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Abstract. Atlas-based segmentation is a frequently used approach in medical 

imaging and multi atlas-based segmentation (MABS) has achieved great suc-

cess for various applications. In order to simultaneously exploit the capabilities 

of MABS, limit execution time and maintain robustness, it is preferable to se-

lect a (preferably small) subset of atlases to be used for segmentation. 

In this work, an atlas selection strategy using Manifold Learning and Random 

Forest Regression is presented. The approach aims at learning the relationship 

between the pairwise appearance of structures and the Dice coefficients of their 

respective labeling. For this purpose, multi-scale patches in relevant regions of 

interest are extracted. Local patch models based on linear and non-linear di-

mensionality reduction are created. Resulting coordinates of the patch embed-

dings are used to train a regression model for Dice score prediction using Ran-

dom Forests. Predicted Dice scores are used to rank/select atlases for MABS. 

The newly developed approach is applied for segmentation of the left and right 

parotid glands in CT images of cancer patients. Quantitative evaluation shows 

that the presented atlas selection approach performs distinctly better than other 

commonly used selection strategies, especially for a small number of atlases. 
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1 Introduction 

Image segmentation is a frequently applied task in medical imaging, especially in 

radiotherapy. Automated segmentation is a substantial component of image-guided 

adaptive radiotherapy (e.g. for segmentation of organs at risk). The utilization of a 

priori knowledge of structures that should be segmented is the basis to accomplish a 

reliable and robust automated segmentation result. In case of atlas-based segmentation 

this knowledge is available through already segmented atlas images. The segmenta-

tion of structures in new images is performed by registering these new images to an 

already segmented atlas image. Especially for subjects with high inter-structure varia-

bility, multi atlas-based segmentation (MABS) approaches have shown to be more 

accurate than single atlas-based segmentation attempts [1, 2]. Apart from the selected 
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approach for elastic registration, the selection of an appropriate voting strategy and 

the selection of atlases have an important influence on the segmentation accuracy and 

reliability. Moreover, restricting registration to an appropriate subset of atlases can 

significantly improve segmentation speed. The presented approach is used for seg-

menting parotid glands in head and neck CT scans of cancer patients. Being the larg-

est salivary glands, the parotid glands are a highly critical OAR. Moreover, due to the 

high anatomical shape variability of parotid glands, low contrast and image noise 

caused by dental artifacts, automated segmentation of the parotids is very challenging. 

1.1 Related Work 

Common atlas selection approaches use image similarity metrics for atlas selection. 

Typical image similarity metrics are sum of squared distances (SSD), cross correla-

tion [3], and normalized mutual information (NMI) [4]. Based on similarity values, a 

ranking can be built and used for atlas selection. In a recent work, an atlas selection 

strategy based on the correlation of inter-atlas similarities was proposed [5]. This 

approach outperformed common NMI-based atlas selection, especially if only a 

smaller number of atlases was used. Wolz et al. developed an atlas selection approach 

based on learning an embedding for atlas selection [6]. Their results have shown an 

increasing gain in accuracy with increasing distance between the new image that 

should be segmented and the atlas images compared to common multi-atlas segmenta-

tion approaches. In a work by Cao et al. images are projected into a low-dimensional 

manifold [7]. They used Euclidian distance in this low-dimensional space to deter-

mine intrinsic image similarity that is used as an atlas selection criterion. Sanroma et 

al. [2] used a learning based approach to rank atlases. They tried to learn the relation-

ship between the pairwise appearance of analyzed images and the final labeling per-

formance expressed by Dice values. 

1.2 Contribution 

In this work an atlas selection strategy using Manifold Learning and Random Forest 

Regression is presented. The Dice score has shown to be a good (virtual) parameter 

for atlas selection [2, 5]. Hence, in this work the Dice score was chosen as target pa-

rameter for prediction through Random Forest Regression. In contrast to the inspiring 

approach of Sanroma et al. [2], where HOG features are extracted out of the images 

and used for model learning with Support Vector Machines, in this work features are 

generated by using Manifold Learning in combination with multi-scale image patches 

and Random Forest Regression. Multi-scale image patches are used to assess (semi-) 

local image characteristics. The patches form the input for a Manifold Learning step. 

In contrast to [2], the signed distances between the embedding coordinates of the 

ensemble of all patches extracted from a pair of images will be used to learn (training) 

and predict (testing) their respective Dice scores. The predicted Dice scores are used 

to rank and select atlases for MABS. To the best of our knowledge there is no atlas 

selection approach that uses Manifold Learning with multi-scale image patches in 

combination with PCA or Laplacian Eigenmaps and Random Forests. 
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2 Methods 

In Fig. 1 the principle overview of the developed atlas selection approach can be seen. 

 

Random Forest (RF)PCA or Laplacian Eigenmaps

Subtract rows between
each dataset

~ Millions of features per voxel 60 features per voxel

 

Fig. 1. Principal overview of the proposed atlas selection approach for MABS. 

2.1 Data Preprocessing 

In the first step all atlas images are rigidly registered on a randomly selected reference 

atlas image using MI. In order to improve image registration quality, metric computa-

tion was restricted to a masked region around left and right parotid gland. Subse-

quently, regions of interest (ROI) containing all voxels for which patches shall be 

extracted are defined. The size of the ROIs was constrained to be equal for atlases and 

target images. Dice ratio, which will be used for atlas ranking (section 2.3) can be 

calculated as 

𝐷𝑖𝑐𝑒 =
2|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
. (1) 

A and B are labeled regions that are compared.  

2.2 Multi-scale Patch Extraction 

The second step is the extraction of three different image patches for each voxel with-

in the predefined ROI (see Fig. 2). The smallest patch has a cubic structure (patch 1: 

3x3x3 voxels). The two remaining patches have a cuboid-like structure:  However, 

only margin voxels that form a hull around the cuboid are used for the larger patch 

types. These patches are surrounding patch type 1 and have a size of 7x7x3 (patch2) 
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and 11x11x5 voxels (patch 3). In order to take account of anisotropic image resolu-

tion, patch sizes are also anisotropic. 

 

Fig. 2. Principle 2D structure of multi-scale image patches. Red dot: current investigated voxel. 

Cyan: patch 1. Orange: patch 2. Green: patch 3. Thickness of patches 2 and 3 is one voxel. 

By using the border voxels of the cuboid-like patches instead of cubic patches a mul-

ti-scale approach can be applied without introducing redundancy compared to using 

only cubic patches (due to overlapping regions). Furthermore, the number of variables 

for subsequent dimensionality reduction and Random Forest learning is distinctly 

lower. This has a significant positive effect on computation time. For each voxel with-

in the predefined ROI the intensity values of its respective patches are arranged in a 

feature vector ti for all p atlas datasets for each patch type 𝑖. The length of these vec-

tors ti is m, where m = number of patches per training image x number of voxels per 

patch type. 

2.3 Patch Model Creation 

In order to create a patch model, two different approaches have been evaluated. On 

the one hand, Principal Component Analysis (PCA) [8] for performing linear dimen-

sionality reduction and on the other hand Laplacian Eigenmaps (LapE) [9, 10] provid-

ing non-linear embeddings of the input patches. For both approaches, all p feature 

vectors ti of patch type 𝑖 are arranged in three matrices 𝑀𝑖, which are used as input for 

PCA and LapE. 

Principal Component Analysis. PCA aims at identifying the linear combinations 

of the original variables which maximize their variance. The distribution of data is 

estimated by the mean value 𝒙 =  𝜀(𝒙) = (𝜀(𝑥1)𝜀(𝑥2) … 𝜀(𝑥𝑚))𝑇 ∈ ℝ and the covar-

iance of the data between the vectors 𝑐𝑖,𝑗 = 𝜀((𝑥𝑖 − 𝑚𝑖)(𝑥𝑗 − 𝑚𝑗)). Covariances can 

be represented by the covariance matrix 𝑪 = 𝜀((𝒙 − 𝒎)(𝒙 − 𝒎)𝑇) ∈ ℝ𝑚𝑥𝑚 . From 

the covariance matrix the eigenvectors and eigenvalues can be calculated. Finally, 

only the d eigenvectors are chosen that cover a certain (high) degree of all variations. 

In this project a value of d=20 was chosen. 

Manifold Learning. Laplacian Eigenmaps (LapE) are used for non-linear Mani-

fold Learning [9, 10]. A low-dimensional representation of the data is calculated in 

which the distances between a data point (=patch) and its k nearest neighbors are mi-

nimized. LapE generate a graph G based on the neighborhood information. Each data 

point is represented by a node. The connectivity is determined by a k-nearest neighbor 

search. Connectivity is weighted by a Gaussian kernel and is stored in the adjacency 
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matrix W. For dimensionality reduction the solution of the minimization problem of 

the cost function 𝑎𝑟𝑔 𝑚𝑖𝑛𝑌 ∑ ∑ ||𝒚𝑖𝑗 − 𝒚𝑗||²𝑤𝑖,𝑗𝑖  can be computed by the eigensys-

tem 𝑳𝒇 = 𝝀𝒇. L is the non-normalized graph Laplacian defined by 𝑳 = 𝑫 − 𝑾. D is 

the diagonal matrix with 𝑑𝑖𝑖 = ∑ 𝑤𝑗,𝑖𝑖 . By solving the generalized eigenvalue problem 

𝑳𝒇 = 𝝀𝑫𝑭 d eigenvectors fi corresponding to the d smallest eigenvalues can be calcu-

lated. Consequently, each patch can be represented in the respective position in the 

patch space. In this project, the number of neighbors used for LapE computation was 

set to 50. 

Random Forest Regression. The first d=20 principal components (PCs) or eigen-

vectors (EVs), respectively, are used. Using the first 20 PCs/EVs for each patch type, 

60 features (= coordinates in PCA space and embeddings resulting from LapE respec-

tively) per voxel are used for Random Forest Regression. For this purpose they are 

again arranged in vector form. Since Dice ratios are based on pairwise comparison of 

voxel quantities, also pairwise differences of features between all pairs of images of 

the training set are calculated and stored in the prediction matrix P. 

Random Forests (RF) are an ensemble learning approach that can be used for classifi-

cation and regression [11]. RFs are composed of a multitude of decision trees, where 

each tree t consists of nodes. During training, the prediction matrix P (containing the 

embedding coordinates for each patch resulting from PCA and LapE) is trained for 

predicting the Dice value of each image pair within the training set. The set of em-

bedded coordinates of the training sets gets binary split into two parts at each node of 

a tree and the respective input is then assigned to one of its child nodes. The target 

variable of RF regression is the Dice ratio 𝑑𝑟 after rigid pre-alignment. 𝑗 is a split 

variable out of the feature space and s is a splitting point. A binary splitting plane can 

then be defined: 𝑅1(𝑗, 𝑠) = {𝑋|𝑋𝑗 ≤ 𝑠} and 𝑅2(𝑗, 𝑠) = {𝑋|𝑋𝑗 > 𝑠}. The splitting vari-

able j and splitting point s are determined by 

 

min𝑗,𝑠{min𝑐1
(∑ (𝑑𝑟𝑖 − 𝑐1)2

𝑝𝑖∈𝑅1(𝑗,𝑠) ) + min𝑐2
(∑ (𝑑𝑟𝑖 − 𝑐2)2

𝑝𝑖∈𝑅2(𝑗,𝑠) )}. (2) 

 

In each step an optimal pair (j,s) is searched. 

For new target images the features have to be computed using PCA or LapE. Du-

ring testing, new embedding coordinates for the patches of an unseen image are eval-

uated by the trained trees. By this means a prediction for the “virtual” Dice ratio be-

tween (not yet existing) parotid glands label in the new image and every image in the 

training set can be computed. 

2.4 Atlas Selection 

Based on the predicted Dice ratios resulting from RF regression an atlas ranking is 

built for atlas-based segmentation. Higher predicted Dice ratios are ranked first. 
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3 Results 

3.1 Evaluation Strategy 

In order to evaluate the segmentation results of the proposed method the results were 

compared with the following atlas selection strategies: 

 Atlas selection based on original Dice values: Dice values after deformable re-

gistration and segmentation were used to build an atlas ranking. Indeed, this is an 

unrealistic approach, however, for testing purposes this is often used as a reference. 

In the following this selection strategy will be referred to as “Oracle” selection. 

 Atlas selection based on common image similarity: Atlas ranking was generated 

according to NMI values between image regions. NMI-based selection was chosen 

as a reference since this is one of the most frequently used selection strategies. 

Based on the determined rankings, segmentation performance was tested using differ-

ent numbers of ranked atlases. Previous results of works with the same datasets have 

shown that using more than 11 atlases deteriorates segmentation results [5]. Hence, 

the maximum number of atlases that were tested was set to 11. 

A leave-one-out strategy was applied in order to evaluate different atlas selection 

approaches. The Dice ratio and the 95% Hausdorff distance were used to quantitative-

ly evaluate segmentation accuracy for a varying numbers of atlases 

In order to test the significance of the improvement of the respective atlas selection 

strategy with respect to other atlas selection strategies and different numbers of atlas-

es used for selection, a paired t-test with p ≤ 0.05 was used [2]. 

3.2 Data 

The atlas database consists of 17 CTs of the head and neck. All images have a voxel 

size of 1.25x1.25 x 2.5 mm and a dimension of 512 x 512 x 89 slices. Manual delinea-

tions of left and right parotid glands were used as gold standard to evaluate segmenta-

tion accuracy. 

The dimension of the bounding box of the left parotid is 40 x 40 x 35 (56,000 

voxels) and of right parotid it is 45 x 50 x 35 (78,750 voxels). 

3.3 Experiments 

In Fig. 3 (first row) the average Dice ratios for the segmentation of the left and right 

parotid with respect to different numbers of atlases are visualized. Colored bars repre-

sent average Dice ratio for different atlas selection strategies. In Fig. 3 (second row) 

the average 95% Hausdorff distances of the left and right parotid gland with respect to 

different numbers of atlases are depicted. Black lines indicate 25
th

 and 75
th

 percentile. 

Significance tests performed in order to reveal significant accuracy improvement 

(in terms of higher Dice scores) for every newly added atlas showed, that no signifi-

cant improvement could be obtained when using more than 5 datasets. The underlying 
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atlas ranking for this significance tests is based on Oracle selection, which is consid-

ered as “virtual” (i.e. practically not available) gold standard for atlas ranking.  
 

  

  

Fig. 3. Evaluation of segmentation performance: First row: Colored bars represent average Dice 

ratio of the left (first column) and right (second column) parotid gland. Second row: Colored bars 

represent average 95% Hausdorff distance in mm of the left (first column) and right (second col-

umn) parotid. Black lines indicate 25th and 75th percentile.  

4 Discussion 

Significance tests revealed that using more than 5 atlases does not lead to a significant 

improvement of the segmentation accuracy even when using Oracle selection. More-

over, evaluation has shown that when using less than 4 atlases the segmentation accu-

racy is significantly higher when using PCA- and LapE-based atlas selection com-

pared to NMI-based selection (first row in Fig. 3). Furthermore, for the left parotid 

there was no significant accuracy improvement using 3 atlases based on PCA-based 

ranking and 5 atlases using NMI-based ranking. The same is true for the right parotid 

gland when using 4 atlases based on PCA-based ranking. This confirms the positive 

property of the newly developed approach that equally accurate segmentation results 

can be achieved with a comparably lower number of atlases. 

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

1 2 3 4 5 7 11

D
ic

e
 v

al
u

e
 

Number of atlases 

NMI Oracle Patch PCA Patch LapE

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

1 2 3 4 5 7 11

D
ic

e
 v

al
u

e
 

Number of atlases 

NMI Oracle Patch PCA Patch LapE

0.00

2.00

4.00

6.00

8.00

10.00

12.00

1 2 3 4 5 7 11

9
5H

D
 

Number of atlases 

NMI Oracle Patch PCA Patch LapE

0.00

2.00

4.00

6.00

8.00

10.00

12.00

1 2 3 4 5 7 11

95
H

D
 

Number of atlases 

NMI Oracle Patch PCA Patch LapE

16



Comparing PCA vs. LapE of the presented approach, it can be said that PCA-based 

ranking performs better than the LapE-based ranking when using less than 4 atlases 

(first row in Fig. 3). For higher number of atlases there are no significant differences 

concerning segmentation accuracy. 

5 Conclusion 

It could be shown, that the developed atlas selection technique performs clearly better 

than NMI-based selection if a low number of atlases is used. In addition, equal seg-

mentation accuracy can be obtained with a lower number of atlases compared to 

NMI-based selection. Overall, PCA-based atlas selection performed slightly better 

than LapE-based selection. 

In further analyses, the presented approach will be compared to additional selection 

strategies in addition to NMI. Moreover, more organs in the head neck area will be 

included in future evaluations.  It has to be said, however, that the parotid gland is a 

very suitable and highly non-trivial test structure, which is frequently used for the 

evaluation of segmentation approaches for the head and neck region. 
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