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Abstract. Many respiratory motion compensation approaches in radi-
ation therapy of thoracic and abdominal tumors are guided by external
breathing signals. Patient-specific correspondence models based on plan-
ning 4D data are used to relate signal measurements to internal motion.
The motion estimation accuracy of these models during a treatment frac-
tion depends on the degree of inter-fraction motion variations. Here, we
investigate whether motion estimation accuracy in the presence of inter-
fraction motion variations can be improved by (sub)population models,
which incorporate patient-specific motion information and motion data
from selected additional patients. A sparse manifold clustering approach
is integrated into a regression-based correspondence modeling framework
for automated identification of subpopulations of patients with similar
motion characteristics. In an evaluation with repeated 4D CT scans of 13
patients, subpopulation models, on average, outperform patient-specific
correspondence models in the presence of inter-fraction motion varia-
tions.

1 Introduction

Respiratory motion is a key problem in external beam radiation therapy (RT)
of thoracic and abdominal tumors. In clinical practice, this problem is typically
tackled by the use of technical motion compensation approaches (e.g., gating
or tumor tracking) [1]. Most compensation approaches are guided by (external)
breathing/surrogate signals (e.g., spirometry, skin surface displacements). Given
a signal measurement, a trained correspondence model, which relates signal mea-
surements to internal motion patterns, can be used to estimate the complex 3D
motion of internal structures during the treatment [2].

Several approaches for correspondence modeling and model-based respiratory
motion estimation in RT in general have been proposed over the past decade (see
[2] and [3] for overviews). From a methodological point of view, most approaches
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are either patient-specific or population-based. Patient-specific correspondence
models [4–6] are built prior to the treatment based on planning 4D CT/MRI data
of the specific patient. In contrast, (inter-patient) population-based models are
build from motion data of several patients and typically model the mean motion
(+ deviations from the mean) [7, 8]. Population models can, e.g., be adapted to
unseen patients to allow for model-based motion estimation in the absence of
patient-specific 4D planning data.

In most population-based approaches, the complete population is used to
compute the model. Hence, the possible existence of subpopulations that opti-
mally resemble the unseen patient’s true motion is ignored. Recently, approaches
for selecting/determining subpopulations of patients with motion patterns most
similar to those of the unseen patient have been proposed [9–12].

Despite these developments, most of the time patient-specific models still
outperform population models. However, the accuracy of a patient-specific corre-
spondence model built on planning data and applied during a treatment fraction
highly depends on the degree of inter-fraction motion variations [6]. We hypoth-
esize that a patient’s inter-fraction motion variability resembles the inter-patient
motion variations observed in a subpopulation of patients with similar breath-
ing characteristics. In this work, we, therefore, investigate whether the motion
estimation accuracy in the presence of inter-fraction motion variations can be
improved by correspondence models, which incorporate both, patient-specific
motion information obtained from a planning data set as well as motion infor-
mation from selected additional patients. To automatically identify subpopula-
tions of patients with similar motion characteristics, we propose using a sparse
manifold clustering approach, which is integrated into a regression-based corre-
spondence modeling framework. The proposed approach is evaluated by means
of repeated 4D CT scans of 13 lung cancer patients.

2 Methods

The goal of our approach is to build a correspondence model for a patient p = 0
with available planning data acquired prior to the treatment. We assume the
planning data of this patient to consist of a 4D CT data set (I0,j)

nph

j=1 with

nph 3D images I0,j : Ω0 → R (Ω0 ⊂ R3) capturing the patient’s anatomy at
breathing phases j and corresponding nsur-dimensional surrogate signal mea-
surements (ζ0,j)

nph

j=1 with ζ0,j ∈ Rnsur . We furthermore assume a population of
npat other patients to be given. The data available for each of these population
patients p ∈ {1, . . . , npat} also consists of a 4D CT image sequence (Ip,j)

nph

j=1

with Ip,j : Ωp → R and nph corresponding surrogate signal measurements
ζp,j ∈ Rnsur . For the sake of simplicity, we assume temporal correspondence
between the phases j across all patients.

After explaining the preprocessing of the data (Sec. 2.1), we will briefly re-
view our patient-specific correspondence modeling approach (Sec. 2.2), before a
general population-based extension (Sec. 2.3) and the new subpopulation-based
approach (Sec. 2.4) are presented.
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2.1 Preprocessing

As a first step, the 4D images sequences of all patients are mapped to a common
atlas space ΩA to establish anatomical correspondence between all data sets. The
atlas space is generated following the approach presented in [13] by using the
population patients. After this preprocessing, the reference breathing phases j =
1 (here: end-inspiration) of all patients are anatomically aligned, while breathing-
related anatomical differences between patients in other phases are preserved.
Please note, that the surrogate signals need to be transformed accordingly.

2.2 Patient-specific correspondence modeling

Our patient-specific correspondence modeling approach [4] is based on the as-

sumption that a linear relation between a surrogate signal measurement ζ̂0
and the corresponding internal motion ϕ̂0 exists. The non-linear transformation
ϕ̂0 = id + û0 : ΩA → ΩA represents the deformation of the internal structures
between the reference phase I0,1 and the breathing state represented by ϕ̂0. Here,
û0 denotes a displacement field. Mathematically, we define the relationship be-
tween ζ̂0 and ϕ̂0/û0 as

û0 = u + Bζ̂0 , (1)

where û0 ∈ R3m (m: number of image voxels) denotes a vector containing all
elements of the displacement field û0, B ∈ R3m×nsur is a coefficient matrix, and
u ∈ R3m is the mean displacement vector.

Model training consists of learning the coefficient matrix B (and calculating
u) in Eq. (1). First, internal motion data is derived from the planning data by
estimating non-linear transformations (ϕ0,j)

nph

j=1 between the reference phase I0,1
and each I0,j via image registration [14]. Subsequently, least squares regression is
performed based on the vectorized displacements fields (u0,j)

nph

j=1 of the estimated

transformations and the corresponding surrogate signal measurements (ζ0,j)
nph

j=1

to obtain B. See [4] for further details. This model represents the breathing
characteristics captured by the patient-specific planning data.

2.3 Population-based correspondence modeling

The patient-specific correspondence model built in Sec. 2.2 is extended to a
general population-based model by adding internal motion information and cor-
responding surrogate signal measurements from all npat population patients to
the training data used to estimate coeffcient matrix B in Eq. 1. Therefore, non-
linear transformations (ϕp,j)

nph

j=1 between the reference phase Ip,1 and all other
images Ip,j of each patient p have to be computed. Finally, the training data
consists of displacement fields (up,j)

npat,nph

p=0,j=1 and corresponding surrogate signal

measurements (ζp,j)
npat,nph

p=0,j=1 .
As all patients are represented by the same number of samples in the training

data and no weighting is applied, least-squares regression averages out differences
between patients. Hence, the influence of the patient-specific planning data of
patient p = 0 depends on the population size.

83



2.4 Subpopulation-based correspondence modeling

As stated before, we hypothesize that a patient’s inter-fraction motion variability
resembles the inter-patient motion variations observed in a (sub)population of
patients with similar breathing characteristics. The general population model in
Sec. 2.3 is built based on data from all population patients, which might lead to
an improved estimation accuracy. However, we assume that most of the time the
heterogeneity of the population/large inter-patient differences will negatively
impact the accuracy. We are therefore interested in identifying a subset S ⊆
{1, . . . , npat} of population patients with breathing characteristics most similar
to that of the unseen patient p = 0 to build a more accurate model.

Our idea is to determine subset S by clustering the motion of all patients with
respect to their similarity. In the end, the cluster the new patient p = 0 belongs
to is chosen as S. Motion clustering has also been used by Peressutti et al. [11]
to identify patients with similar breathing characteristics to personalize affine
population models for cardiac respiratory motion compensation. However, in
our application we have to deal with non-linear deformations and, furthermore,
our clustering approach based on sparse coding is more general than the one
used in [11] as it is able to effectivly handle high-dimensional data with complex
structure.

Motion representation We start by representing the motion of each patient p ∈
{0, . . . , npat} by a vector mp = [uT

p,EE ,u
T
p,MI ,u

T
p,ME ]T ∈ R9m. Each vector

mp consists of a concatenation of three selected displacement field vectors up,j ,
which encode the motion between the reference phase EI (end-inspiration) and
the phases of end-expiration (j = EE), mid-inspiration (j = MI), and mid-
expiration (j = ME) extracted from the 4D CT data sets (cf. Sec. 2.3). While
the motion between EI and EE serves as a general representative for the motion
of patient p, hysteresis-related patterns are captured by integration of the motion
between EI and MI/ME.

Motion clustering We now assume that these vectors mp lie in or close to multiple
low-dimensional manifolds embedded in the high-dimenional ambient space. A
(spectral) clustering solely based on pairwise distances computed in the ambient
space might ignore this (possible) structure and assign motion vectors belonging
to different manifolds to the same cluster. In order to avoid this, we employ the
Sparse Manifold Clustering and Embedding (SMCE) method [15]. The approach
aims to find a small number of neighbors {mi}i 6=p of each data point/motion
vector mp that belong to the same manifold and, therefore, approximately span
a low-dimensional affine subspace passing near mp. An advantage of SMCE over
other approaches is that these neighbors are automatically found, without the
manual selection of a neighborhood radius or a fix neighborhood size.

Next, for each motion vector mp a sparse weighting vector wp ∈ Rnpat+1

is computed whose non-zero elements indicate the (inverse) distances of the
selected neighbors of mp to mp. From these vectors {wp}, a similarity matrix

W =
[
|w0| . . . |wnpat

|
]

(2)
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is build, which is subsequently used for k-means-based spectral clustering [16].
Here, k denotes the number of clusters to be obtained. This parameter should
be chosen with respect to the low-dimensional structure of the high-dimensional
data (k ≥ # of manifolds).

Finally, the subpopulation of patients (including p = 0) specified by motion
vectors belonging to the same cluster as m0 are used to generate a subpopulation
model following the steps outlined in Sec. 2.3.

2.5 Experiments

An evaluation of the different models presented in Sec. 2.2–2.4 in the presence
of inter-fraction variations of respiratory lung motion is carried out on repeated
4D CT data sets (10 breathing phases; resampled to a spatial resolution of
2.5× 2.5× 2.5 mm) of 13 lung cancer patients (see [17] for details). For each of
these 13 patients, 2 4D CT data sets acquired at different days (Day1 and Day2)
are available. 20 4D CT data sets of different patients are additionally used as
population patients. In total, 46 4D CT data sets are used for the experiments.

During preprocessing (cf. Sec. 2.1), intra-patient/intra-fraction registrations
restricted to the lungs are performed to estimate the respiratory lung motion
of all patients in atlas space. The resulting transformations are used to build
different models and serve as ground-truth motion data for evaluation. Model-
based estimation accuracy is quantitatively evaluated by computing mean vector
differences between a displacement field ûj estimated by a correspondence model
and the ground-truth field uj computed via registration for all inner-lung voxels.
Due to the lack of available real surrogate data for the data sets used, a nsur = 2-
dimensional spirometry signal (signal value + time derivative) is simulated by
an image-based analysis of the air content inside the lungs (see [4] for details).

For each of the 26 4D CT data sets of the different day cohort (13 pa-
tients with 2 repeated scans), 4 different correspondence models are built: (1) a
patient-specific intra-fraction model, (2) a patient-specific inter-fraction model,
(3) a population model, and (4) a subpopulation model. Each model is used to
estimate the lung motion between the reference phase EI and the phases at MI,
ME, and EE in the experiment-specific test data set.

Patient-specific intra-fraction model To establish a reference for performance
comparison, a patient-specific intra-fraction model (cf. Sec. 2.2, [4]) is built for
each data set by using a leave-out strategy. Phases at MI, ME, and EE are left
out during training, respectively, and the motion between the reference phase
EI and the left-out phases is estimated by the trained correspondence model.

Patient-specific inter-fraction models Patient-specific inter-fraction models (cf.
Sec. 2.2) are built based on the internal motion data and the surrogate signal of
the Day1 (Day2) data set to perform a model-based estimation of the motion in
the Day2 (Day1) data set. Results of these models will give an impression on how
well a patient-specific correspondence model build on pre-treatment planning
data is able to estimate motion during a treatment fraction at a different day.
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Table 1. Mean estimation errors obtained for the surrogate-based estimation of inner
lung motion for the different correspondence models, given as mean±standard deviation
per phase for the 26 data sets considered. Last column: mean results over all 3 phases.

Mean estimation error [mm]

Motion estimation EI → EE EI → MI EI → ME Mean

No motion estimation 8.59± 3.92 4.80± 2.27 7.09± 3.36 6.83± 3.58
Inter-fraction motion difference 4.06± 1.48 3.17± 0.85 3.62± 1.36 3.62± 1.30

Models:
Patient-specific intra-fraction 1.45± 0.70 2.19± 1.02 1.47± 0.73 1.71± 0.89
Patient-specific inter-fraction 3.75± 1.31 2.91± 1.04 3.34± 1.14 3.34± 1.20
Population model 4.52± 1.56 2.87± 0.91 4.06± 2.08 3.82± 1.72
Subpopulation model 3.33± 0.99 2.59± 0.85 3.01± 0.93 2.97± 0.96

Population model For each data set, a population model (cf. Sec. 2.3) is built
using a population of npat = 44 data sets (both data sets of the remaining 12
patients with repeated data + 20 patients with single session data) and the Day1
(Day2) data set of the specific patient. Each model is used to estimate the lung
motion in the corresponding Day2 (Day1) data set.

Subpopulation model For each data set, a subpopulation model (cf. Sec. 2.4)
is built using the same population as for the population models. However, a
spectral motion clustering based on the Day1 (Day2) data set is carried out
as described in Sec. 2.4 to identify a suitable subpopulation of patients. The
k−means algorithm is run with k = {2, . . . , 44} clusters. In this work, k is
retrospectively optimized for each patient with respect to the estimation error.
Resulting models are used for motion estimation in the Day2 (Day1) data sets.

3 Results

Quantitative results of our evaluation are listed in Tab. 1. As expected, patient-
specific intra-fraction models are giving (by far) the best results in terms of
estimation accuracy. For the experiments where the motion in the different day
data sets has to be estimated, the patient-specific inter-fraction models have on
average a significantly higher estimation accuracy than the general population
models (paired t-test; p < 0.05). This result supports our hypothesis that the
heterogeneity of the population negatively impacts the accuracy of general pop-
ulation models. In contrast, the results of the subpopulation models show, on
average, a significant improvement in terms of estimation accuracy compared to
the results of the patient-specific inter-fraction models (p < 0.01). For some pa-
tients with large inter-fraction motion differences, mean improvements > 1mm
are achieved by using the subpopulation models instead of the patient-specific
inter-fraction models (see Fig. 1). On average, 7.77 ± 10.18 patients were used
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Fig. 1. Mean estimation errors of inter-fraction and subpopulation models for all 26
data sets (mean results over all 3 phases). In addition mean motion and inter-fraction
motion differences are given.

for building the subpopulation models. A strong correlation (correlation coeffi-
cient of 0.85) between inter-fraction differences and mean estimation accuracy
improvements achieved by the subpopulation models compared to the patient-
specific inter-fraction models is observed.

4 Conclusion

Current respiratory motion compensation approaches in radiation therapy usu-
ally employ patient-specific correspondence models to relate surrogate signal
measurements to internal motion patterns. In this work, an investigation on
whether the motion estimation accuracy in the presence of inter-fraction motion
variations can be improved by correspondence models that incorporate both
patient-specific motion information obtained from a planning data set as well as
motion information from selected additional patients with similar breathing mo-
tion was carried out. A sparse manifold clustering approach was employed to au-
tomatically identify subpopulations of patients with similar motion characteris-
tics. The evaluation based on 13 patients with repeated 4D CT scans showed that
these so-called subpopulation models, on average, outperform patient-specific
correspondence models in the presence of inter-fraction motion variations. How-
ever, for most patients, only small differences between both models exist. Fur-
thermore, it has to be noted that the parameter k in our clustering approach,
which controls the number of patients in the chosen subpopulation, was ret-
rospectively optimized with respect to the estimation error. Future work will
therefore focus on finding ways to choose this parameter automatically. More-
over, all experiments in this work were carried out in a common atlas space.
Hence, an efficient integration of this approach into a clinical workflow will be
another challenge.
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