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Abstract. A crucial and time-consuming task in adaptive radiotherapy
is the propagation of contours from an initial planning CT image to a
control image taken during the course of treatment. Precise adaptation of
contours for organs at risk, as well as target volumes is necessary in order
to calculate an adapted treatment plan. Although several commercially
available solutions exist that aim at solving this task, manual editing and
correction of such automated mappings is still an inevitable requirement
making the overall process tedious and time-consuming in clinical rou-
tine. We present a processing pipeline aiming at fast and fully automated
propagation of contours between different datasets of an ongoing therapy.
The method is based on a non-linear image registration combined with
GPU accelerated contour generation. We evaluate our method by cal-
culating Dice similarity coefficients and 3D Hausdorff distances between
our results, and manually generated contours which serve as a ground
truth. Additionally, we compare our results against contours mapped
using a state-of-the-art commercially established contouring software.

Keywords: Adaptive radiotherapy, contour propagation, non-linear registra-
tion

1 Introduction

Adaptive radiotherapy attempts to improve the outcome of radio-therapeutic
tumor treatment by adapting an original treatment-plan during the course of
therapy to physiological changes occurring in the patients body. To facilitate
this, CT-imaging is performed at certain stages during therapy, building the
foundation for adaptation of the treatment plan. In order to calculate an adapted
plan, contours of both target structures as well as organs at risk need to be
transferred to the control CT image, taking into account the current anatomical
situation.
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Fig. 1. Overview of the complete processing pipeline.

This goal can theoretically be achieved in two ways. First, the control CT
could be completely re-contoured, resulting in a new set of contours, independent
of the initial structures. Alternatively, the original structures can be transferred
to the target image by means of non-linear image registration with subsequent
transformation of all structures. The latter approach offers two significant ad-
vantages: First, the time requirement can be reduced given the fact that a well
fitting set of contours builds the basis for typically required corrections. Second,
the correspondence between structures from the planning image to the control
image remains intact, facilitating precise calculations of volumetric changes of
individual structures over time.

Both approaches are supported by current commercially available software
systems such as ABAS [1]. Complete re-contouring is supported by means of
multi-atlas based pre-segmentation of organs at risk, followed by inevitable man-
ual adaptations of the resulting contours. Alternatively, the original contours can
be used for a single-atlas based segmentation.

In this paper, we present a novel approach for fully automated transfer of
contours from different CT images relying on a non-linear image registration with
automatic patient table removal, followed by re-generation of contours of the
original structures on the target image. We evaluate our method by comparing
the results of the mapping process to those obtained using ABAS.

2 Methods

Our method is based on a processing-pipeline consisting of two main stages: First,
the non-linear image registration and second the image based contour mapping.
The registration stage consists of a pre-processing step aiming at automatic table
removal, followed by a coarse linear volume alignment with subsequent non-linear
image registration as presented in [4]. The mapping stage consists of structure
voxelization, GPU accelerated deformation and resampling, and finally contour
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Fig. 2. A representative slice of the input image volume is displayed in (a). The pro-
jection along the z-axis results in (b), and a further projection along the x-axis in (c).
(d) displays the resulting cropped output image after automatic table removal.

generation using the marching squares approach. Figure 1 gives a schematic
overview of the complete pipeline.

2.1 Automatic table removal

To eliminate the influence of the CT scanning table on the results of the image
registration, we have implemented a simple technique for table removal. As an
exact registration of the patient table would have no impact on the addressed
problem, a VOI including the patient volume only is automatically calculated.
This eliminates the influence of structures outside the patient on the distance
measure and also reduces computation costs effectively speeding up the regis-
tration process as the considered image domain Ω is reduced to the VOI only.

The proposed method is derived from [9], but has been adapted to images
used in radiotherapy. We exploit the circumstance that the patient table is typ-
ically aligned in parallel to the direction of image acquisition. This allows to
easily identify the table by performing an orthogonal projection of locally maxi-
mal image intensities along the z-axis of the input image. This sums up all table
voxels, forming a very dominant line in the projected image. A second projection
along the x-axis generates a one-dimensional image profile, where the maximum
image intensity depicts the surface of the table. Figure 2 gives a short overview
of the performed steps.

2.2 Non-linear image registration

One of our general expectation regarding the non-linear, intra-patient image
registration here is, that the deformations will be considered as smooth. The
future-oriented trend of standardized patient positioning in advanced head and
neck radiotherapy supports this assumption. Therefore, we chose the Normal-
ized Gradient Fields (NGF) [3] as distance measure, focusing on edges in the
CT images to be registered, and a curvature regularizer, aiming for smooth de-
formations.
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Consider R : R3 → R as the fixed reference image and T : R3 → R as
the moving template image with compact support in domain Ω ⊆ R3. Image
registration aims to find a transformation y : Ω → R3 such that T (y) is similar
to R. In our specific application of contour propagation we aim to be able to
propagate contours as images with the transformation y.

The variational approach used for the non-linear image registration step here,
models the image registration process by the objective function J

J = D (R, T (y)) + α · S (y) , (1)

where D is the distance measure, S is the regularizer, and α is the regularization
parameter, a weighting factor affecting data fit and regularity.
We used the Normalized Gradient Fields (NGF) [3] as distance measure. For
x ∈ Ω it is given by

D (R, T (y)) :=

∫

Ω

1−
( 〈∇T (y (x)) ,∇R (x)〉η
‖∇T (y (x)) ‖η‖∇R (x) ‖η

)2

dx (2)

with

〈f, g〉η :=
3∑

j=1

fjgj + η2 and ‖f‖η :=
√
〈f, f〉η (3)

to describe image similarity. The NGF distance measure considers the angle
between image gradient vectors in the reference and the template image at each
point. The edge parameter η is used to define a threshold, that specifies which
gradients are counted among the noise level.

For regularization purpose we used the curvature regularizer as proposed
in [2], which is based on second order derivatives, penalizing the Laplacian of
the displacement components. The curvature regularizer S is given by

S (y) :=
1

2

3∑

l=1

∫

Ω

‖∆u‖2dx (4)

with the decomposition y (x) = x + u (x), where u is the displacement. One
beneficial characteristic of the curvature regularizer is, that it results in very
smooth deformations, meeting our expectations.

A discretize-then-optimize scheme [5] is performed to optimize J using a
quasi-Newton L-BFGS optimizer [7]. To avoid local minima, the iteration scheme
is embedded into a multi-level approach [5]. Therefore, the optimization problem
is solved consecutively on coarse to fine image resolution levels. In this imple-
mentation, the objective function is evaluated on 5 levels. The proposed results
were obtained with an edge parameter of η = 0.1 and a regularization parameter
of α = 1.
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Fig. 3. Illustration of the mapping process: Axial source contours (a). 3D image rep-
resentation (b). Deformed image representation (c). Resulting contours (d).

2.3 Contour propagation

Contour propagation is performed individually for each ROI loaded from a DI-
COM RTSTRUCT file by following a sequence of standard image-processing
operations. The mapping is always performed from the source image to the tar-
get image, such that no deformation is applied to the target image and the
resulting contours are placed in the correct coordinate system.

First, the axially aligned contours defining an anatomical structure are con-
verted into a 3D image object, by rasterizing them in to the coordinate system
of the corresponding reference image. Anti-aliasing is applied in order to cor-
rectly account for partial volume effects. This image mask is then deformed
non-linearly using an OpenCL accelerated GPU implementation. During the de-
formation, resampling to the target coordinate system with tri-linear filtering is
also performed on the GPU .

This results in a deformed 3D image representation of the given structure
living in the coordinate system of the target image. An additional smoothing
step using a Gaussian filter kernel is applied to reduce aliasing artifacts.

Finally, result contours for each structure are generated by processing the de-
formed image representation slice by slice. A marching-squares algorithm with
interpolation is utilized for this step. The combination of anti-aliasing dur-
ing rasterization, tri-linear filtering during resampling, and interpolation in the
marching-squares step assures to minimize undesired artifacts in the resulting
contours. Figure 3 illustrated this process.

3 Evaluation

We have implemented our pipeline in a prototypical software assistant called
CUTE. An initial quantitative assessment of our method was presented in [6].
Here, we present results of an in depth comparison of the performance of our
method over a set of 15 structures. Eight replanning CTs of five randomly se-
lected head and neck cancer patients have been retrospectively auto-contoured
using CUTE. These contours were compared to manually created contours from
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Fig. 4. Comparison of automatically propagated contours (a), and manually delineated
contours (b). Image (c) shows both contour sets simultaneously, manual contours drawn
with dashed lines.

an experienced radiotherapist. In addition, the commercially available ABAS
software (Atlas-based Autosegmentation, Elekta AB, Stockholm) [1] was used to
automatically create another set of contours. Then, the two automatically prop-
agated contour sets were individually compared to the manual re-contourings.
Similarly to [8] Dice similarity coefficient (DSC) and 3D Hausdorff distance (HD)
were chosen as evaluation metrics. Results are shown for a subset of all con-
tours that includes the main target volumes with nearby organs-at-risk (OARs).
Target volumes have been classified to low or high depending on the patient’s
prescriptions dose.

4 Results

Figures 5 and 6 show box plots illustrating distribution of DSC and HD metrics
of the two methods for all structures of the 8 replanning CTs. The box plot
for all structures shows that both ABAS and CUTE perform well with no sig-
nificant differences. Our method delivers more robust results as the quantiles
are closer to the median. The best DSC-values of ABAS outperform the best
ones of CUTE, yet the variation and median DSC is better in contours propa-
gated by CUTE. Comparison of box plots created for OARs and target volumes
shows that ABAS performs better for latter structures, while CUTE for the for-
mer ones. Taking a look at box plots for individual structures provides an insight
into which method is superior for a given structure. We found comparable results
for certain structures (e.g., larynx, PTV high) as well as significant differences
for others (e.g., brainstem, mandible, both parotids).

5 Discussion and Conclusion

Our evaluation results show, that the overall quality of contouring in sense of
DSC and HD is quite similar for both methods. The atlas-based method performs
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Fig. 5. Dice similarity coefficients of ABAS/CUTE contours compared to manual re-
contourings.
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better than our method for target volumes resulting in higher DSC and lower HD.
This is quite reasonable, considering that ABAS takes knowledge about nature
of PTV into account. PTV contains large safety margins which do not correlate
with the intensity values. Our registration based method cares about true image
similarities and smooth transformations and not about safety margins. For OARs
it is vice versa. Here only the intensity contrast and the surrounding structures
rule and give an advantage to the individual registration.

Summarizing, atlas-based methods are good for bone structures and target
volumes, for structures where the surroundings determine the concrete alter-
ations, our approach performed significantly better in terms of both quality and
robustness. We expect, that a combination of ABAS and CUTE could poten-
tially optimize the overall workflow of re-planning situations in daily routine.
Furthermore the fully automatic and robust approach can be performed in the
background supporting automatic quantifications and dose accumulations. This
will be a focus of future research.

In conclusion, contour propagation using automated mapping can be consid-
ered a reliable way to reduce the manual effort of re-contouring structures in
adaptive radiation therapy.
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