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This study aims at determining suitable conditions for the preparation of the best organobeidellite starting

material used for the development of efficient mesoporous TiO2 supported beidellite (Bd) photocatalysts. For

this purpose, organo-modifications of natural Bd from Agadir Basin (Morocco) were achieved. The influence of

(i) the length of alkyl chains Cn (n = 8, 12, 14 and 16) of n-alkyl ammonium surfactants CH3(CH2)n-1NH3
+ and

(ii) the amount of C16 surfactant ranging from 1 to 5 times the smectite (Sm) cation exchange capacity (CEC)

on the structure of organo- Bd was studied. XRD, TEM, TG-DTA and FTIR results are consistent with the interca-

lation of cationic surfactants species in Bd interlayer spaces according to different conformations yielding to their

expansion. The interlayer expansion magnitude increased both with the length of alkyl chain and the amount of

C16 surfactant. Organomodification with increasing surfactant load beyond 1CEC besides yielded to the adsorp-

tion of increasing excess on external surfaces of Bd particles. These controlled structural modifications will be

used further in the functionalization of this Bd by TiO2 nanoparticles to produce efficient supported TiO2-Bd

photocatalysts.

1. Introduction

Clay minerals, especially those of the smectite (Sm) family, are

involved in a wide array of applications owing to, besides their natural

abundance and low costs, their specific properties such as high cation

exchange capacity (CEC), swelling ability, high surface areas and subse-

quently strong adsorption capacities (Velde, 1995; Bergaya and Lagaly,

2006). Nevertheless, their uses remain limited due to their hydrophilic-

ity related to the presence of hydrated interfoliaceous inorganic cations

within their structure that stems from ionic substitutions in their

tetrahedral and/or octahedral sheets (Velde, 1995; Bergaya and

Lagaly, 2006). They can be rendered hydrophobic by several routes

amongst which the exchange of interlayer inorganic cations with

organic ones, currently alkylammoniums, which furthermore result in

the expansion of their interlamellar spaces (Lagaly, 1986; Lagaly and

Dékany, 2005).

These features permit to develop a new class of derivative materials,

namely organoclays, which have new versatile innovative applications

as adsorbents of organic pollutants (de Paiva et al., 2008; Liu et al.,

2008; Park et al., 2011), rheological control agents (Manias et al.,

1996), refractory varnish (de Paiva et al., 2008), thixotropic agent in

coating and thickener in ink (Beall, 2003), component in the develop-

ment of clay polymer nanocomposites (CPN) (Alexandre and Dubois,

2000; Ray and Okamoto, 2003), template in the preparation of graphite

film (Isayama et al., 1996) or of mesoporous inorganic heterostructures

(Letaïef et al., 2006). In these applications, the behavior and properties

of the organoclays are strongly related to the structure and themolecu-

lar environment of the intercalated cationic organic species within the

silicates interlayer spaces. In this respect, depending on the amount

and the kind of the surfactant (mono-, di- or tri-alkyl, chain length…)

and on the nature of clay mineral (chemical composition of the sheets,

layer charge and its distribution…), cationic surfactant entities could

be packed inside interlamellar spaces in the form of lateral mono-, bi-

or pseudo tri-layer, or even of paraffin mono- or bi-layer (Lagaly,

1986; Lagaly and Dékany, 2005; Bouna et al., 2011 and 2013).

In the case of CPN, it was reported that the synthesis of the material

exhibiting the best properties required organoclay precursor with the

largest basal spacing (Vaia et al., 1994; Lagaly et al., 2006). As far as

inorganic heterostructured materials are concerned, several works

reported the immobilization of SiO2 nanoparticles on montmorillonite

(Mt) (Letaïef et al., 2006) or of TiO2 nanoparticles on Mt (An et al.,
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2008), sepiolite (Aranda et al., 2008; Gómez-Avilés et al., 2013;

Ruiz-Hitzky and Aranda, 2014), palygorskite (Bouna et al., 2011 and

2013) as supported photocatalysts starting from the corresponding

organoclays. In such syntheses, the linear alkyl ammonium surfactant

(cetyltrimetylammonium ion, namely C16) amount usedwas equivalent

to 3 times the cation exchange capacity (CEC) of the claymineral. It was

suggested that the surfactant acts as a template affording organophilic

environment favorable to hydrolysis and condensation of organometal-

lic reagents of Ti or Si (Letaïef et al., 2006; Aranda et al., 2008) and it

could be quite completely removed once TiO2 or SiO2 nanoparticles re-

spectively are formed without disturbing photocatalytic activity

(Aranda et al., 2008; Bouna et al., 2011). It is worth mentioning that

no systematic studies were reported on the effects of alkyl chain length

or surfactant load both on the microstructure of immobilized oxide

(average size and distribution of oxide nanoparticles) onto claymineral

particles and on the photoactivity of the TiO2-clay supported

photocatalysts.

Organoclays involved in beforehand mentioned applications were

mostly prepared starting from Mt which is a Mg-for-Al octahedrally

substituted end member of dioctahedral Sm series (Lee and Kim,

2002). He et al (2006) reported that the reaction between a given

surfactant and montmorillonites from different occurrences, therefore

exhibiting variable chemical compositions inducing different layer

charge, i.e different CEC, yielded structurally different organoclays.

More recently, mineralogical, physico-chemical, textural and struc-

tural properties of an abundant Bd -rich clay deposit from Agadir

basin (Morocco) were reported (Bouna et al., 2012). Bd is different

from Mt in that it is an end member of dioctahedral Al- Sm with an

average layer charge of 0.6 to 0.7 pretty completely created by the

substitution of Si4+ by Al3+ in the tetrahedral positions (Nadeau et al.,

1985). The Bd -rich clay is considered herein as starting material to

prepare convenient organobeidellite precursors as first step for the

synthesis of efficient TiO2-supported Bd photocatalysts. The photocata-

lytic activitywill be further optimized by controlling themicrostructural

features, i.e. size and distribution of TiO2 nanoparticles onto claymineral

particles.

This paper aims at studying the effects of the length of alkyl chain

and load of cationic surfactant on the structure of derivative

organobeidellite that will be used as precursor for the synthesis of

TiO2-beidelitte supported photocatalysts. It will be extended by a com-

panion paper focusing onmicrostructural and photocatalytic properties

resulting from these controlled structural changes. In addition, such

organobeidellites could be employed as startingmaterials for the devel-

opment of other kinds of oxide/Bd- or polymer/clay- nanocomposites.

2. Experimental

2.1. Starting materials

Organomodified Bd were prepared starting from ‹ 2 μm Na+-

exchanged Bd fine fraction (Na+- Bd), isolated according to the proce-

dure described elsewhere (Rhouta et al., 2008; Bouna et al., 2012), from

the raw clay (Bd) sampled from the region of western high Atlas basin

of Agadir (Morocco). The raw clay and corresponding purified Na+-

exchanged clay fraction were previously characterized in details (Bouna

et al., 2012). The Na+-exchanged Bd is composed of 93% of Bd, and 7%

of kaolinite (Kaol). Its CEC, BET specific surface area, and total pore vol-

ume are respectively around 59.7 mEq/100 g, 82.2 m2/g and 0.136 cm3/

g. The structural formula of Bd was determined after subtraction of Kaol

contribution as (Si7.51Al0.49)(Al2.99Fe0.68Mg0.33)(Ca0.03Na0.54Mg0.11)O20
(OH)4. It shows dioctahedral aluminiferous features with a structural

negative layer charge per half-unit-cell of about 0.41e created by 60%

and 40% of isomorphic substitutions in tetrahedral and octahedral

sheets respectively.

Linear alkyl chain ammonium bromide compounds [CH3(CH2)n-

1NH3]
+Br-, abbreviated CnBr, having various alkyl chain lengths (n =

8, 12, 14 and 16) were purchased from Aldrich and were used as

received without further purification.

2.2. Preparation

In order to study the effect of alkyl chain length of surfactants on

their intercalation within Bd interlayers, specific samples were pre-

pared. Taking into account molar masses of surfactants, an appropriate

amount (equivalent to 3 CEC of Bd considered herein) of these different

linear alkyl chain compounds were added to an aqueous dispersion of

Na+-exchanged Bd (1 wt%). Likewise, to investigate the influence of

surfactant loading on its insertion inside Bd interlayer spaces, increasing

amounts of cethyltrimethyl ammonium bromide (CTAB) (C16H33NH3Br),

equivalent to 1, 3 and 5 CEC of the Sm, were added at the ambient

temperature to 1 wt% aqueous dispersion of Na+- Bd. After 48 h of

stirring, these dispersions were centrifuged to recover corresponding

solids which were thereafter washed several times with distilled

water to remove surfactant excess as evidenced by the absence of

foam and finally dried in an oven at 60 °C for 2 days. The different

organomodified Bd samples as synthesized were designated according

to the chain length (n) and amount of surfactant (x) expressed in

term of the clay mineral CEC as follows: xCn- Bd, where x = 1, 3 and 5

and n = 8, 12, 14 and 16 atoms of carbon.

2.3. Characterizations

The expansion degree of Bd layers upon organomodification was

evaluated by XRD analyses in small angle range (1 ≤ 2θ ≤ 10°) where

the 001 basal reflection is expected and also examining corresponding

thin foils by transmission electron microscopy. XRD patterns were re-

corded using a Seifert XRD 3000TT apparatus (Cu Kα1 + α2) radiation,

equipped with a diffracted beam graphite monochromator in the

Bragg-Brentano configuration. Microstructural observations were

performed with a Jeol JEM 2010 transmission electron microscope

(TEM) equipped with an energy dispersive X-ray Tracor analyzer

(EDS). A small amount ofmaterial powderwasfirst dispersed in ethanol

with an ultrasonic bath. After that, droplets of this dispersion were

placed on a copper grid (3 mm in diameter) covered by a thin layer of

amorphous carbon. After evaporation of ethanol, particles of the sample

were retained on the grid which was introduced in the TEM apparatus

using a sample holder.

The presence of functional groups characterizing surfactants in

organomodified Bd was checked out by Fourier Transformed infrared

(FTIR) spectroscopy. Spectra were recorded using a Nicolet 5700

spectrometer under ambient conditions in the frequency range 400-

4000 cm-1 using KBr pellets. The pellets contained a mixture of 2 mg

of clay material with 198 mg of KBr (~1 wt%).

The amount of surfactant retained by Bd upon organomodification

was assessed by thermal analysis. The thermogravimetric (TG) and Dif-

ferential Thermal Analysis (DTA) thermograms were collected using a

Setaram Labsys apparatus on sample masses of about 60 mg and using

a temperature ramp of 10 °C/min from the ambient to 1000 °C.

The chemical compositions CHN of starting Na+-Bd as well as deriv-

ative organobeidellites (3CTA+-Bd and 5CTA+-Bd)were determined by

using Perkin Elmer 2400 Series II apparatus.

3. Results and discussion

3.1. Effect of the length of alkyl chain

Fig. 1 represents XRD patterns of starting Na+-exchanged Bd (Na+-

Bd) and its modification with an amount equivalent to 3 CEC of surfac-

tants differing in their alkyl chain lengths (n). It shows the shift of the

characteristic 001 basal reflection of the Bd towards low angles upon

organomodification, i.e towards larger d001 values. The shift is increas-

ing with n. Indeed, the basal distance d001, initially at 1.25 nm in



unmodified Bd, is found at 1.40, 1.85, 2.05 and 2.10 nm upon the

organomodification with alkylammoniums composed of 8, 12, 14 and

16 carbons, respectively. These results clearly indicate the expansion

of Bd interlayer spaces caused by the intercalation of alkylammonium

species in these spaces to replace charges compensating Na+ interlayer

ions. Nevertheless, the difference of expansion degree, observed

according to the alkyl chain length of surfactant, denotes that different

conformations were adopted by alkylammonium species within Bd

interlayer spaces. These conformations depend on alkylammonium

entities packing density, which in turn rely on the surface charge densi-

ty of claymineral and the surfactant alkyl chain. In fact, as it was report-

ed in the literature (Lagaly, 1986; Lee and Kim, 2002; Lagaly and

Dékany, 2005; de Paiva et al., 2008; Liu et al., 2008; He et al., 2010;

Wang et al., 2011), the increase of basal distances from 1.25 to 1.4 and

1.85 nm, upon the claymineralmodificationwithC8 andC12 surfactants,

respectively, are consistent with the arrangement of entities of these

surfactants inside Bd interlayer spaces in the form of a monolayer and

a bilayer, respectively. On the other hand, the intercalation of C14 and

C16 surfactants resulted in quite the same expansion of Bd layers to

approximately 2.1 nm. This degree of expansion denotes that both the

surfactants might be laid inside Bd interlayer spaces as pseudo

trimolecular layer or monolayer of paraffin (Lagaly, 1986; Lagaly and

Dékany, 2005; de Paiva et al., 2008; Hu et al., 2013). Nevertheless, it

was reported that ammonium groups are best accommodated to

oxygen atoms of clay mineral

basal surfaces when they are involved in paraffinmonolayer than in

pseudo trimolecular layer (de Paiva et al., 2008). In this respect, an

expansion magnitude Δd of 1.13 nm was assessed by subtracting the

layer thickness of Sm (≈0.97 nm) (He et al., 2006) from the basal

distance 2.1 nm beforehand mentioned. Knowing that the alkyl chain

length (l) of C16 surfactant molecule (CTAB) is 2.53 nm (He et al.,

2006), it can be deduced from the Eq. (1) (Lagaly, 1986; Lagaly and

Dékany, 2005; He et al., 2006) that entities of this surfactant are tilted

within interlayer spaces of an inclination angle (α) of almost 27° with

respect to Bd basal surfaces:

α ¼ sin−1 Δd=lð Þ ð1Þ

Table 1 gathers basal distances assessed from XRD analysis for a se-

ries of organobeidellites versus chain length (n) of the surfactants used,

corresponding caused expansion magnitudes and the arrangement

mode of their species between Bd layers.

3.2. Effect of C16 surfactant amount

Owing to the high expansion generated by the C16 surfactant, the

study was carried out by examining the effect of the load of this surfac-

tant on the structure of organobeidellite derivatives.

XRD diffractograms of Bd modified with different amounts of C16
surfactant expressed as a multiple of CEC reveals that the initial 001

basal reflection of Bd at 1.25 nm (2θ=7.2°) is shifted to smaller angles

Fig. 3. TEM micrograph showing different basal distances of Bd organomodified with an

amount of the CTAB surfactant equivalent to 5 CEC.

Fig. 2. XRD diagrams superposition of Na+-exchanged Bd before and after

organomodification with different amounts of CTAB surfactant.

Table 1

Structural data determined from XRD analysis for two series of organobeidellites xCn-Bd

differing by chain length of the surfactant (n) and the amount of CTAB surfactant (x).

n x d001
(nm)

Expansion

Δd (nm)

CTA+ arrangement

mode

Tilt angle

α (°)

Effect of surfactants chains lengths (n)

8 3 1.40 0.43 Monolayer -

12 3 1.85 0.88 Bilayer -

14 3 2.05 1.08 Parrafin monolayer 25

16 3 2.10 1.13 Paraffin monolayer 27

Effect of CTAB surfactant loads in term of xCEC

16 1 1.73 0.76 monolayer -

16 2 2.10 1.13 Paraffin monolayer 27

16 3 2.10 1.13 Paraffin monolayer 27

16 5 3.90 2.93 Paraffin bilayer 37

Fig. 1. XRD diagrams of Na+-exchanged Bd before and after organomodification with sur-

factants differing in the length of alkyl chains.



and thus to higher basal spacing d001 as the amount of the surfactant in-

creased (Fig. 2). Indeed, upon the modification with an amount

equivalent to 1 CEC, the d001 distance increased from 1.25 to 1.73 nm

(2θ= 5.1°). Likewise, the modification with amounts equivalent to 2

and 3 CEC yields to a same increase of the basal distance to about

2.1 nm (2θ=4.3°). By contrast, the Bd organomodifiedwith an amount

equivalent to 5 CEC exhibits the 001 basal reflection at 3.9 nm (2θ=

2.2°) along with harmonics (002) at 1.95 nm (2θ= 4.6°) and (003) at

1.27 nm (2θ= 6.95°).

These results prove the success of intercalation of the surfactant

alkylammonium between Bd layers resulting in the expansion of

interlayer spaces. Higher is the amount of the surfactant, higher is the

expansion degree. It is worth noting that the 001 basal reflection in

samples organomodified with concentrations of CTAB equivalent to 1,

2 and 3 CEC appears less resolved, asymmetric, less intense and broader.

Owing to the heterogeneous distribution of layer charge characterizing

Sm (Lagaly and Dékany, 2005), this could originate from random rear-

rangement of cationic species of the surfactant inside Bd interlayer

spaces yielding to inhomogeneous Bd layers with some different basal

spacings. Thus, the distances assessed above may represent an average

of irregular distances of spacings. Nevertheless, the sample obtained

upon organomodification with CTAB concentration equivalent to 5

CEC exhibited 001 reflection relatively thinner, more symmetric and

with a better resolution. This indicates an ordered structure of CTA+

species in Bd interlayer spaces yielding to a better homogeneity of layers

in this sample.

Dimensional characteristics regarding the molecular conformation

of CTAB were reported in details by He et al (2006). As a free molecule,

it is characterized by a fixed length of the “nail” about 2.53 nm,

consisting of the “nail-head” (0.43 nm) and “nail-body” (2.1 nm).

Nevertheless, the height of the CTA+ differs according to its orientation.

Indeed, when the plane of the zigzag arrangement of the carbon atoms

of CTA+ is perpendicular to the plane of the silicate layer, the height of

the “nail-body” is≈ 0.46 nm and that of the “nail-head” is≈ 0.51 nm.

On the other hand, when the plane of the zigzag arrangement of CTA+

carbon skeleton is parallel to the plane of the clay mineral layer, the

heights of “nail-body” and “nail-head” are 0.41 nmand 0.67 nm, respec-

tively. By taking into account these data, the magnitude order of inter-

layer expansion caused by 1 CEC of CTAB (Δd ≈ 0.76 nm) is rather

likely consistentwith the height of the “nail-head” of cationic surfactant

species when they are arranged in the form of monolayer lying parallel

to the plane of Bd layers. This finding is in contrast to that reported by

He et al (2006) for Mt from China. The interlayer expansion resulting

frommodification with 3 CEC (Δd≈ 1.13 nm) indicates that surfactant

entities formmonolayer paraffin structure with a tilt angle of about 27°.

Upon organomodification with 5 CEC, Bd interlayer spaces were

expanded of about Δd ≈ 2.93 nm indicating that surfactant species

likely formed bilayer paraffin structure with tilt angle of about 37°.

Table 1 recapitulated basal distances recorded from XRD analysis

upon organomodification of Bd by increasing amount of CTAB, corre-

sponding expansion degree and the disposition mode of its entities

within Bd interlayer spaces.

TEMmicrograph of themost organomodified Bd sample (5C16- Bd) is

shown in Fig. 3. It exhibits the expansion of Bd interlayer spaces as evi-

denced by interlayer distances ranging from 3.1 to 3.9 nmwhich proved

surfactant intercalation. It isworth noting that the dispersion of these dis-

tances is narrow so that it likely denotes a quite homogeneous intercala-

tion of CTAB surfactant whose species seemed to be well ordered within

Bd interlayer spaces in agreement with the above XRD data. FTIR spec-

troscopy carried out on the different organomodified Bd samples

(Fig. 4) shows, besides bands characteristic of Bd (Bouna et al., 2012),

that higher is the surfactant amount, more intense are the symmetric

and asymmetric stretching vibrations at 2924 and 2853 cm-1, respective-

ly. These spectra also show their corresponding deformation vibrations at

1490 and 1470 cm-1, which are thefingerprint of CTAB surfactant species.

Furthermore, thermal analysis, performed on different

organomodified Bd samples based on C16 surfactant investigated herein,

reveals for temperature ranging from 200 to 750 °C, mass losses on TG

thermograms (Fig. 5a) associated to exothermic effects on DTA curves

(Fig. 5b), due to the thermal degradation of CTAB surfactant. These organ-

ic mass losses increased with the amount of the used organo-modifying

Fig. 5. TG (a) and DTA (b) Thermograms of Na+-Bd before and after organomodification with different amounts of CTAB surfactant.

Fig. 4. Infrared spectra of Na+-Bd before and after organomodification with different

amounts of the CTAB surfactant.



agent (Table 2). These experimental losses are quite consistentwith those

theoretically predicted from Eq. (2) taking into account the x times

CEC used of the Bd (herein, x = 3) andmolar mass of the surfactant

cation (MCTA
+ ) (Wang et al., 2011) (Table 2):

QCTAþ ¼ ⌊ xCEC #MCTAþ # 10−3
� �

= xCEC #MCTAþ # 10−3 þ 100
� �

⌋
# 100% ð2Þ

These results were further supported by CHN analysis. Indeed, find-

ings reported in Table 3 showed thatwhile themass contents of C, H and

N elements were as expected quite negligible in unmodified beidellite

(Na+-Bd), they however increased in derivative organoclays (3CTA+-

Bd and 5CTA+-Bd) with the increase of CTAB loads used for beidellite

organomodification. Taking into account the chemical formula of the

CTAB on one hand and the CEC (≈60 meq/100 g) of the beidellite on

the other hand, the amounts of C, H and N corresponding to the com-

plete exchange of beidellite interlayer Na+ ions with CTA+ entities

can be deduced as equivalent to 10, 2 and 1 wt% respectively. These

amounts were lower than those determined by CHN analysis of

3CTA+-Bd and 5CTA+-Bd. This likely denoted that while a sufficient

same part of CTA+ was intercalated in beidellite interlayer spaces

according to arrangements established above for 3CTA+-Bd and

5CTA+-Bd organoclays to compensate the totality of permanent layers

charges, the excess of CTAB was probably adsorbed outside on external

surfaces of Bd particles. It seems that this excess of CTAB is higher in

5CTA+-Bd with respect to 3CTA+-Bd.

4. Conclusions

This study aimed at examining the behavior of an aluminiferous Bd

from Agadir basin, Morocco, toward organomodification with linear

alkyl chain ammonium surfactants in the objective to use these

organobeidellite precursors for the further preparation of efficient

TiO2 supported Bd photocatalysts. The study of the influence of the

length of the alkyl chain of surfactant shows that the best expansion

of Bd interlayer spaces is achieved with surfactants whose carbon

atoms number is beyond 14. The study of the influence of the amount

of CTA+ (i.e surfactant composed of 16 C) shows that the concentration

of 1 CEC, 3 CEC and 5 CEC leads to an arrangement of CTA+ species

inside Bd interlayer spaces in the form of monolayer perpendicular to

the plane of clay mineral, paraffin monolayer and paraffin bilayer,

respectively oriented according to tilt angles of about 27 and 37°,

respectively. Not intercalated surfactant excess, which was higher

when using amount equivalent to 5CEC than 3CEC, was adsorbed on

external surfaces of Bd particles.

This practical and useful study is continued in a companion paper that

reports the influence of these structurally different organobeidellites, i.e.

3CTA+- Bd and 5CTA+- Bd, on the microstructure of TiO2 (crystalline

phase, particles size and distribution) supported on Bd, and thus on the

photocatalytic activity of supported TiO2- Bd catalyst towards the remov-

al of pollutant from aqueous media.
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