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Abstract. We present a method for organ motion compensation based
on a statistical motion model. The novelty of our method is, that the
surrogates for prediction can be independent of the model’s topology
i.e. the surrogate signal does not have to correspond to a point of the
motion model. By non-linear regression, we grasp the correlation be-
tween a captured signal during free breathing and the motion model
parameters. Such a signal could be a spirometer, a breathing belt or an
abdominal ultrasound signal. Our method performs on par with state-
of-the-art methods, where model points have to be tracked. However, we
solely incorporate one-dimensional and even topology independent sur-
rogates. In our experiments on the right liver lobe we have achieved an
average motion prediction accuracy of 2-3mm using population models
and below 1mm with patient specific models.

1 Introduction

Respiratory organ motion compensation is central in image-guided thoracical
and abdominal interventions. Especially in dynamic dose delivery methods as
in radiotherapy or in high intensity focused ultrasound, tumor localization is
crucial. Typically, a motion model is used to predict the organ motion given
some external respiratory signal (surrogates). Thus, the treatment of healthy
tissue can be reduced.

A prominent class of methods [3,7] is based on statistical motion models of
organ shape deformations. During treatment, the shape deformation is inferred
based on detected points in ultrasound (US) images which serve as surrogates.
However, obtaining such surrogates is difficult, since they have to correspond to
specific points in the model.

In this paper, we present a statistical motion model in which surrogates are
incorporated that originate from arbitrary signal sources provided that they are
correlated to the organ motion. For breathing, these might be a spirometer, a
breathing belt or a 1D US where the sensor is placed on the abdominal skin
[10]. The key idea is to predict the statistical motion model parameters given
these surrogate signals using non-linear regression. This greatly simplifies the
treatment setup since the absolute position of the surrogate sensor is no longer
needed.
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Beside the motion prediction, our method enables the synthesis of a respi-
ratory cycle with a high temporal resolution. This can be used to investigate
the patient specific motion pattern for planning. Further, in contrast to stan-
dard statistical motion model approaches, we construct our motion model with
a different number of temporal samples per individual, to make full use of the
training data. Finally, the dense underlying shape model opens the possibility
to automatically fit the model into the 3D volume. However, this is not in the
focus of the present paper.

In our experiments, we study the respiratory motion of the right liver lobe.
To predict the organ motion, as surrogates, we simulate a correlated signal to
the liver’s motion. As such, we have reached an average accuracy between 2 and
3mm using a population based model. Using patient specific motion models,
we have reached an accuracy of less than 1mm. The influence of organ drift
[11] or rotations caused by change in posture during treatment has not been
investigated.

Previously, [7] presented a statistical motion model, where physical points
on the diaphragm serve as surrogates which correspond to points in the model.
They detected and tracked such points using lateral US images. In [10], a low-
cost 1D US signal has been proposed. As surrogate data, they map the US
signal to positions on the organ. In our experiments, the depth of the diaphragm
is simulated in the view to capture the signal from such a 1D US sensor which
is placed on the abdominal skin. A comprehensive review on respiratory motion
models can be found in [6].

The estimation of relationships among random variables has priorly been
shown in [2] with the application to attribute manipulation in 3D face models.
There, regression analysis of facial attributes and face models have been studied.
However, to our best knowledge, such an approach has previously not been
established in clinical applications.

2 Materials and Methods

2.1 Shape Modeling

For each volunteer v, we have a 4DMRI sequence of τv time steps, stacked by
the method of [12], resulting in τv times an MR image Ivt : Ω → IR where
Ω ⊂ IR3 is the image domain and Ivt denotes the image at a time point t. For
each volunteer, an exhalation master image Ivt=m is selected which serves as
reference to determine relative displacements to each other time point. By non-
rigid free form registration [9] of the exhalation master to each other image of
this volunteer Ivt6=m the displacement fields Dv

t : Ω → IR3 are derived. To deal
with across organ boundaries the surrounding of the liver structure is masked
out during registration.

The liver structure within each exhalation master image has been manually
segmented yielding a label map L : Ω → {0, 1} which indicates liver structure
when L(x) = 1, x ∈ Ω. Using margin cubes, for each label map a shape S ⊂ IR3
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is obtained. We perform an iterative group-wise registration of the shapes to
reduce a bias of the mean shape S̄ to a specific exhalation master shape Sv.

S̄1 = Sv=m, S̄i+1 =
1

V

∑

v

S̄i +∆Svi , (1)

where m is randomly chosen and ∆Svi is obtained by the Gaussian process
registration method of [5] such that S̄i +∆Svi ≈ Sv. In the following, by Sv we
always mean the registered shapes S̄ +∆Sv, if nothing else is mentioned.

We equidistantly sample inside of S̄ and with thin-plate-spline interpolation
we add several interior points to each Sv. To recap, for each volunteer we have
now an exhalation master shape Sv, which is in correspondence with the pop-
ulation mean shape S̄. By the displacement fields F vt := Dv

t (Sv) induced by
motion, for each time point we derive a shape Svt := Sv + F vt ⊂ IR3 with 2571
surface and 368 interior points.

2.2 Statistical Shape Model

We distinguish between the modeling of shape and the modeling of shape motion.
In the shape model, the variation among a population of shapes originating
from different individuals is considered. Whereas in the motion model, the shape
deformation over time relative to a reference shape is investigated.

For each volunteer v, we have a segmented exhalation master shape Sv of the
right liver lobe. The exhalation master shapes, which were brought into corre-
spondence (Equation 1), are assumed to be Gaussian distributed p(Sv|Sµ, ΣS) ∼
N (Sµ,ΣS) where

Sµ =
1

V

∑

v

Sv∧= S̄, ΣS =
1

V − 1

∑

v

(Sv − Sµ)⊗ (Sv − Sµ) (2)

are the maximum likelihood estimates of p(Sv|Sµ, ΣS), V is the number of vol-
unteers and ⊗ is the outer-product. Thus, a shape can be parametrized by
Sα = Sµ +

∑M
i=1 αiψi, where ψi are orthogonal basis vectors of ΣS weighted

by the model parameters αi and M denotes the number of basis vectors.

2.3 Statistical Motion Model

In addition to the shape variation among a population we model the relative
shape deformation over time. Since each volunteer has been observed for a differ-
ent amount of time, we assume that the displacements are a mixture of Gaussian
distributions

p(F ) =

V∑

v

p(v)p(F |v) =

V∑

v

πvp(F |v), (3)

where
∑V
v π

v = 1, πv ∈ (0, 1),∀v = 1, ..., V . Each component distribution is
assumed to be Gaussian p(F v) ∼ N (F vµ , ΣFv ) with

F vµ =
1

τv

τv∑

t

F vt , ΣFv =
1

τv − 1

τv∑

t

(F vt − F vµ )⊗ (F vt − F vµ ). (4)
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The first two moments of the mixture p(F ) are estimated by

Fµ =
V∑

v

πvF vµ , ΣF =
V∑

v

πv
(
ΣFv +

(
F vµ − Fµ

)
⊗
(
F vµ − Fµ

))
, (5)

where πv = τv/
∑V
v τ

v is the weighting of the component distribution with
respect to the number of temporal samples per volunteer (see more details about
moments of Gaussian mixtures in [4])

The variation of the shape displacements is finally parametrized by F =
Fµ +

∑N
i=1 βiφi, where φi are N orthogonal basis vectors of ΣF .

With the combination of the shape and the motion model a shape to a
particular time point can be synthesized by

Sαβ = Sµ +

M∑

i=1

αiψi

︸ ︷︷ ︸
shape model

+Fµ +

N∑

i=1

βiφi

︸ ︷︷ ︸
motion model

, (6)

where αi and βi are coefficients of the shape and the motion model respectively.
Typically, the shape model is priorly fitted to an exhalation master shape [5].
Subsequently, the shape motion is additively imposed to the derived shape.

2.4 Attributes and Regression

Let a ∈ IRd be a d-dimensional attribute vector which corresponds to a particular
time point. Consider an observed finite set A = {(a0, β0), ..., (an, βn)} ⊂ IRd ×
IRN of n pairs of i.i.d. attribute vectors ai and motion coefficient vectors βi.
Let further assume that there exists a function f : IRd → IRN which maps the
attribute vectors to the coefficient vectors, while we only observe noisy instances
of β such that β ∼ N (f(a), σεI).

Gaussian Process Regression Let f ∈ GP(0, k) be a Gaussian process with
the covariance function k : IRd × IRd → IR. Assuming a Gaussian likelihood, the
posterior distribution p(f |A) is given in closed form [8] and is again a Gaussian
process GP(µA, kA) with

µA(a) = KT
a,A(KA,A + σεI)

−1B (7)

kA(a, a′) = k(a, a′)−KT
a,A(KA,A + σεI)

−1Ka′,A, (8)

where Ka,A = (k(ai, a))ni=1 ∈ IRn, KA,A = (k(ai, aj))
n
i,j=1 ∈ IRn×n and B =

(β0, . . . , βn)T ∈ IRn×N . The expectation of an unseen output β∗ given an at-
tribute a∗ yields Equation 7.

In our application, we use a straight forward Gaussian process model, where
we apply a Gaussian kernel as covariance function

kg(x, x
′) = θ20 exp

(
−‖x− x

′‖2
2θ21

)
, (9)

100



0

2.8

5.6

8.4

11.2

14

distance (mm)

1
2
π π 3

2
π 2π

5

10

cycle states

av
g

d
is

ta
n
ce

(m
m

)

π

5
4
π

3
2
π

7
4
π

0

1
4
π

1
2
π

3
4
π

exhalation

inhalation

Fig. 1: Example liver shape Sv deformed by an average respiratory cycle c =
[0, 2π]. The shape is colored with respect to the absolute value of the displace-
ment of a point |∆p| ∈ [0, 14] mm. In the right plot, the average distance to the
exhalation master is plotted (blue - population mean, orange dotted example of
a patient specific cycle).

where θ0 is a scaling parameter and θ1 is a length scale or smoothness parameter.

Given an attribute signal which is correlated with the organ motion, we have
defined now the tools to predict the motion model parameters β of the current
respiratory state with Equation 7. Based on that, a shape deformation can be
synthesized using Equation 6.

In the following, we first synthesize a high-temporal resolution respiratory
cycle. This is followed by the evaluation of the prediction performance of our
method.

3 Results

3.1 Average Breathing Cycle

In this first study, we analyze the respiratory motion of the liver in general.
We built a motion model out of the motion samples among all the V = 9
volunteers, while we have kept 99.9% of the variance. For each sample shape St,
an attribute c ∈ [0, 2π] has been considered which indicates the cycle state of t
within a respiratory cycle1. This rather abstract attribute is applied to synthesize
an average respiratory cycle of the liver shape. For the regression, 8 000 pairs

1 This cycle attribute was computed using a greedy cycle detection algorithm which
is based on the average vertical coordinates of the displacement fields Ft.
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Fig. 2: For each L1O experiment, the average corresponding point difference
between the ground truth and the predicted shape is visualized. We compare
our method Attribute Regression with the Conditional Model [1,7]. The upper
x-axis indicates for how many time points the motion has been predicted.

of cycle attributes resp. motion model coefficients have been randomly picked
among all volunteers.

In Figure 1, an example right liver lobe and its displacements within this
average respiratory cycle is visualized. Note that here, we synthesize a semantic
and non-linearly captured respiratory cycle of a shape, where we do not simply
vary the most dominant principal component of the motion model. Thus, for each
patient we can generate an average respiratory cycle e.g. for planning. While the
source 4DMRI has a framerate of 2.8Hz the temporal resolution can be arbitrary
high. In this example, 100 samples have been synthesized which corresponds to
approximately 25Hz.

3.2 Motion Model Prediction

In the motion prediction experiment, we simulate a surrogate signal which indi-
cates the depth of the diaphragm measured from the abdominal skin for example
by a 1D US sensor. We define a 1D signal which is generated by a ground truth
model point in the region of the diaphragm. Let s : [0, τ ]→ IR3 be the 3D signal
of absolute coordinates of this point at time point t ∈ [0, τ ]. To get invariant to
the absolute positioning of the patient lets project the signal into its dominant
mode of variation

F [s] = (s− µs)ψ0 + ε, (10)

where µs = 1
τ

∫ τ
0
s(t)dt is the signal mean value, ε ∼ N (0, σε) is additive noise,

which has been set to σε = 2mm and ψ0 is the orthonormal eigenfunction corre-
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Fig. 3: Evaluation of the average prediction error for each patient specific exper-
iments, where θ1 = 5, 700 training samples have been picked and 210 tests have
been performed.

sponding to the largest eigenvalue λ0 of the equation
∫ τ
0

cov(si, sj)ψ0(si)dsi =
λ0ψ0(sj). Here, cov is the covariance function of the signal s.

In this evaluation, we show the motion prediction performance of our method
given the simulated signal F [s]. For each volunteer, we generated a leave-one-out
(L1O) motion model, where only motion samples from the other volunteers have
been considered. 99.9% of the variance has been kept yielding L1O-models of
20 to 22 principal modes. Note that for each sample, we additionally computed
F [s] for the later usage as an attribute (Equation 10).

For the Gaussian process regression, we randomly picked 8 000 F [s]-attributes
resp. ground truth coefficient vector pairs, again only from the other volunteers.
We manually optimized the parameters and used θ1 = 3, while the exact value of
θ0 = 5 000, had only minor influence to the prediction performance. In Figure 2,
for each volunteer the average prediction error is plotted. The prediction error
is robustly kept below 5mm, whereas the median stays around 2 to 3mm. For
radiotherapy these are reasonable error bounds.

We compare our method to [7] where the simulated 3D point signal s serves
as surrogate data. The prediction is performed by estimating the mean of a
statistical motion model which is conditioned on s [1]. For a fair comparison,
we added to s an isotropic Gaussian noise N (0, σε/

√
3). The conditional model

performs equally well, while it better generalizes in the experiment with volunteer
7 and 9. Certainly, our model with only 9 volunteers is not capable to generalize
to the respiratory motion of these two subjects. This can be confirmed when
comparing to the results with patient specific models (Figure 3). Here, for each
volunteer, we built a motion model where only samples from the volunteer of
interest are considered. For the regression, 700 attribute/coefficient pairs have
been randomly picked and we adjusted θ1 = 5. For all volunteers including for
volunteer 7 and 9, the average error has been considerably improved to less than
1mm. In Figure 1 on the right, a patient specific average respiratory cycle is
plotted for a comparison to the population mean cycle.
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4 Conclusion

We have presented a new method for organ motion compensation based on a
statistical motion model, in which the surrogate data can be independent of the
model’s topology. The major novelty of our method is the non-linear regression
of the surrogate data and the model parameters. Although already a simple
Gaussian process model yields reasonable results the potential of our method is
far from being exhausted. The regression is not limited to one attribute and will
gain robustness and precision with additional surrogate sources as e.g. 2D US
data. Further, we will investigate more complex and combined covariance func-
tions and a full Gaussian process inference to obviate parameter selection. In
the experiments, we have shown a reasonable prediction performance using pop-
ulation based models. The generalization of the respiratory motion was further
improved by a patient specific regression as shown in the last experiment.
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