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Abstract. Accurate segmentation of organs at risk is an essential precondition 
for successful treatment planning in radiotherapy. In this paper we introduce a 
novel approach for the fully automatic segmentation of organs at risk in CT im-
ages. 

The method is based on the usage of Manifold Learning in order to extract 
features of multi-scale image patches. In combination with spatial locality in-
formation, the resulting embedding coordinates are used as features for a multi-
step classification approach based on using multiple Random Patch Forests.   

Experiments using 17 CT images of the head-neck region demonstrate the 
high potential of the presented method. Quantitative evaluation shows that the 
approach provides accurate segmentation results even with a small number of 
training subjects. 

 

1 Introduction 

Efficient and exact delineation of anatomical structures is one of the key areas in 
medical imaging. This is especially true for medical fields like radiation oncology, in 
which the segmentation of anatomical structures (e.g. organs at risk (OAR)) directly 
acts as an input for treatment planning. Hence, the need for methods that provide 
accurate segmentation with minimal user input is obvious. Most frequently used seg-
mentation approaches in radiotherapy are (multi) atlas based segmentation (MABS) 
strategies and methods based on statistical models of shape and/or appearance (SSM, 
SAM). MABS offers a high level of robustness and usually does not need any user 
interaction. Model based approaches on the other hand provide closed surface and 
anatomically plausible shapes, which is a desirable property for most applications.  

Despite their advantageous properties, both approaches suffer from shortcomings 
when the anatomical structure of interest shows high morphological variability. Most 
methods for deformable registration have problems to correctly deform structures 
showing high shape variability.  On the other hand the creation of statistical shape 
models for structures with highly varying shape or even topology is extremely chal-
lenging and often requires a large number of labeled training images.  
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In this paper a novel approach for the fully automatic segmentation of organs at 
risk in CT images is introduced. Using the proposed method, image patches with dif-
ferent sizes and shapes are extracted for voxel neighborhoods in predefined regions of 
interest. Using these patches, manifold learning is performed by using Laplacian 
Eigenmaps in order to obtain the embedding coordinates of each voxel/patch in the 
patch manifold space. The low-dimensional embedding is then used in combination 
with locality information to train a Random Forest Classifier in a two-step approach. 
During the training phase, multiple Random Forests (RF) are trained in order to assess 
the correct labeling for 9 different locations within a voxel neighborhood. The final 
class label for each voxel is obtained from the probability maps coming from all 9 
random forest classifiers.  

The presented approach is evaluated by segmenting the parotid glands in 17 head 
neck CT scans of cancer patients. Being the major salivary gland, parotid glands are 
highly critical OARs for radiotherapy of head and neck cancer patients. Unintended 
irradiation of the parotid glands can result in difficulties for mastication and degluti-
tion. Apart from this, the automatic segmentation of parotid glands is highly challeng-
ing. This is due to high anatomical shape variability of the parotid gland on the one 
hand and low soft-tissue contrast as well as image noise (caused by dental implants) 
on the other hand.   

1.1 Related work 

The usage of random forests [1] is highly popular in numerous machine learning 
applications - not only, but also in medical imaging. Criminisi proposed random for-
ests for the localization of anatomical organs [2], [3]. In addition, random forests were 
used for segmentation, e.g. for the segmentation of brain tumors [4] or prostates in 
MRI [5] 

Patch based segmentation has also been applied frequently for different anatomical 
structures [6]–[8]. In [9] the usage of geodesic distances in combination with patch 
based segmentation and spatial-context information was proposed.  However, the 
usage of this spatial information is dependent on user defined landmarks or additional 
labeled structures.  In [10] the benefit of different features for patch based segmenta-
tion has been evaluated for the segmentation of the parotid glands leading to very 
accurate segmentation results. In addition, patch based segmentation was used in 
combination with atlas based segmentation [7], [11], [12] as an additional refinement 
step.  

In  [13] class probabilities have been used to train a random forest classifier for in-
fant brain segmentation. In [14] iterative, voxel-wise classification was applied for the 
segmentation of the prostate. However, using this approach segmentation is depend-
ent on previously segmented prostates of the same patient.  

A combination of Laplacian Eigenmaps [15] and Random Forests for segmentation 
has been proposed in [16]. However, the approach is based on computing Laplacian 
Eigenmaps using whole images instead of patches as input. This does not only result 
in high computational demands, but also requires a large set of labeled training imag-
es.   

2



Summing up, both Random Forest Classification/Regression and Manifold Learn-
ing are very active fields of research. However, to the best of our knowledge, the 
presented combination of 1) Manifold Learning based on multi-scale image patches, 
2) Iterative Random Forest Training based on embedding coordinates resulting from 
Laplacian Eigenmaps and 3) patch based label fusion using multiple random forests 
4) without the need for prior elastic registration has not been presented before. The 
evaluation will show that the proposed method provides accurate segmentation results 
and performs equally well or better than existing methods for the segmentation of 
parotid glands in CT images.   

2 Methods 

2.1 Preprocessing and patch extraction 

In a first preprocessing step, all images of the training set are registered onto a ref-
erence dataset using a rigid transform. In order to account for image noise Mutual 
Information (MI) is used as a metric. Registration is performed separately for left and 
right parotid gland using different sub-regions (defined in the reference dataset) for 
MI computation.  

After registration, patches are extracted for each voxel within a predefined region 
of interest (ROI) containing the respective structure(s) of interest (in this project the 
parotid gland). The ROI is defined in the reference image and must have the same 
size for all training and test images. Patches with a 3x3x3 (type A), 7x7x3 (type B) 
and 11x11x5 (type C) neighborhood are extracted for each voxel. In order to avoid 
redundancies in overlapping regions and also to reduce the computational burden for 
the following steps, only patch type A contains all voxels within the patch. Patch 
types B and C only contain the border voxels of the respective patches (see also fig. 1 
(left)). Anisotropic size of the patches is chosen to account for the anisotropic resolu-
tion of the images used in this project (1.2x1.2x2.5mm voxel size). Using these patch-
es independently for the following manifold learning step shall on the one hand pro-
vide information about small structures (type A) and on the other add knowledge 
about the appearance of neighboring structures as well as robustness towards local 
noise (types B and C) 

2.2 Manifold learning 

It has been shown in various research projects, that non-linear manifold learning 
approaches like Laplacian Eigenmaps (LapE) [15] can successfully be used for unrav-
elling the inherent structure of the input data [17]. 
LapE compute a low-dimensional representation of the data in which the distances 
between a datapoint and its k nearest neighbors are minimized. First a neighborhood 
graph 𝐺 is computed, in which every datapoint is connected to its 𝑘 nearest neigh-
bours. Based on using the Gaussian kernel function the weights for each edge in 𝐺 are 
computed and stored in adjacency matrix 𝑊.  For the computation of the low dimen-
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sional representations 𝑦! the cost function 𝜙 𝑌 = 𝑦! − 𝑦!
!
𝜔!"!"  is used. Using 

spectral graph theory, the minimization of the cost function can be defined as an 
eigenproblem so that minimizing 𝜙 𝑌  is proportional to minimizing  𝑌!𝐿𝑌, where 
the graph Laplacian 𝐿 = 𝑀 −𝑊. Degree matrix M is a diagonal matrix, whose entries 
are the row sums of W. By solving 𝐿𝑣 = 𝑀𝑣𝜆, 𝑑 eigenvectors 𝑣!corresponding to the 
𝑑 smallest eigenvalues can be calculated. As a result, each patch 𝑝 can be represented 
by its respective position in patch space. Fig. 1 is presenting the result of manifold 
learning based on LapE using patch type A as input. Looking at fig. 1, one can see 
that the resulting eigenvectors have the potential to separate anatomically meaningful 
structures like skin, bone or different types of soft tissue.  
 
 
 
 
 
 
    

 
 
 
 
 

   sample   EV1     EV2    EV3 

Fig. 1. Illustrating the output of LapE by projecting the embedding coordinates back into image 
space (sample: a sample from an original image with an illustration of the applied patch config-
uration in the upper left corner;EV1-EV3: respective embedding coordinates along the coordi-
nate axis formed by 3 exemplary eigenvectors for patch type A)  

In this project, LapE are calculated independently for the 3 patch types A, B, C. The 
resulting embedding coordinates for each patch type are used as feature vector 𝑓    for 
the following classification step based on the usage of Random Forests. In this project 
a value of 𝑑 = 20 was chosen, which results in 60 image features per patch.   

 In addition to the image features, the offset of each voxel relative to the corner 
voxel of the predefined ROI is also added to the feature set. By this means, two 
patches which have similar appearance, but come from very different locations, can 
be more easily distinguished. Apart from this, the location information can be regard-
ed as a “weak” shape model, which assists in inferring the location (and vague shape) 
of the parotid gland. Usage of this additional locality information is also the reason 
why rigid pre-registration was performed during preprocessing.  

2.3 Voxel Classification using Random Patch Forests  

Random Forest Classification is applied in order to determine a class label 𝑐 ∈ 𝐶 
for a given test voxel  𝑥 ∈ Ω .  

 
Training. Using a feature representation 𝑓 for each voxel of the training set, each 

tree 𝑡 learns a weak predictor  𝑝(𝑐|𝑓). In each node of a tree, the set of training voxels 
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is split based on a binary test using  𝑠(𝑥; 𝑓!) < 𝑡 , where  𝑡  is a threshold value for 
each split node and  𝑓! represents the 𝑘!! feature of  𝑓. Based on the test result, the 
respective voxel is sent to one of its child nodes. During training 𝑓! and 𝑡 are opti-
mized in a way that the information gain among class distributions is maximized [16]. 
For improved generalization ability, randomness is induced by only using a randomly 
sampled subset of 𝑓 to optimize the parameters for each split node. Optimization is 
stopped when the maximum information gain falls under a predefined threshold. 
Growth of a tree stops when a predefined depth is reached or when a node contains 
less than a predefined number of training samples.  

 
Testing. During testing each new voxel 𝑥 of an unseen image is pushed through 

each trained tree by applying the learnt split parameters  𝑓! and 𝑡. For each tree the 
tested voxel will read different leaf nodes, which are associated with different class 
probabilities. The final probability for a test voxel based on a single random forest is 
calculated using 𝑝! 𝑐 𝑥 = !

!
𝑝!(𝑐|𝑓)!

!!! , where 𝑇 is the number of trees that are 
used.  

 
Multiple Forests. In the presented approach, classification for each voxel is ob-

tained by using multiple forests. Instead of training only one forest to obtain the label 
for the center voxel of an image patch, 8 additional RF are calculated in order to as-
sess the class label for the corner voxels of a 3x3x3 neighborhood. Using highly over-
lapping patches, the probability for a given voxel can then be obtained by 𝑃! 𝑐 𝑥 =
!
!

𝑝!(𝑐|𝑓)!
!!! . The usage of multiple forests is supposed to increase the robustness of 

the final labeling especially in the presence of image noise compared to using only 
one random forest.  

 
Two Step Random Forest training and testing. Similar to the approach present-

ed in [13], a two-step approach is used for RF training and testing: In a first training 
iteration a feature vector 𝑓 = {𝑝!!,… , 𝑝!"! , 𝑝!! ,… , 𝑝!"! , 𝑝!! ,… , 𝑝!"! , 𝑖! , 𝑖! , 𝑖!} is used. 𝑝!!  
refers to the features obtained for each patch type using Laplacian Eigenmaps and 
{𝑖! , 𝑖! , 𝑖!} refer to the offset of each voxel relative to the center (voxel) of the prede-
fined ROI (see also section 2.2).Using the Multiple Random Forest approach de-
scribed above 9 probability maps 𝑃!!!..! for each training dataset can be obtained. 

For the second training iteration the probability maps 𝑃!!!..! are also fed into the 
classifier in addition to the features used in the first iteration. Based on the fact that 
similar shaped structures should also result in similar probability maps, the inclusion 
of the probability maps in the second RF training adds additional locality and shape 
information to the feature vector, which is expected to be useful for improved RF 
classification.  

During testing, the same two step approach that was used for RF training is applied 
in order to obtain a final probability map   𝑃! and a final class label 𝐶 for each 𝑥 in an 
unseen image. 𝐶 is obtained by using 
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𝐶 𝑝 𝑥, 𝑓 =
1, 𝑝 𝑥, 𝑓 > 0.5  
0, 𝑝 𝑥, 𝑓 ≤ 0.5    (1) 

 
 

3 Results 

Evaluation scenarios: On the whole, 4 different scenarios have been evaluated in 
order to test the influence of the suggested contributions:  

I)  Only LapE embedding coordinates for patch type A in combination with 1 
training iteration and 1 RF (for center voxel) are used 

II)  Equal to I, but using LapE embedding for all patch types  
III) Equal to II, but using 9 RF 
IV) Equal to III, but using 2 RF iterations. 
During evaluation only one LapE had to be computed due to the usage of a leave-

one-out strategy. In other settings out-of-sample extension for LapE could be applied 
for improved efficiency. 

 
Data and parameter settings. The presented approach has been evaluated using 

17 CT images of the head neck region with manually labeled parotid glands that acted 
as ground truth. Image resolution is 1.25x1.25x2.5mm. Accuracy of the segmentation 
is measured using the DICE coefficient (=2 𝐴 ∩ 𝐵 /( 𝐴 + 𝐵 ), where A represents 
the ground truth and B the results using the proposed approach. In addition, maximum 
Hausdorff Distance is used to quantify the largest segmentation error.   

Pre-registration of the test image to a randomly chosen training image has been 
performed using rigid transform in combination with Mutual Information metric (to 
account for the significant noise level in some of the test images). The size for the 
ROI of which the patches have been extracted was 50x50x87.5mm left Parotid) and 
68x75x87.5mm (right parotid) respectively. Based on observations in preliminary test 
runs the size of the neighborhood for the computation of the Laplacian Eigenmaps 
was set to n = 50. As already mentioned, 20 embedding coordinates have been calcu-
lated for each patch type. A leave-one-out cross validation approach was used for the 
evaluation of all 4 scenarios.  

Figure 2 presents results for all 4 testing scenarios. More specifically, the average 
Dice coefficient and average values for max. Hausdorff distance for left and right 
parotid glands are depicted. Error bars indicate 25th and 75th percentile. 

Figure 3 shows the final labels as well as the final probability maps (for one sam-
ple region of an exemplary dataset) resulting from RF classification using scenarios 
II-IV. 
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Fig. 2. Comparing average Dice scores and max. Hausdorff distances obtained for left and right 
parotid glands for all 4 scenarios explained in section 3. 

 
 

 

 

 

 

 

Fig. 3. First col.: Sample of original image (top row) and manual segmentation (bottom row);            
second to fourth col.: final probability maps (top row) and corresponding segmentation results 
(bottom row) obtained with scenarios II-IV, blue circles mark an exemplary area in which 
gradual improvements of the segmentation accuracy from scen. II – IV can be observed best  

4 Discussion 

A novel approach based on the usage of manifold learning in combination with a 
multi-step learning approach based on random patch forests has been presented. The 
evaluation has shown that the presented method is highly suitable for the segmenta-
tion of the parotid glands in CT scans. It could be shown, that the different extensions 
based on using of multi scale patches (scenario II), an ensemble of random forests 
(scenario III), as well as the usage of a two-step Random Forest classification scheme 
(scenario IV) leads to an increase of the respective Dice scores. It can also be ob-
served, however, that max. Hausdorff Distances are lowest using Scenario II for the 
right parotid gland. This might be due to a smoothing effect that occurs in scenarios 
III and IV. This smoothing effect (which is also visible in fig. 3) potentially caused 
that single voxels which are labeled as foreground in scenario II are labeled as back-
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ground in scenario III. That has very little or no effect on real segmentation quality, 
but a positive effect on max. Hausdorff values. This is also supported by the fact that 
Dice scores are higher using scenarios III and IV. Looking at fig. 3, it can also be 
observed that the two-step RF classification used in scen. IV results in more distinct 
probability maps leading to higher segmentation accuracy compared to the ground 
truth.  

Compared to other approaches for parotid gland segmentation which used the same 
dataset [18] or a (sub)-set of the dataset used in this work [7] for evaluation the pre-
sented approach provides equal or higher Dice scores and smaller Hausdorff distanc-
es. Also compared to the Dice scores presented in other publications [18]–[20] the 
obtained results are highly competitive. However, it is also evident that several as-
pects of the presented approach can potentially be improved: e.g. alternative patch 
configurations will be tested in order to further increase the positive impact of using 
multi-scale patches. Moreover, the usage of additional locality information and more 
sophisticated voting schemes for classification based on multiple RFs as well as the 
application of different sampling approaches for increased efficiency will be evaluat-
ed. 
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