mm for the
studied problems. These values, which are defined in freesurfer’s common
spherical space, correspond to intermediary region sizes between the small-
est and largest previously reported effects, i.e to folding patterns comprising
several sulci. This confirms that local interactions between neighboring sul-
cal basins or sulci can be informative. Moreover, our two inference strategies
showed their complementarity. The multi-scale scheme is computationally
efficient and offers a compact representation of the results, summarized in
a single map, which eases the interpretation of the results. Comparatively,
the single-scale clusters provide a more detailed scale by scale description of
the phenomena at hand, but come at a higher computational cost – because
the number of permutations to perform is multiplied by the number of scales
considered. And because of the large number of resulting maps – one per
scale, the results of the single-scale scheme might be more difficult to in-
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terpret. Future work could address this latter drawback by modelling more
precisely the relations between clusters obtained at different scales, as was
done in Operto et al. (2012) for fMRI data. Finally, note that our multi-scale
inference strategy could benefit to other searchlight applications, in partic-
ular for fMRI data analysis where it has grew very popular; indeed, Etzel
et al. (2013) suggested to use a systematic multi-scale approach to provide
more robust statistical results and thus improve the interpretability, and our
method directly fullfills this need.

The fact that the results obtained with our SGBM framework are in line
with the existing literature also validate the non linear Support Vector Clas-
sifier as an adequate statistical model to study patterns of sulcal pits and
their differences between populations. This demonstrates that the graph
kernel that we introduced in 2.3 is a valid similarity measure for comparing
pit-graphs, thus providing an alternative to the one of Im et al. (2011). It is to
be noted that the choice of the weights that define Im’s metric required a set
of dedicated experiments (see Im et al. (2011)) and the result of their follow-
up work (Im et al. (2012, 2015)) heavily depends on the values of these seven
hyper-parameters. In contrast, our kernel only has two hyper-parameters
that we directly estimate from the data. The only available element of com-
parison between the two measures is their ability to detect gender differences.
In Im et al. (2012), the authors reported no gender differences in their con-
trol group (first sentence in Results, p.3011), whereas our technique was able
to find several regions with highly significant differences between male and
female subjects. These differences can be explained by several reasons: i) our
dataset was much larger (134 vs. 26 subjects); ii) our pit detection algorithm
is slightly different; iii) their study focused on predetermined large regions
(brain lobes), whereas our framework automatically estimates the localiza-
tion and the size of the region; iv) our inference strategy is more powerful,
thanks to the exploitation of the local redundancy that exist between loca-
tions within a cluster. In theory, it is also possible that our kernel provides a
more expressive graph similarity measure, but we have no element to concur
with this possibility. On the contrary, it was shown – respectively in Im et al.
(2010) and in Takerkart et al. (2014) (where a kernel with a similar design
was used on fMRI patterns) – that both similarity measures effectively use
all elements of the graphs – their structure, the location of the graph nodes
and their attributes. We therefore believe that they are sensitive to the same
features of the folding pattern, that include:
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❼ differences in sulcal depth distributed across a local folding pattern,
as suggested by the concordant results with Duchesnay et al. (2007)
which detected depth differences co-localized with some of the SGBM
clusters,

❼ differences in the local number of pits, as showed by the consistent
results of SGBM and the pit frequency study of Auzias et al. (2015),

❼ differences in pits localization, as suggested by the agreement between
our results and the one of Im et al. (2010) which examined pits dis-
placements;

❼ local organization differences, which might be induced by the two pre-
vious types of effects.

When it comes to interpreting the results provided by our SGBM frame-
work, we demonstrated that a visualization tool such as the one used in 3.3
allows to easily localize the detected clusters on the cortex, which makes
it possible to directly compare SGBM with other automatic morphometry
methods such as VBM, SBM and OBM. For the gender differences and asym-
metry problems, our results are consistent with previously reported differ-
ences in grey matter volume (VBM), cortical thickness (SBM) and sulcal
shape (OBM), which was expected because these different features are – at a
certain level – linked together. But for the first time, SGBM makes it possi-
ble to automatically detect markers associated with the spatial organization
of cortical folding. To go beyond a simple reporting of the localization of the
detected clusters and in order to unveil the neuroscientific underpinnings of
such effect, there is a crucial need to understand which of the four aforemen-
tioned characteristics of the folding patterns actually contributes to the group
discrimination in a given cluster. This is a very challenging problem because
of the complex nature of cortical folding and because our graph kernel com-
bines several feature types in a single similarity measure. But its modular
design makes it possible to conduct posthoc sensitivity analyses similarly to
what was done in Im et al. (2011, 2012, 2015) and in Takerkart et al. (2014),
which simply consists in adding or removing a feature, repeating the analy-
sis and assessing its contribution by examining the performance difference.
Finally, because our similarity measure is a positive definite kernel, we can
exploit the vast array of available kernel methods to perform other types
of posthoc analyses that could help us gain further neuroscientific insights.
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For instance, we could perform dimensionality reduction using kernel PCA
in order to examine the dimensions in graph-space that explain the largest
variance in a given cluster. Then, similarly to what was done in Sun et al.
(2012a) using another dimensionality reduction technique, it is possible to
project the pit-graphs of all subjects along each principal dimension and to
plot them along the corresponding axis in order to visually assess the main
factor(s) of influence. Beyond these two leads – sensitivity analyses and di-
mentionality reduction, the intrinsic complexity of the folding pattern leads
us to believe that further work will be needed to better understand what
contributes to the differences detected with our SGBM framework and how.

5. Conclusion

We have introduced a new brain mapping technique dedicated to study-
ing differences in the local organization of cortical anatomy, by the mean of
patterns constructed from the deepest part of the cortical sulci – the sulcal
pits. Our technique – that we called Structural Graph-Based Morphometry
(SGBM), is the first morphometry framework that combines a graph kernel to
compare sulcal pit-graphs, a searchlight scheme to overcome the limitations
of ROI-based approaches and a multi-scale inference strategy that allows to
find significant effects at different spatial scales. We have demonstrated that
SGBM offers good detection power on two problems that respectively exam-
ined the anatomical gender differences and the cortical asymmetries. This
versatile and powerful pit-based morphometry framework should therefore
find numerous applications, in particular to study cortical development and
clinical populations, two fields where examining the organization of sulcal
patterns at different spatial scales is particularly relevant.
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