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Preface

Radiation Therapy has been a key clinical application scenario for image guid-
ance, image processing and motion compensation. It remains one of the most
prominent clinical application fields for new imaging and image processing meth-
ods and it is highly computerized. Recent advances in fast and integrated imaging
lead to image guided setup and inter-fractional plan adaptation. Current trends
point to real-time image guidance and compensation of intra-fractional motion
and deformation as well as continuous monitoring of macro- and microscopic
changes in the tumor environment.

This workshop will present novel and state-of-the-art approaches for medical
image processing in image-guided radiotherapy (IGRT), including segmentation
and registration, treatment planning and plan adaptation, image guidance and
motion compensation, and imaging and visualisation. It will also provide an
exciting venue for exchanging experiences and ideas on clinical and technical
challenges, and for discussing recent trends in research and clinical application.
The 20 papers accepted for presentation at this workshop are included in these
proceedings.

It is a privilege to hold this workshop in the context of MICCAI, and we
appreciate that the organizers provide this exciting venue. We would like to
thank all authors, program committee, and reviewers for helping to compile a
set of highly interesting papers and we would also like to acknowledge the use
of EasyChair (www.easychair.org) when preparing the proceedings.
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Machine-learning based image segmentation using 
Manifold Learning and Random Patch Forests 

K. Fritscher1, P. Raudaschl 1, P. Zaffino2, G.C. Sharp3, M.F. Spadea2, R. Schubert1 

1 Department for Biomedical Image Analysis, UMIT, Austria 
2 Department of Experimental and Clinical Medicine, Magna Graecia University, Italy 

3 Massachusetts General Hospital, Harvard Medical School, USA 

Abstract. Accurate segmentation of organs at risk is an essential precondition 
for successful treatment planning in radiotherapy. In this paper we introduce a 
novel approach for the fully automatic segmentation of organs at risk in CT im-
ages. 

The method is based on the usage of Manifold Learning in order to extract 
features of multi-scale image patches. In combination with spatial locality in-
formation, the resulting embedding coordinates are used as features for a multi-
step classification approach based on using multiple Random Patch Forests.   

Experiments using 17 CT images of the head-neck region demonstrate the 
high potential of the presented method. Quantitative evaluation shows that the 
approach provides accurate segmentation results even with a small number of 
training subjects. 

 

1 Introduction 

Efficient and exact delineation of anatomical structures is one of the key areas in 
medical imaging. This is especially true for medical fields like radiation oncology, in 
which the segmentation of anatomical structures (e.g. organs at risk (OAR)) directly 
acts as an input for treatment planning. Hence, the need for methods that provide 
accurate segmentation with minimal user input is obvious. Most frequently used seg-
mentation approaches in radiotherapy are (multi) atlas based segmentation (MABS) 
strategies and methods based on statistical models of shape and/or appearance (SSM, 
SAM). MABS offers a high level of robustness and usually does not need any user 
interaction. Model based approaches on the other hand provide closed surface and 
anatomically plausible shapes, which is a desirable property for most applications.  

Despite their advantageous properties, both approaches suffer from shortcomings 
when the anatomical structure of interest shows high morphological variability. Most 
methods for deformable registration have problems to correctly deform structures 
showing high shape variability.  On the other hand the creation of statistical shape 
models for structures with highly varying shape or even topology is extremely chal-
lenging and often requires a large number of labeled training images.  
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In this paper a novel approach for the fully automatic segmentation of organs at 
risk in CT images is introduced. Using the proposed method, image patches with dif-
ferent sizes and shapes are extracted for voxel neighborhoods in predefined regions of 
interest. Using these patches, manifold learning is performed by using Laplacian 
Eigenmaps in order to obtain the embedding coordinates of each voxel/patch in the 
patch manifold space. The low-dimensional embedding is then used in combination 
with locality information to train a Random Forest Classifier in a two-step approach. 
During the training phase, multiple Random Forests (RF) are trained in order to assess 
the correct labeling for 9 different locations within a voxel neighborhood. The final 
class label for each voxel is obtained from the probability maps coming from all 9 
random forest classifiers.  

The presented approach is evaluated by segmenting the parotid glands in 17 head 
neck CT scans of cancer patients. Being the major salivary gland, parotid glands are 
highly critical OARs for radiotherapy of head and neck cancer patients. Unintended 
irradiation of the parotid glands can result in difficulties for mastication and degluti-
tion. Apart from this, the automatic segmentation of parotid glands is highly challeng-
ing. This is due to high anatomical shape variability of the parotid gland on the one 
hand and low soft-tissue contrast as well as image noise (caused by dental implants) 
on the other hand.   

1.1 Related work 

The usage of random forests [1] is highly popular in numerous machine learning 
applications - not only, but also in medical imaging. Criminisi proposed random for-
ests for the localization of anatomical organs [2], [3]. In addition, random forests were 
used for segmentation, e.g. for the segmentation of brain tumors [4] or prostates in 
MRI [5] 

Patch based segmentation has also been applied frequently for different anatomical 
structures [6]–[8]. In [9] the usage of geodesic distances in combination with patch 
based segmentation and spatial-context information was proposed.  However, the 
usage of this spatial information is dependent on user defined landmarks or additional 
labeled structures.  In [10] the benefit of different features for patch based segmenta-
tion has been evaluated for the segmentation of the parotid glands leading to very 
accurate segmentation results. In addition, patch based segmentation was used in 
combination with atlas based segmentation [7], [11], [12] as an additional refinement 
step.  

In  [13] class probabilities have been used to train a random forest classifier for in-
fant brain segmentation. In [14] iterative, voxel-wise classification was applied for the 
segmentation of the prostate. However, using this approach segmentation is depend-
ent on previously segmented prostates of the same patient.  

A combination of Laplacian Eigenmaps [15] and Random Forests for segmentation 
has been proposed in [16]. However, the approach is based on computing Laplacian 
Eigenmaps using whole images instead of patches as input. This does not only result 
in high computational demands, but also requires a large set of labeled training imag-
es.   
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Summing up, both Random Forest Classification/Regression and Manifold Learn-
ing are very active fields of research. However, to the best of our knowledge, the 
presented combination of 1) Manifold Learning based on multi-scale image patches, 
2) Iterative Random Forest Training based on embedding coordinates resulting from 
Laplacian Eigenmaps and 3) patch based label fusion using multiple random forests 
4) without the need for prior elastic registration has not been presented before. The 
evaluation will show that the proposed method provides accurate segmentation results 
and performs equally well or better than existing methods for the segmentation of 
parotid glands in CT images.   

2 Methods 

2.1 Preprocessing and patch extraction 

In a first preprocessing step, all images of the training set are registered onto a ref-
erence dataset using a rigid transform. In order to account for image noise Mutual 
Information (MI) is used as a metric. Registration is performed separately for left and 
right parotid gland using different sub-regions (defined in the reference dataset) for 
MI computation.  

After registration, patches are extracted for each voxel within a predefined region 
of interest (ROI) containing the respective structure(s) of interest (in this project the 
parotid gland). The ROI is defined in the reference image and must have the same 
size for all training and test images. Patches with a 3x3x3 (type A), 7x7x3 (type B) 
and 11x11x5 (type C) neighborhood are extracted for each voxel. In order to avoid 
redundancies in overlapping regions and also to reduce the computational burden for 
the following steps, only patch type A contains all voxels within the patch. Patch 
types B and C only contain the border voxels of the respective patches (see also fig. 1 
(left)). Anisotropic size of the patches is chosen to account for the anisotropic resolu-
tion of the images used in this project (1.2x1.2x2.5mm voxel size). Using these patch-
es independently for the following manifold learning step shall on the one hand pro-
vide information about small structures (type A) and on the other add knowledge 
about the appearance of neighboring structures as well as robustness towards local 
noise (types B and C) 

2.2 Manifold learning 

It has been shown in various research projects, that non-linear manifold learning 
approaches like Laplacian Eigenmaps (LapE) [15] can successfully be used for unrav-
elling the inherent structure of the input data [17]. 
LapE compute a low-dimensional representation of the data in which the distances 
between a datapoint and its k nearest neighbors are minimized. First a neighborhood 
graph 𝐺 is computed, in which every datapoint is connected to its 𝑘 nearest neigh-
bours. Based on using the Gaussian kernel function the weights for each edge in 𝐺 are 
computed and stored in adjacency matrix 𝑊.  For the computation of the low dimen-
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sional representations 𝑦! the cost function 𝜙 𝑌 = 𝑦! − 𝑦!
!
𝜔!"!"  is used. Using 

spectral graph theory, the minimization of the cost function can be defined as an 
eigenproblem so that minimizing 𝜙 𝑌  is proportional to minimizing  𝑌!𝐿𝑌, where 
the graph Laplacian 𝐿 = 𝑀 −𝑊. Degree matrix M is a diagonal matrix, whose entries 
are the row sums of W. By solving 𝐿𝑣 = 𝑀𝑣𝜆, 𝑑 eigenvectors 𝑣!corresponding to the 
𝑑 smallest eigenvalues can be calculated. As a result, each patch 𝑝 can be represented 
by its respective position in patch space. Fig. 1 is presenting the result of manifold 
learning based on LapE using patch type A as input. Looking at fig. 1, one can see 
that the resulting eigenvectors have the potential to separate anatomically meaningful 
structures like skin, bone or different types of soft tissue.  
 
 
 
 
 
 
    

 
 
 
 
 

   sample   EV1     EV2    EV3 

Fig. 1. Illustrating the output of LapE by projecting the embedding coordinates back into image 
space (sample: a sample from an original image with an illustration of the applied patch config-
uration in the upper left corner;EV1-EV3: respective embedding coordinates along the coordi-
nate axis formed by 3 exemplary eigenvectors for patch type A)  

In this project, LapE are calculated independently for the 3 patch types A, B, C. The 
resulting embedding coordinates for each patch type are used as feature vector 𝑓    for 
the following classification step based on the usage of Random Forests. In this project 
a value of 𝑑 = 20 was chosen, which results in 60 image features per patch.   

 In addition to the image features, the offset of each voxel relative to the corner 
voxel of the predefined ROI is also added to the feature set. By this means, two 
patches which have similar appearance, but come from very different locations, can 
be more easily distinguished. Apart from this, the location information can be regard-
ed as a “weak” shape model, which assists in inferring the location (and vague shape) 
of the parotid gland. Usage of this additional locality information is also the reason 
why rigid pre-registration was performed during preprocessing.  

2.3 Voxel Classification using Random Patch Forests  

Random Forest Classification is applied in order to determine a class label 𝑐 ∈ 𝐶 
for a given test voxel  𝑥 ∈ Ω .  

 
Training. Using a feature representation 𝑓 for each voxel of the training set, each 

tree 𝑡 learns a weak predictor  𝑝(𝑐|𝑓). In each node of a tree, the set of training voxels 
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is split based on a binary test using  𝑠(𝑥; 𝑓!) < 𝑡 , where  𝑡  is a threshold value for 
each split node and  𝑓! represents the 𝑘!! feature of  𝑓. Based on the test result, the 
respective voxel is sent to one of its child nodes. During training 𝑓! and 𝑡 are opti-
mized in a way that the information gain among class distributions is maximized [16]. 
For improved generalization ability, randomness is induced by only using a randomly 
sampled subset of 𝑓 to optimize the parameters for each split node. Optimization is 
stopped when the maximum information gain falls under a predefined threshold. 
Growth of a tree stops when a predefined depth is reached or when a node contains 
less than a predefined number of training samples.  

 
Testing. During testing each new voxel 𝑥 of an unseen image is pushed through 

each trained tree by applying the learnt split parameters  𝑓! and 𝑡. For each tree the 
tested voxel will read different leaf nodes, which are associated with different class 
probabilities. The final probability for a test voxel based on a single random forest is 
calculated using 𝑝! 𝑐 𝑥 = !

!
𝑝!(𝑐|𝑓)!

!!! , where 𝑇 is the number of trees that are 
used.  

 
Multiple Forests. In the presented approach, classification for each voxel is ob-

tained by using multiple forests. Instead of training only one forest to obtain the label 
for the center voxel of an image patch, 8 additional RF are calculated in order to as-
sess the class label for the corner voxels of a 3x3x3 neighborhood. Using highly over-
lapping patches, the probability for a given voxel can then be obtained by 𝑃! 𝑐 𝑥 =
!
!

𝑝!(𝑐|𝑓)!
!!! . The usage of multiple forests is supposed to increase the robustness of 

the final labeling especially in the presence of image noise compared to using only 
one random forest.  

 
Two Step Random Forest training and testing. Similar to the approach present-

ed in [13], a two-step approach is used for RF training and testing: In a first training 
iteration a feature vector 𝑓 = {𝑝!!,… , 𝑝!"! , 𝑝!! ,… , 𝑝!"! , 𝑝!! ,… , 𝑝!"! , 𝑖! , 𝑖! , 𝑖!} is used. 𝑝!!  
refers to the features obtained for each patch type using Laplacian Eigenmaps and 
{𝑖! , 𝑖! , 𝑖!} refer to the offset of each voxel relative to the center (voxel) of the prede-
fined ROI (see also section 2.2).Using the Multiple Random Forest approach de-
scribed above 9 probability maps 𝑃!!!..! for each training dataset can be obtained. 

For the second training iteration the probability maps 𝑃!!!..! are also fed into the 
classifier in addition to the features used in the first iteration. Based on the fact that 
similar shaped structures should also result in similar probability maps, the inclusion 
of the probability maps in the second RF training adds additional locality and shape 
information to the feature vector, which is expected to be useful for improved RF 
classification.  

During testing, the same two step approach that was used for RF training is applied 
in order to obtain a final probability map   𝑃! and a final class label 𝐶 for each 𝑥 in an 
unseen image. 𝐶 is obtained by using 
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𝐶 𝑝 𝑥, 𝑓 =
1, 𝑝 𝑥, 𝑓 > 0.5  
0, 𝑝 𝑥, 𝑓 ≤ 0.5    (1) 

 
 

3 Results 

Evaluation scenarios: On the whole, 4 different scenarios have been evaluated in 
order to test the influence of the suggested contributions:  

I)  Only LapE embedding coordinates for patch type A in combination with 1 
training iteration and 1 RF (for center voxel) are used 

II)  Equal to I, but using LapE embedding for all patch types  
III) Equal to II, but using 9 RF 
IV) Equal to III, but using 2 RF iterations. 
During evaluation only one LapE had to be computed due to the usage of a leave-

one-out strategy. In other settings out-of-sample extension for LapE could be applied 
for improved efficiency. 

 
Data and parameter settings. The presented approach has been evaluated using 

17 CT images of the head neck region with manually labeled parotid glands that acted 
as ground truth. Image resolution is 1.25x1.25x2.5mm. Accuracy of the segmentation 
is measured using the DICE coefficient (=2 𝐴 ∩ 𝐵 /( 𝐴 + 𝐵 ), where A represents 
the ground truth and B the results using the proposed approach. In addition, maximum 
Hausdorff Distance is used to quantify the largest segmentation error.   

Pre-registration of the test image to a randomly chosen training image has been 
performed using rigid transform in combination with Mutual Information metric (to 
account for the significant noise level in some of the test images). The size for the 
ROI of which the patches have been extracted was 50x50x87.5mm left Parotid) and 
68x75x87.5mm (right parotid) respectively. Based on observations in preliminary test 
runs the size of the neighborhood for the computation of the Laplacian Eigenmaps 
was set to n = 50. As already mentioned, 20 embedding coordinates have been calcu-
lated for each patch type. A leave-one-out cross validation approach was used for the 
evaluation of all 4 scenarios.  

Figure 2 presents results for all 4 testing scenarios. More specifically, the average 
Dice coefficient and average values for max. Hausdorff distance for left and right 
parotid glands are depicted. Error bars indicate 25th and 75th percentile. 

Figure 3 shows the final labels as well as the final probability maps (for one sam-
ple region of an exemplary dataset) resulting from RF classification using scenarios 
II-IV. 
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Fig. 2. Comparing average Dice scores and max. Hausdorff distances obtained for left and right 
parotid glands for all 4 scenarios explained in section 3. 

 
 

 

 

 

 

 

Fig. 3. First col.: Sample of original image (top row) and manual segmentation (bottom row);            
second to fourth col.: final probability maps (top row) and corresponding segmentation results 
(bottom row) obtained with scenarios II-IV, blue circles mark an exemplary area in which 
gradual improvements of the segmentation accuracy from scen. II – IV can be observed best  

4 Discussion 

A novel approach based on the usage of manifold learning in combination with a 
multi-step learning approach based on random patch forests has been presented. The 
evaluation has shown that the presented method is highly suitable for the segmenta-
tion of the parotid glands in CT scans. It could be shown, that the different extensions 
based on using of multi scale patches (scenario II), an ensemble of random forests 
(scenario III), as well as the usage of a two-step Random Forest classification scheme 
(scenario IV) leads to an increase of the respective Dice scores. It can also be ob-
served, however, that max. Hausdorff Distances are lowest using Scenario II for the 
right parotid gland. This might be due to a smoothing effect that occurs in scenarios 
III and IV. This smoothing effect (which is also visible in fig. 3) potentially caused 
that single voxels which are labeled as foreground in scenario II are labeled as back-
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ground in scenario III. That has very little or no effect on real segmentation quality, 
but a positive effect on max. Hausdorff values. This is also supported by the fact that 
Dice scores are higher using scenarios III and IV. Looking at fig. 3, it can also be 
observed that the two-step RF classification used in scen. IV results in more distinct 
probability maps leading to higher segmentation accuracy compared to the ground 
truth.  

Compared to other approaches for parotid gland segmentation which used the same 
dataset [18] or a (sub)-set of the dataset used in this work [7] for evaluation the pre-
sented approach provides equal or higher Dice scores and smaller Hausdorff distanc-
es. Also compared to the Dice scores presented in other publications [18]–[20] the 
obtained results are highly competitive. However, it is also evident that several as-
pects of the presented approach can potentially be improved: e.g. alternative patch 
configurations will be tested in order to further increase the positive impact of using 
multi-scale patches. Moreover, the usage of additional locality information and more 
sophisticated voting schemes for classification based on multiple RFs as well as the 
application of different sampling approaches for increased efficiency will be evaluat-
ed. 
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Abstract. Atlas-based segmentation is a frequently used approach in medical 

imaging and multi atlas-based segmentation (MABS) has achieved great suc-

cess for various applications. In order to simultaneously exploit the capabilities 

of MABS, limit execution time and maintain robustness, it is preferable to se-

lect a (preferably small) subset of atlases to be used for segmentation. 

In this work, an atlas selection strategy using Manifold Learning and Random 

Forest Regression is presented. The approach aims at learning the relationship 

between the pairwise appearance of structures and the Dice coefficients of their 

respective labeling. For this purpose, multi-scale patches in relevant regions of 

interest are extracted. Local patch models based on linear and non-linear di-

mensionality reduction are created. Resulting coordinates of the patch embed-

dings are used to train a regression model for Dice score prediction using Ran-

dom Forests. Predicted Dice scores are used to rank/select atlases for MABS. 

The newly developed approach is applied for segmentation of the left and right 

parotid glands in CT images of cancer patients. Quantitative evaluation shows 

that the presented atlas selection approach performs distinctly better than other 

commonly used selection strategies, especially for a small number of atlases. 

Keywords: Atlas-based segmentation, Atlas selection, PCA, Machine Learning 

1 Introduction 

Image segmentation is a frequently applied task in medical imaging, especially in 

radiotherapy. Automated segmentation is a substantial component of image-guided 

adaptive radiotherapy (e.g. for segmentation of organs at risk). The utilization of a 

priori knowledge of structures that should be segmented is the basis to accomplish a 

reliable and robust automated segmentation result. In case of atlas-based segmentation 

this knowledge is available through already segmented atlas images. The segmenta-

tion of structures in new images is performed by registering these new images to an 

already segmented atlas image. Especially for subjects with high inter-structure varia-

bility, multi atlas-based segmentation (MABS) approaches have shown to be more 

accurate than single atlas-based segmentation attempts [1, 2]. Apart from the selected 
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approach for elastic registration, the selection of an appropriate voting strategy and 

the selection of atlases have an important influence on the segmentation accuracy and 

reliability. Moreover, restricting registration to an appropriate subset of atlases can 

significantly improve segmentation speed. The presented approach is used for seg-

menting parotid glands in head and neck CT scans of cancer patients. Being the larg-

est salivary glands, the parotid glands are a highly critical OAR. Moreover, due to the 

high anatomical shape variability of parotid glands, low contrast and image noise 

caused by dental artifacts, automated segmentation of the parotids is very challenging. 

1.1 Related Work 

Common atlas selection approaches use image similarity metrics for atlas selection. 

Typical image similarity metrics are sum of squared distances (SSD), cross correla-

tion [3], and normalized mutual information (NMI) [4]. Based on similarity values, a 

ranking can be built and used for atlas selection. In a recent work, an atlas selection 

strategy based on the correlation of inter-atlas similarities was proposed [5]. This 

approach outperformed common NMI-based atlas selection, especially if only a 

smaller number of atlases was used. Wolz et al. developed an atlas selection approach 

based on learning an embedding for atlas selection [6]. Their results have shown an 

increasing gain in accuracy with increasing distance between the new image that 

should be segmented and the atlas images compared to common multi-atlas segmenta-

tion approaches. In a work by Cao et al. images are projected into a low-dimensional 

manifold [7]. They used Euclidian distance in this low-dimensional space to deter-

mine intrinsic image similarity that is used as an atlas selection criterion. Sanroma et 

al. [2] used a learning based approach to rank atlases. They tried to learn the relation-

ship between the pairwise appearance of analyzed images and the final labeling per-

formance expressed by Dice values. 

1.2 Contribution 

In this work an atlas selection strategy using Manifold Learning and Random Forest 

Regression is presented. The Dice score has shown to be a good (virtual) parameter 

for atlas selection [2, 5]. Hence, in this work the Dice score was chosen as target pa-

rameter for prediction through Random Forest Regression. In contrast to the inspiring 

approach of Sanroma et al. [2], where HOG features are extracted out of the images 

and used for model learning with Support Vector Machines, in this work features are 

generated by using Manifold Learning in combination with multi-scale image patches 

and Random Forest Regression. Multi-scale image patches are used to assess (semi-) 

local image characteristics. The patches form the input for a Manifold Learning step. 

In contrast to [2], the signed distances between the embedding coordinates of the 

ensemble of all patches extracted from a pair of images will be used to learn (training) 

and predict (testing) their respective Dice scores. The predicted Dice scores are used 

to rank and select atlases for MABS. To the best of our knowledge there is no atlas 

selection approach that uses Manifold Learning with multi-scale image patches in 

combination with PCA or Laplacian Eigenmaps and Random Forests. 
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2 Methods 

In Fig. 1 the principle overview of the developed atlas selection approach can be seen. 

 

Random Forest (RF)PCA or Laplacian Eigenmaps

Subtract rows between
each dataset

~ Millions of features per voxel 60 features per voxel

 

Fig. 1. Principal overview of the proposed atlas selection approach for MABS. 

2.1 Data Preprocessing 

In the first step all atlas images are rigidly registered on a randomly selected reference 

atlas image using MI. In order to improve image registration quality, metric computa-

tion was restricted to a masked region around left and right parotid gland. Subse-

quently, regions of interest (ROI) containing all voxels for which patches shall be 

extracted are defined. The size of the ROIs was constrained to be equal for atlases and 

target images. Dice ratio, which will be used for atlas ranking (section 2.3) can be 

calculated as 

𝐷𝑖𝑐𝑒 =
2|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
. (1) 

A and B are labeled regions that are compared.  

2.2 Multi-scale Patch Extraction 

The second step is the extraction of three different image patches for each voxel with-

in the predefined ROI (see Fig. 2). The smallest patch has a cubic structure (patch 1: 

3x3x3 voxels). The two remaining patches have a cuboid-like structure:  However, 

only margin voxels that form a hull around the cuboid are used for the larger patch 

types. These patches are surrounding patch type 1 and have a size of 7x7x3 (patch2) 

12



and 11x11x5 voxels (patch 3). In order to take account of anisotropic image resolu-

tion, patch sizes are also anisotropic. 

 

Fig. 2. Principle 2D structure of multi-scale image patches. Red dot: current investigated voxel. 

Cyan: patch 1. Orange: patch 2. Green: patch 3. Thickness of patches 2 and 3 is one voxel. 

By using the border voxels of the cuboid-like patches instead of cubic patches a mul-

ti-scale approach can be applied without introducing redundancy compared to using 

only cubic patches (due to overlapping regions). Furthermore, the number of variables 

for subsequent dimensionality reduction and Random Forest learning is distinctly 

lower. This has a significant positive effect on computation time. For each voxel with-

in the predefined ROI the intensity values of its respective patches are arranged in a 

feature vector ti for all p atlas datasets for each patch type 𝑖. The length of these vec-

tors ti is m, where m = number of patches per training image x number of voxels per 

patch type. 

2.3 Patch Model Creation 

In order to create a patch model, two different approaches have been evaluated. On 

the one hand, Principal Component Analysis (PCA) [8] for performing linear dimen-

sionality reduction and on the other hand Laplacian Eigenmaps (LapE) [9, 10] provid-

ing non-linear embeddings of the input patches. For both approaches, all p feature 

vectors ti of patch type 𝑖 are arranged in three matrices 𝑀𝑖, which are used as input for 

PCA and LapE. 

Principal Component Analysis. PCA aims at identifying the linear combinations 

of the original variables which maximize their variance. The distribution of data is 

estimated by the mean value 𝒙 =  𝜀(𝒙) = (𝜀(𝑥1)𝜀(𝑥2) … 𝜀(𝑥𝑚))𝑇 ∈ ℝ and the covar-

iance of the data between the vectors 𝑐𝑖,𝑗 = 𝜀((𝑥𝑖 − 𝑚𝑖)(𝑥𝑗 − 𝑚𝑗)). Covariances can 

be represented by the covariance matrix 𝑪 = 𝜀((𝒙 − 𝒎)(𝒙 − 𝒎)𝑇) ∈ ℝ𝑚𝑥𝑚 . From 

the covariance matrix the eigenvectors and eigenvalues can be calculated. Finally, 

only the d eigenvectors are chosen that cover a certain (high) degree of all variations. 

In this project a value of d=20 was chosen. 

Manifold Learning. Laplacian Eigenmaps (LapE) are used for non-linear Mani-

fold Learning [9, 10]. A low-dimensional representation of the data is calculated in 

which the distances between a data point (=patch) and its k nearest neighbors are mi-

nimized. LapE generate a graph G based on the neighborhood information. Each data 

point is represented by a node. The connectivity is determined by a k-nearest neighbor 

search. Connectivity is weighted by a Gaussian kernel and is stored in the adjacency 
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matrix W. For dimensionality reduction the solution of the minimization problem of 

the cost function 𝑎𝑟𝑔 𝑚𝑖𝑛𝑌 ∑ ∑ ||𝒚𝑖𝑗 − 𝒚𝑗||²𝑤𝑖,𝑗𝑖  can be computed by the eigensys-

tem 𝑳𝒇 = 𝝀𝒇. L is the non-normalized graph Laplacian defined by 𝑳 = 𝑫 − 𝑾. D is 

the diagonal matrix with 𝑑𝑖𝑖 = ∑ 𝑤𝑗,𝑖𝑖 . By solving the generalized eigenvalue problem 

𝑳𝒇 = 𝝀𝑫𝑭 d eigenvectors fi corresponding to the d smallest eigenvalues can be calcu-

lated. Consequently, each patch can be represented in the respective position in the 

patch space. In this project, the number of neighbors used for LapE computation was 

set to 50. 

Random Forest Regression. The first d=20 principal components (PCs) or eigen-

vectors (EVs), respectively, are used. Using the first 20 PCs/EVs for each patch type, 

60 features (= coordinates in PCA space and embeddings resulting from LapE respec-

tively) per voxel are used for Random Forest Regression. For this purpose they are 

again arranged in vector form. Since Dice ratios are based on pairwise comparison of 

voxel quantities, also pairwise differences of features between all pairs of images of 

the training set are calculated and stored in the prediction matrix P. 

Random Forests (RF) are an ensemble learning approach that can be used for classifi-

cation and regression [11]. RFs are composed of a multitude of decision trees, where 

each tree t consists of nodes. During training, the prediction matrix P (containing the 

embedding coordinates for each patch resulting from PCA and LapE) is trained for 

predicting the Dice value of each image pair within the training set. The set of em-

bedded coordinates of the training sets gets binary split into two parts at each node of 

a tree and the respective input is then assigned to one of its child nodes. The target 

variable of RF regression is the Dice ratio 𝑑𝑟 after rigid pre-alignment. 𝑗 is a split 

variable out of the feature space and s is a splitting point. A binary splitting plane can 

then be defined: 𝑅1(𝑗, 𝑠) = {𝑋|𝑋𝑗 ≤ 𝑠} and 𝑅2(𝑗, 𝑠) = {𝑋|𝑋𝑗 > 𝑠}. The splitting vari-

able j and splitting point s are determined by 

 

min𝑗,𝑠{min𝑐1
(∑ (𝑑𝑟𝑖 − 𝑐1)2

𝑝𝑖∈𝑅1(𝑗,𝑠) ) + min𝑐2
(∑ (𝑑𝑟𝑖 − 𝑐2)2

𝑝𝑖∈𝑅2(𝑗,𝑠) )}. (2) 

 

In each step an optimal pair (j,s) is searched. 

For new target images the features have to be computed using PCA or LapE. Du-

ring testing, new embedding coordinates for the patches of an unseen image are eval-

uated by the trained trees. By this means a prediction for the “virtual” Dice ratio be-

tween (not yet existing) parotid glands label in the new image and every image in the 

training set can be computed. 

2.4 Atlas Selection 

Based on the predicted Dice ratios resulting from RF regression an atlas ranking is 

built for atlas-based segmentation. Higher predicted Dice ratios are ranked first. 
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3 Results 

3.1 Evaluation Strategy 

In order to evaluate the segmentation results of the proposed method the results were 

compared with the following atlas selection strategies: 

 Atlas selection based on original Dice values: Dice values after deformable re-

gistration and segmentation were used to build an atlas ranking. Indeed, this is an 

unrealistic approach, however, for testing purposes this is often used as a reference. 

In the following this selection strategy will be referred to as “Oracle” selection. 

 Atlas selection based on common image similarity: Atlas ranking was generated 

according to NMI values between image regions. NMI-based selection was chosen 

as a reference since this is one of the most frequently used selection strategies. 

Based on the determined rankings, segmentation performance was tested using differ-

ent numbers of ranked atlases. Previous results of works with the same datasets have 

shown that using more than 11 atlases deteriorates segmentation results [5]. Hence, 

the maximum number of atlases that were tested was set to 11. 

A leave-one-out strategy was applied in order to evaluate different atlas selection 

approaches. The Dice ratio and the 95% Hausdorff distance were used to quantitative-

ly evaluate segmentation accuracy for a varying numbers of atlases 

In order to test the significance of the improvement of the respective atlas selection 

strategy with respect to other atlas selection strategies and different numbers of atlas-

es used for selection, a paired t-test with p ≤ 0.05 was used [2]. 

3.2 Data 

The atlas database consists of 17 CTs of the head and neck. All images have a voxel 

size of 1.25x1.25 x 2.5 mm and a dimension of 512 x 512 x 89 slices. Manual delinea-

tions of left and right parotid glands were used as gold standard to evaluate segmenta-

tion accuracy. 

The dimension of the bounding box of the left parotid is 40 x 40 x 35 (56,000 

voxels) and of right parotid it is 45 x 50 x 35 (78,750 voxels). 

3.3 Experiments 

In Fig. 3 (first row) the average Dice ratios for the segmentation of the left and right 

parotid with respect to different numbers of atlases are visualized. Colored bars repre-

sent average Dice ratio for different atlas selection strategies. In Fig. 3 (second row) 

the average 95% Hausdorff distances of the left and right parotid gland with respect to 

different numbers of atlases are depicted. Black lines indicate 25
th

 and 75
th

 percentile. 

Significance tests performed in order to reveal significant accuracy improvement 

(in terms of higher Dice scores) for every newly added atlas showed, that no signifi-

cant improvement could be obtained when using more than 5 datasets. The underlying 
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atlas ranking for this significance tests is based on Oracle selection, which is consid-

ered as “virtual” (i.e. practically not available) gold standard for atlas ranking.  
 

  

  

Fig. 3. Evaluation of segmentation performance: First row: Colored bars represent average Dice 

ratio of the left (first column) and right (second column) parotid gland. Second row: Colored bars 

represent average 95% Hausdorff distance in mm of the left (first column) and right (second col-

umn) parotid. Black lines indicate 25th and 75th percentile.  

4 Discussion 

Significance tests revealed that using more than 5 atlases does not lead to a significant 

improvement of the segmentation accuracy even when using Oracle selection. More-

over, evaluation has shown that when using less than 4 atlases the segmentation accu-

racy is significantly higher when using PCA- and LapE-based atlas selection com-

pared to NMI-based selection (first row in Fig. 3). Furthermore, for the left parotid 

there was no significant accuracy improvement using 3 atlases based on PCA-based 

ranking and 5 atlases using NMI-based ranking. The same is true for the right parotid 

gland when using 4 atlases based on PCA-based ranking. This confirms the positive 

property of the newly developed approach that equally accurate segmentation results 

can be achieved with a comparably lower number of atlases. 
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Comparing PCA vs. LapE of the presented approach, it can be said that PCA-based 

ranking performs better than the LapE-based ranking when using less than 4 atlases 

(first row in Fig. 3). For higher number of atlases there are no significant differences 

concerning segmentation accuracy. 

5 Conclusion 

It could be shown, that the developed atlas selection technique performs clearly better 

than NMI-based selection if a low number of atlases is used. In addition, equal seg-

mentation accuracy can be obtained with a lower number of atlases compared to 

NMI-based selection. Overall, PCA-based atlas selection performed slightly better 

than LapE-based selection. 

In further analyses, the presented approach will be compared to additional selection 

strategies in addition to NMI. Moreover, more organs in the head neck area will be 

included in future evaluations.  It has to be said, however, that the parotid gland is a 

very suitable and highly non-trivial test structure, which is frequently used for the 

evaluation of segmentation approaches for the head and neck region. 
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Abstract. Precise voxel trajectory estimation in 4D CT images is a pre-
requisite for reliable dose accumulation during 4D treatment planning.
4D CT image data is, however, often affected by motion artifacts and
applying standard pairwise registration to such data sets bears the risk
of aligning anatomical structures to artifacts – with physiologically unre-
alistic trajectories being the consequence. In this work, the potential of a
novel non-linear hybrid intensity- and feature-based groupwise registra-
tion method for robust motion field estimation in artifact-affected 4D CT
image data is investigated. The overall registration performance is evalu-
ated on the DIR-lab datasets; Its robustness if applied to artifact-affected
data sets is analyzed using clinically acquired data sets with and with-
out artifacts. The proposed registration approach achieves an accuracy
comparable to the state-of-the-art (subvoxel accuracy), but smoother
voxel trajectories compared to pairwise registration. Even more impor-
tant: it maintained accuracy and trajectory smoothness in the presence
of image artifacts – in contrast to standard pairwise registration, which
yields higher landmark-based registration errors and a loss of trajectory
smoothness when applied to artifact-affected data sets.

1 Introduction

During 4D radiotherapy treatment planning of moving tumors, 4D CT- and
registration-based motion estimation is commonly used for 4D dose calculation
or dose accumulation purposes, i.e. to estimate the dose applied to tumor and
normal tissue under consideration of respiratory motion. The standard approach
to estimate motion fields and voxel trajectories in 4D CT images is to sequentially
apply non-linear pairwise registration between two of the 4D CT image volumes;
concatenation of the estimated motion fields forms the sought voxel trajectories.
4D CT image data is, however, often affected by motion artifacts [11] and – since
information from other volumes is neglected – pairwise registration tends to align
anatomical structures to artifacts in artifact-affected image frames and areas [8].
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Fig. 1. Illustation of the 4D transformations ϕα and ϕβ between a set of images Ii,
i = 1, . . . , n, and the common reference frame.

Temporal regularization and groupwise registration should have the potential
to mitigate this problem and to compute more realistic voxel trajectories in
artifact-affected data sets.
In this paper, we present a novel hybrid intensity- and feature-based spatially and
temporally regularized groupwise registration method, and the aforementioned
hypothesis is analyzed both by means of motion phantom data and clinical 4D
CT images.

2 Methods

The proposed non-linear groupwise registration approach is based on Metz et al.
[4] and additionally inspired by essential components of the registration method
of Xu and Li [10]. The resulting algorithm is implemented within the open-source
registration framework elastix (http://elastix.isi.uu.nl).
Let the four-dimensional input image I(y) consist of voxels with spatio-temporal
coordinates y = (xT , t)T ∈ R3 × R. The sought transformations from image Ir
to image It (here: r, t ∈ T as breathing phases) is obtained by concatenating 4D
B-spline transformations ϕα(y) and ϕβ(y) as illustrated in Fig. 1. Following [3],
4D B-spline transformations can be parameterized as

ϕµ(y) = y +
∑

yi∈Ny

ciβ
k(

y− yi
δi

), (1)

with yi ∈ Ny as control points within the compact support of the B-spline at y,
δi as control point spacing, with the k-th order (here: cubic) multidimensional
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B-spline polynomial βk(y) and the B-spline coefficient vectors ci. The parameter
vector µ is optimized during registration and is associated to the control point
coefficients [4, 6].
To obtain ϕα and ϕβ of Fig. 1, two steps are performed: First, the transformation
ϕα is calculated by minimizing the cost function D. D is in this work given by

D = λDM + ρDF + ζDS , (2)

with the weighting coefficients λ, ρ, ζ ∈ R+ and the distance or regularization
terms DM , DF , and DS .
The first term in (2), the distance measure DM , is defined as

DM (α) =
1

|S||T |
∑

x∈S

∑

t∈T
(I(ϕα(x, t))− Īα(x))2, (3)

with

Īα(x) =
1

|T |
∑

t∈T
I(ϕα(x, t)) (4)

as the common reference frame of Fig. 1; S and T denote the sets of spatial and
temporal voxel coordinates, respectively.
Similar to [10], a feature term DF is integrated into D and defined as

DF =
1

n|T |
∑

t∈T

n∑

i=0

||ϕα(pit, t)− ϕ̄α(pi)||2 . (5)

pit denotes the spatial position of the i-th feature point or landmark at breathing
phase t. The mean temporal coordinate of the i-th feature point is calculated by

ϕ̄α(pi) =
1

T
∑

t∈T
ϕα(pij , t). (6)

Analogous to [5], the landmarks pit are identified using a two-step algorithm:
First, feature points are detected in end-inspiration CT image based on the
answers of the Förstner operator applied to the individual voxels. Then, the
feature points are transferred to the other 4D CT image frames by intensity-
based block matching and subsequent plausibility checks (see [7] for details).
The final curvature regularization term DS is defined by means of the Hessian
Hϕα of ϕα and given by

DS =
1

|S||T |
∑

x∈S

∑

t∈T
||Hϕα(y)||2F . (7)

In the second registration step and for a given parameter vector α, the inverse
transformation of ϕα, ϕβ , is approximated by minimizing the inverse consistency
term

DIC =
1

|S||T |
∑

y∈S×T
||ϕβ(ϕα(y))− y||22. (8)

The transformations ϕα and ϕβ can be combined to a transformation ϕrtᾱ from
a reference image Ir to a template image It.
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Table 1. Published target registration errors for groupwise registration algorithms and
the DIR-lab datasets, compared to the pairwise and the proposed groupwise registration
approaches PW and GW applied in this work

Target Registration Error (TRE) [mm]
Dataset Castillo [1] Delmon [2] Wu [9] Metz [4] Xu&Li [10] PW GW

DIR-lab 01 0.97 1.3 0.64 1.02 1.28 0.88 0.80
DIR-lab 02 0.86 1.0 0.56 1.06 0.56 0.92 0.76
DIR-lab 03 1.01 1.7 0.70 1.19 0.59 1.06 1.02
DIR-lab 04 1.40 1.6 0.91 1.57 0.69 1.49 1.39
DIR-lab 05 1.67 1.9 1.10 1.70 1.10 1.63 1.57
DIR-lab 06 1.58 1.6 3.28 — — 1.47 1.48
DIR-lab 07 1.46 1.7 1.68 — — 1.51 1.59
DIR-lab 08 1.77 1.8 1.70 — — 1.63 1.73
DIR-lab 09 1.19 1.5 1.72 — — 1.31 1.27
DIR-lab 10 1.59 1.6 1.48 — — 1.34 1.42

ØTRE 1.35 1.57 1.38 1.31 0.84 1.32 1.30

3 Experiments and Results

The defined functionals were minimized using adaptive stochastic gradient de-
scent within a multi-resolution setting (four levels). The control point spacing
was chosen to 13 and 10 mm for registration steps one and two. The applied
weighting coefficients were λ = 0.2, ρ = 0.5 and ζ = 0.2.
For evaluation purposes, we used the freely available DIR-lab 4D CT data sets,
acquired motion phantom images, and worked with 4D CT image data acquired
in our facility (only expiration phases included into the experiments).

3.1 DIR-lab datasets

The DIR-lab 4D CT data sets (http://www.dir-lab.com) were applied for regis-
tration accuracy evaluation of the proposed groupwise registration scheme (GW).
The results are summarized in Table 1 and refer to target registration errors
(TRE) between end inspiration and expiration, evaluated by means of the 300
landmarks provided by the DIR-lab. Similar to the following experiments, we
compared our GW results to a publicly available B-spline-based pairwise regis-
tration approach PW that is conceptually close to GW [4]. For both approaches,
the TRE is in the order of 1.3 mm (differences not significant).

3.2 Motion phantom datasets

The motion phantom consists of a QA phantom on a motion stage. Images
were acquired during regular phantom motion (Siemens SOMATOM AS Open,
phase-based reconstruction). To evaluate the potential of GW for robust reg-
istration in artifact-affected data, we reconstructed two data sets: (1) almost
artifact-free by standard reconstruction, and (2) a data set containing a single
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Fig. 2. Coronal view of the phantom for (a) standard reconstruction and (b) with
enforced motion artifacts. (c): irregularity mIrr of the voxel trajectories, evaluated
for pairwise (PW) and groupwise registration (GW) and phantom datasets with and
without motion artifacts.

artifact-affected image frame (here: 40% expiration phase T20; artifacts enforced
by manipulating the phase-sorting process, as shown in Fig. 2). GW and PW
were applied for voxel trajectory estimation in the artifact-free and -affected
data sets. Figure 2 (c) illustrates that the irregularity mIrr of the trajectories

(mIrr = 1
T |P1|

∑T
t

∑
x∈Ω

∣∣∣
∣∣∣∂

2ϕrtµ (x)

∂t2

∣∣∣
∣∣∣
2

2
, cf. [4]) is far higher for PW than for GW

– especially for the artifact-affected data set.

3.3 Clinical data

Similar to the phantom setting, five patient 4D CT data sets without significant
artifacts after standard reconstruction (BP = best possible reconstruction) were
selected for evaluation purposes. By specific manipulation of the phase sorting
process we deliberately induced double structure (DS) and missing data/linear
interpolation (LI) artifacts in the diaphragm area during reconstruction. We
ended up with three 4D CT images for each patient: the original one (BP), an
LI dataset containing LI artifacts in the 40% expiration phase T20, and an DS
dataset with DS artifacts in T20.
Landmark-based TRE values for PW and GW registration of the end inspira-
tion phase T00 to T20 and T00 to end expiration (T50) as well as mIrr values
are summarized in Fig. 3. Corresponding motion fields (Fig. 4) and difference
images before and after registration (Fig. 5) visually confirm the result that GW
improves robustness of motion estimation in artifact-affected 4D CT images.

4 Discussion and Conclusions

In this work, a hybrid intensity- and feature-based spatially and temporally reg-
ularized groupwise registration approach has been proposed and its potential for
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Fig. 3. TRE and mIrr data with std. dev. for pairwise (PW) and groupwise (GW)
registration in patient 4D CT images (BP: standard reconstruction; LI: BP data set
with enforced linear interpolation artifacts in T20; DS: double structure artifacts in
T20).

(a) PW reg.: T00 to T20BP (b) PW reg.: T00 to T20DS (c) PW reg.: T00 to T20LI

(d) GW reg.: T00 to T20BP (e) GW reg.: T00 to T20DS (f) GW reg.: T00 to T20LI

Fig. 4. Motion fields from end inspiration phase T00 to T20. The amount of motion is
visualized in a spectrum from green (approx. 10 mm) to red (approx. 40 mm). Top: PW
registration of T00 to T20 in the (a) BP, (b) DS, and (c) LI data set. Note that only the
T20 phases are manipulated, i.e. T00 is similar for all data sets. Especially the influence
of the LI artifacts on the motion fields becomes obvious. Bottom: similar motion fields
for GW registration; the influence of the artifacts visibly decreases compared to PW.
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(a) |T20BP–T00| (b) |T20BP–T20DS| (c) |T20BP–T20LI|

(d) |T20BP–(T00 ◦ ϕPW
BP )| (e) |T20BP–(T00 ◦ ϕPW

DS )| (f) |T20BP–(T00 ◦ ϕPW
LI )|

(g) |T20BP–(T00 ◦ ϕGW
BP )| (h) |T20BP–(T00 ◦ ϕGW

DS )| (i) |T20BP–(T00 ◦ ϕGW
LI )|

Fig. 5. Top row: (a) difference image between phase T00 and T20BP before registra-
tion; (b) difference between the original phase T20BP and the corresponding image
T20DS with enforced DS artifacts; (c) difference between T20BP and T20LI. Middle
row: difference between the original T20BP data set and the T00 data set warped by
the transformation ϕPW obtained by pairwise registration in the (d) original 4D CT
data set, (e) the DS 4D CT data set, and (f) the LI data set. Bottom: similar to the
middle row, but transformations ϕGW computed by groupwise registration GW.

robust voxel trajectory estimation in artifact-affected 4D CT data sets investi-
gated.
The landmark-based evaluation on the 4D CT DIR-lab datasets demonstrated
accuracy in the order of the voxel spacing and comparable performance to a re-
lated pairwise registration method. Similar results were obtained for a landmark-
based evaluation in in-house acquired clinical data sets (TRE pairwise vs. group-
wise registration of T00 to T20: 1.30 vs. 1.45 mm). However, TRE values for
registration in artifact-affected data sets increased considerably for pairwise reg-
istration (2.08 mm for double structure artifacts and 5.82 mm for linear in-
terpolation artifacts), but maintained almost stable for groupwise registration
(1.45 mm vs. 1.58 mm and 1.83 mm, respectively). In addition and for both
phantom and patient data sets, the groupwise registration approach has been
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shown to result in considerably smoother (in terms of mIrr) and most probably
more realistic voxel trajectories than pairwise registration – again especially in
artifact-affected data sets.
Both findings – maintaining a registration accuracy in the order of the voxel
spacing and providing a high degree of voxel trajectory smoothness even in the
presence of motion artifacts – strongly confirms the hypothesis underlying this
paper that groupwise registration improves robustness of motion field and voxel
trajectory estimation in artifact-affected 4D CT image data.

Acknowledgments Funded by the Forschungsförderungsfond of the University
of Hamburg, Medical faculty (FFM).
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Abstract. Groupwise registration is a powerful technique allowing to
simultaneously align multiple images using an unbiased approach. Its
need arises from population studies or motion estimation across dynamic
sequences. An often used class of efficient groupwise metrics measures
similarity as the sum of the pairwise similarities between the images
and a template image, commonly chosen to be the arithmetic mean im-
age in the current iteration. However, arithmetic averaging in intensity
space limits the applications to closely related modalities, and may pro-
duce fuzzy images compromising the performance of the metric. Geo-
metric and harmonic averaging is capable of handling range and scale
differences without adding computational complexity. Groupwise simi-
larity metrics based on mutual information and the three Pythagorean
means were investigated. Experiments performed on monomodal and
multimodal data demonstrated superior performance of geometric and
harmonic over arithmetic averaging and the corresponding pairwise reg-
istration.

1 Introduction

Groupwise registration has shown to be of interest in several areas of research,
such as the unbiased construction of atlases [1] and motion estimation across
temporal sequences for radiotherapy planning [2]. Scalability of the approach
is an important property for groupwise registration, given the fact that such
acquisitions can contain over a hundred images to be registered.

The direct application of entropy-based metrics using joint probability den-
sity functions (PDFs) such as mutual information [3] (MI), results in an ex-
ponentially increasing probability space. Such metrics suffer from the curse of
dimensionality with the sparsity in the joint PDF limiting their applicability.
Several methods have been proposed to work around this problem. Spiclin et
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al. [4] proposed a method based on hierarchically subdividing the joint intensity
space similar to a tree code, and reported good results for up to ten images,
after which sparsity limits the robustness of the method.

Instead of focusing on estimating the probability density functions, others
have focused on its parent measure, entropy. Hero et al. [5] proposed a method
based on entropic graphs, where each node in the graph represents an intensity
pair in the joint intensity space and the minimal length needed to span the graph
is related to the entropy of the system. The main drawback of this method stems
from the lengthy optimization required to find this minimal length.

An interesting class of metrics is based on constructing a template image
and measuring similarity as the sum of the pairwise similarities between the
images and the template [6, 7]. This approach yields an algorithm with linearly
increasing computational complexity with respect to the number of images to
be aligned, making it suitable for large groupwise registration problems. As a
template image, the arithmetic mean image in the current iteration is commonly
used, though several authors have demonstrated the importance of the use of a
sharp and more representative template to improve robustness and accuracy of
the registration [8, 9].

Indeed, arithmetic averaging over the intensity space tends to lead to fuzzy
mean images. In addition, it is less suited in the presence of scale and range
differences, often present in multimodal data. In this work we propose two novel
multimodal metrics for groupwise registration based on internally computing
the geometric and harmonic mean images. The performance of these metrics is
evaluated for mono- and multimodal groupwise registration, and compared to
results when using the arithmetic mean image.

2 Methods and Materials

2.1 Registration Metrics

Following Bhatia et al. [7], pairwise mutual information SMI [3] can be extended
to arithmetic average mutual information5 (AAMI)

SAAMI (Ii(x), . . . , In(x)) =
n∑

i=1

SMI(Ii(Ti(x)), IA(x)) (1)

where x is the spatial coordinate, Ti the spatial transformation and Ii the inten-
sity function associated with the ith image, for which we assumed an interpo-
lation scheme. IA(x) is the voxel-wise arithmetic mean intensity image defined
as

IA(x) =
1

n

n∑

i=1

Ii(Ti(x)) . (2)

5 Note that we preferred the use of MI instead of normalised MI, as proposed in [7].
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The arithmetic mean tends to lead to fuzzy mean images. In addition, it is not
suited for handling differences in intensity ranges and scales as found in multi-
modal data. We propose the use of the geometric and harmonic mean images,
given by

IG(x) = n

√√√√
n∏

i=1

I ′i(Ti(x)) , (3)

IH(x) =
n

n∑
i=1

1
I′
i(Ti(x))

=

n
n∏

i=1

I ′i(Ti(x))

n∑
i=1

n∏
j=1,j 6=i

I ′j(Tj(x))
. (4)

In equations (3) and (4), I ′i is the modified intensity function to ensure non-
negative intensities. The three Pythagorean means become equal if and only
if, the samples over which are averaged are identical. In all other cases, the
arithmetic mean will be higher than the geometric mean, which in turn will be
higher than the harmonic mean. As such, intensities tend to fall-off faster at
edges, limiting the blurred region, while overlapping structures are retained. We
hypothesize that this higher specificity could lead to better registration accuracy.

Two novel groupwise similarity metrics, using MI as a submetric and based on
the geometric average image (GAMI) and harmonic average image (HAMI) were
implemented as an extension to the software package elastix [10] together with
AAMI and will be made available in the future. Partial derivatives with respect
to the transformation parameters were computed analytically and determined
following the approach of Thévenaz et al. [11].

To illustrate the behavior of these three metrics, a simulation was developed
in which nine squares were simultaneously rotated with a different speed and
one was kept stationary. The rotation speed of each square was a multiple of the
rotation speed of the first square, such that after a rotation of 90◦ for the first
square, the initial situation is recovered where all squares overlap and another
global minimum in the metric space is found. Two simulations were performed,
mimicing monomodal and multimodal data. For the monomodal experiment,
we used squares with identical intensity. A single image consisted of an outer
square, with an intensity of 0.5, an inner square, with an intensity of 1.0, and
the background, with an intensity of 0.0. For the multimodal experiment, we set
the intensities of the inner and outer squares randomly between 0.5 and 1.0 for
all images separately. Figure 1 shows the metric values for a rotation from 0◦ to
90◦ for the slowest rotating image.

It can be seen that the proposed metrics have less local minima and those
that are common between all metrics are far less pronounced compared to AAMI.

2.2 Monomodal Experiments and Validation

Monomodal 4DCT data was taken from the POPI and DIR-LAB databases [12,
13], consisting of, respectively, 6 and 10 CT images of the thorax for a total
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Fig. 1. Behaviour of the three negated similarity metrics under discussion, arithmetic
average mutual information (AAMI), geometric average mutual information (GAMI)
and harmonic average mutual information (HAMI), when 10 squares are rotated si-
multaneously in the monomodal case (a) and the multimodal case (b). A lower metric
value corresponds to a better match. The angle of the slowest rotating square is given
on the x-axis.

of 16 patients. For the POPI database, three patients had 100 manually identi-
fied landmarks in the lungs for every breathing phase while the remaining three
patients had 100 landmarks in inspiration and expiration phases. The images
in the DIR-LAB dataset had 300 landmarks in the lungs for the inspiration
and expiration phases and 75 in the four phases in between. Registration ac-
curacy was determined with respect to the inspiration landmarks for all phases
in which landmarks were available. We define the groupwise target registration
error (gTRE) over a group of images for a single patient as a measure for the
accuracy of the registration:

gTRE(r) =
1

n

n∑

i 6=r

1

|Pi|
∑

pi,j∈Pi

||Ti,r(pi,j)− pr,j || . (5)

Herein, r is the reference time point, Pi the collection of landmarks in time point
i, Ti,r the transformation that maps the coordinates from the ith timepoint to
the reference timepoint and pi,j the jth landmark from the ith timepoint.

We performed a deformable registration using cubic B-splines and a final
control point spacing of 12 mm. For the optimization four resolutions were used
together with an adaptive stochastic gradient descent. Registrations were per-
formed with AAMI as a groupwise metric and MI as a pairwise metric and the
results were compared to those obtained from the proposed groupwise metrics
GAMI and HAMI. All other registration parameters were kept constant. Pair-
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wise registrations were only performed for the phases in which landmarks were
available with respect to the inspiratory phase whilst groupwise registrations
always included all breathing phases.

2.3 Multimodal Experiments and Validation

Multimodal brain images obtained from the RIRE database [14] were used for
the multimodal experiments. Data from 18 patients was included for which at
least three of the following modalities were available: CT, PET, MR-T1, MR-
T2, MR-proton density (PD). Ground truth transformations were determined
through the use of fiducial markers and a stereotactic frame for CT to MR and
PET to MR. Four to ten landmarks were available for each patient as a ground
truth for the registrations, allowing to compute the gTRE.

Given the large range differences present between CT and PET, it is trivial
to see that AAMI will fail to obtain a good and unbiased template image. Prior
to the registration, the images were normalized between 0 and 1 to eliminate this
effect. The registrations were performed with three translational degrees of free-
dom prior to rigid registrations which had six degrees of freedom. This allowed
for a more robust optimization. The performance of groupwise registration using
AAMI, GAMI and HAMI, was compared to pairwise registration using MI. Once
again all other registration parameters were kept equal.

3 Results and discussion

3.1 Monomodal Data

The results for the deformable registrations of the 4DCT images of the thorax
are pooled for all 16 patients and summarized in Table 1. Significance testing was
performed using a two-tailed Wilcoxon signed-rank test given the non-normality
of the data. Pairwise registrations were outperformed by groupwise registrations
using AAMI (p = 0.11), GAMI (p = 0.016) and HAMI (p = 0.0019), illustrating
the added value of a groupwise approach. We obtained better accuracies using
GAMI with respect to AAMI in all 16 registrations and the difference was sig-
nificant (p = 4.4 × 10−4). The HAMI metric gave better results than GAMI in
all 16 registrations and the difference was significant (p = 4.4× 10−4).

The obtained accuracies for pairwise registration using MI corresponded well
to other results reported for this data and when performing registration without
masks. Delmon et al. [15] reported 3.82 ± 4.15 mm for a pairwise registration
using MI. The improvement in results is most likely due to lower control point
spacing used here (32 mm versus 12 mm) which allowed for finer deformations
to be modeled.

The use of geometric and harmonic mean images in the groupwise registra-
tion framework has little to no computational overhead compared to the AAMI,
and constitutes an elegant alternative to approaches which require separate op-
timization of the template image [8] and minimal spanning tree [9].
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Table 1. Results for the registration of the 4DCT of the lungs for the four com-
pared methods: mutual information (MI), arithmetic average MI (AAMI), geometric
average MI (GAMI) and harmonic average MI (HAMI).The values, expressed in mm,
correspond to the mean, standard deviation, median and maximal groupwise target
registration error.

Method Mean gTRE StDev gTRE. Median gTRE Max gTRE

MI 2.15 1.03 1.83 4.80

AAMI 2.17 1.10 1.83 5.42
GAMI 2.12 1.06 1.79 5.22
HAMI 2.06 1.01 1.77 5.01

3.2 Multimodal Data

The results for the rigid registrations on the RIRE dataset are shown in Ta-
ble 2. In accordance with Tomaževič et al. [16], we considered the registration
successful if the gTRE of a subject was less than the largest voxel spacing of
the images under study (8 mm). This lead us to exclude a total of two subjects
from the statistical analysis and Table 2 for all metrics to allow for a fair and
honest comparison. Two misregistrations were obtained for AAMI (patient 008
and patient 105) and one for GAMI (patient 008).

Overall, groupwise registration using HAMI gave the best results. No mis-
registrations were recorded and accuracies were significantly better than AAMI
(p = 0.0013, using a two-tailed Wilcoxon signed-rank test) whilst GAMI also
outperfomed AAMI significantly (p = 0.0037). GAMI and HAMI did not pro-
duce significantly different results compared to pairwise MI.

Results per modality pairing are illustrated in Figure 2. Given the limited
data available for some modality pairings no significance testing was performed.
It can be seen from the figure that a pairwise approach for the PET-MR regis-
trations is better. It is possible that images with low signal-to-noise ratio, such
as PET, disturb the groupwise approach by clouding the mean image and wiping
away some of the details present therein.

Table 2. Results for the registration of the multimodal brain images for the four com-
pared methods: mutual information (MI), arithmetic average MI (AAMI), geometric
average MI (GAMI) and harmonic average MI (HAMI). The values, expressed in mm,
correspond to the mean, standard deviation, median and maximal groupwise target
registration error.

Method Mean gTRE StDev gTRE. Median gTRE Max gTRE

MI 2.31 0.80 2.05 4.50

AAMI 4.19 1.91 3.46 7.62
GAMI 2.60 1.00 2.45 5.43
HAMI 2.35 0.66 2.39 3.94
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Our results for pairwise registration were worse compared to those of Thévenaz
et al. [11] (reported as the median TRE per modality pair), even though a similar
implementation is followed for MI. This discrepancy might be explained by dif-
ferences in multiresolution strategy and optimization method, or other detailed
settings such as the number of histogram bins, interpolation method, etc.
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Fig. 2. Boxplots (using John Tukey’s definition) of the gTREs of the 16 registrations
per modality pair and grouped over all modalities. The compared metrics were mutual
information (MI), arithmetic average mutual information (AAMI), geometric average
mutual information (GAMI) and harmonic average mutual information (HAMI).

4 Conclusion

In this work we presented an extension to the average image mutual information
through the use of the different Pythagorean mean images. The proposed metrics
handle scale and range differences better and have an improved optimization
behavior without adding computational complexity.

The geometric and harmonic average mutual information proved to be su-
perior to the commonly used arithmetic average mutual information and the
difference was significant for mono- and multimodal experiments.
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16. Tomaževič, D., Likar, B., Pernuš, F.: Multi-feature mutual information image
registration. Image Analysis & Stereology 31(1) (2012) 43–53

33



Feature Based Atlas Selection Strategy for
Segmentation of Organs at Risk in Head and

Neck District

Paolo Zaffino1, Davide Limardi1, Salvatore Scaramuzzino1, Daniela Alterio2,
Federico Javier Diaz3, Sabrina Vigorito2, Delia Ciardo2, Rosalinda Ricotti2,

Barbara Alicja Jereczek-Fossa2,4 Patrik Raudaschl5, Karl Fritscher5, Gregory
C. Sharp6, and Maria Francesca Spadea1

1 Department of Experimental and Clinical Medicine, ImagEngLab, Magna Graecia
University of Catanzaro, Italy

2 Department of Radiation Oncology, European Institute of Oncology, Milano, Italy
3 Mevaterapia, Medical Radiation Oncology, Buenos Aires, Argentina

4 Department of Health Sciences, Universitá degli Studi di Milano, Milano, Italy
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Abstract. The aim of this work is to test a novel methodology for atlas
selection for Multi Atlas Based Segmentation. A feature-based method,
relying on histogram of oriented gradients and support vector machine,
was used to predict best atlas selection. This was compared to i) op-
timal selection, named oracle, identified by a-priori knowledge and to
ii) Normalized Mutual information (NMI) ranking, currently used by
most methodologies. Final contours were computed by using gaussian-
and STAPLE-based voting algorithms. The algorithm was trained and
tested on 55 and 20 CT images respectively, where manual contours were
drawn for mandible, brainstem and parotid glands. Feature based rank-
ing resulted closer to oracle than NMI, while segmentation accuracy was
comparable with NMI strategy. Inaccuracies were mainly caused by la-
bel fusion, thus highlighting the voting importance. In conclusion, results
proved the effectiveness of the methodology and suggested to include the
voting effect into the prediction workflow.

Keywords: Multi altas based segmentation, atlas selection, machine learning,
head and neck radiotherapy

1 Introduction

The automatic identification of anatomical structures on medical images is one
of the most challenging task in image guided radiotherapy. The most important
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advantages of automatic contouring include planning time and the inter- and
intra-rater variability reduction. Multi Atlas Based Segmentation (MABS) [1] is
a powerful strategy to segment, in a completely unsupervised manner, a query
subject. MABS algorithm accomplishes this task by taking advantage of image
registration technique and of a database of formerly contoured images that are
called atlases. To reach the aim, each atlas is non-rigidly registered onto the sub-
ject of interest and the contours are remapped accordingly. For each structure, n
possible contours will be available and the final label will be computed by means
of a statistical algorithm (this last step is generally called voting or label fusion).
Recent studies have shown that the composition of the atlas database plays an
important role for the accuracy and the reliability of the entire process [2]. On
one side, it is important to have enough cases to represent patient variability;
on the other side, atlases that are anatomically very different from the query
subject might generate noise and decrease the accuracy. The best approach is
to identify, in a large database, an optimal subset of atlases for the subject of
interest, thus excluding cases that can introduce redundant and/or misleading
information. Besides improving the output accuracy, a further advantage is the
decrease of the total segmentation time. Several selection methodologies have
been proposed, ranging from very basic (selection criteria based on metadata as
age, sex, pathological condition) to the most elaborate ones (based on image sim-
ilarity computation, as Normalized Mutual Information, NMI [3]). In this work
we investigated a new approach for atlas selection. It relies on image feature de-
tection and machine learning techniques in order to identify the best atlases to
segment the query subject. Our implementation was inspired by the Sanroma’s
et al. work [4], who proposed their method in the field of brain Magnetic Res-
onance Imaging (MRI). We adapted their approach in the context of Head and
Neck (HN) radiotherapy. The rational behind the method is to predict, before
deformable registration, the contribution that each single atlas will give to the
labeling. This contribution is measured in terms of Dice Similarity Coefficient
(DSC) [5] between the atlas and the query subject contours and it is learned by
the algorithm during the training phase. When the algorithm is run on line, the
selection of the optimal atlas subset will be performed on the basis of the best
predicted DSC.

2 Materials and Methods

2.1 Data

In this study, 75 simulation CT volumes of HN cancer patients were retrospec-
tively used. All patients were treated at the Department of Radiation Oncology
of the European Institute of Oncology, Milan, Italy. The following research was
performed within the general notification of the head and neck cancer studies to
the Ethics Committee of the European Institute of Oncology, Milan, Italy (IEO
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N94/11). All patients gave consent for treatment and the use of their anonymized
clinical/imaging data for research. Mandible, brainstem and parotid glands of
each subject were manually contoured by an expert physician. The dataset was
randomly split in two parts: 55 patients were used to build the atlas database,
while the remaining 20 were used as testing subjects. All the cases were rigidly
aligned on a reference atlas, which was randomly selected.

2.2 Methods

The method workflow can be divided into two sections: feature extraction and
atlas selection (based on machine learning algorithm).

Feature Extraction Histogram of Oriented Gradient (HOG) features [6] was
used to describe the patients morphology in each image. HOG identifies image
characteristics by counting the occurrences of image intensity gradients. In this
work, each image was firstly preprocessed in order to enhance soft tissue accord-
ing to the procedure described by [7]. HOGs were then computed inside a Region
Of Interest (ROI), by setting 9 gradient orientations and a cell size equal to 8,
12 and 4 voxels for parotid glands, mandible and brainstem respectively. For a
given structure, ROI extent was defined by considering a bounding box including
the 55 co-registered atlas contours. VLFeat library [8] in Matlab environment
(MathWorks, Natick, MA) was used to calculate HOGs. Finally, each couple of
images to be compared was represented by a vector containing the squared dif-
ferences between HOGs of each image. This vector will be referred as vector of
features from now on. For each pair of images, more than 100000 features were
computed. In order to reduce the computational time and to improve the algo-
rithms performace, only 500 features were selected. The selection was performed
by means of the univariate feature selection algorithm embedded in scikit-learn
library [9] (Python environment [10]). Finally, features values were normalized
by means of the standard scaler algorithm available in scikit-learn.

Atlas selection A Support Vector Machine (SVM) [11] algorithm, with a linear
kernel, was employed as learning model to analyze the data. In this work, the
scikit-learn implementation was used. Training was run on each possible image
volume couple extracted from the 55 atlases. So far, a total of 2970 (55 × 54)
training examples were generated. The SVM input was the feature vector. The
output was the DSC computed between each pair of corresponding structures
in each image couple. The DSC was computed after deforming the atlas on the
target image by means of non rigid registration. During the testing phase, the
input vectors were used to predict the DSC value. DSC was finally used to rank
the atlases, going from the best (up to 1) to the worst (down to 0).

Image Registration and Segmentation MABS algorithm, available in Plas-
timatch toolkit [12, 13] was used to execute image registration and segmentation.
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Plastimatch MABS is able to execute atlas selection based on NMI or using an
external ranking, run image registration (both rigid and deformable) and fuse
the contours using gaussian [14] and/or STAPLE [15] voting strategies. In this
work, a deformable registration, consisting of 2 B-Spline stages, was used to de-
form the images. Root mean square error between image intensities was used
as fitness function. The final labels were generated by using both gaussian and
STAPLE voting algorithms. Registrations and segmentations were computed us-
ing the first 10, 15, 20 and 25 atlases of each ranking.

2.3 Data Analysis

For validation purpose, the ideal ranking, called oracle, was extracted by reg-
istering each atlas on the query subject and calculating the real DSC between
the deformed structure and the Ground Truth (GT). In addition, also NMI was
used to select the atlas and compare with feature based strategy. Data analysis
was performed in terms of Ranking Similarity (RS) and segmentation accu-
racy (computing DSC between contours). RS was quantified by computing the
distance between corresponding atlases included in the two different rankings.
Both oracle-NMI and oracle-feature were considered. Moreover, the number of
atlases comprised in the first 15 positions both for oracle-NMI selection and
oracle-feature selection was computed. Finally the DSC between automatically
computed contours and GT was calculated.

2.4 Hardware

The tests were executed on a machine equipped with CPU 32 cores @ 2.80GHz,
60 GB of RAM and powered by GNU/Linux. The machine was provided by
Amazon as part of an educational/research grant.

3 Results

The training phase required about 1 week for 2970 example and 4 structures.
Depending on the number of atlases included in the subset, the testing phase
took from 1 (10 atlases) to 2 hours (25 atlases). In table 1 the medians and
the quartiles of the distance between oracle-feature and oracle-NMI rankings are
reported. Ranking performed by feature method was closer to oracle than NMI
one, with an average distance of 11.

This result is confirmed by looking at the number of atlases included in the
first 15 positions for oracle-feature and oracle-NMI rankings respectively, as it
is shown in table 2. This number is always larger, or at least equal (such as for
right parotid) in the feature based ranking than NMI.

Results regarding segmentation accuracy are reported in figure 1 and in ta-
ble 3, were DSCs median ± quartiles are shown both for gaussian and STAPLE
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Median
features

25◦ perc
features

75◦ perc
features

Median
NMI

25◦ perc
NMI

75◦ perc
NMI

Left parotid 11.25 5 19.25 15 7.12 24

Right parotid 11.75 5 20.75 13.75 7 24.75

Mandible 10.5 5 19.25 12 5 21

Brainstem 11 5 21.75 14.5 6.5 24
Table 1. Distance between feature and NMI ranking compared to oracle one.

Features NMI

Left parotid 6 ± 0.75 4.5 ± 0.625

Right parotid 5 ± 1.25 5 ± 0.625

Mandible 7 ± 1.125 6 ± 1.125

Brainstem 6 ± 1.125 4.5 ± 1.0

Table 2. Number of atlases (median ± quartiles) present in the first 15 positions of
both oracle-feature and oracle-NMI rankings.

label fusions. It is possible to observe that not strong conclusions can be made
about the performance of one method compared to the other. Although previ-
ous results suggested a better behavior of feature based ranking, the accuracy
test showed high variability and dependence on the voting algorithm, number
of atlases included in the dataset and analyzed structure. Overall, for a single
structure the average variability was in included in the range of ± 0.05.

Left parotid Right parotid Mandible Brainstem

NMI 0.799 ± 0.039 0.769 ± 0.026 0.856 ± 0.024 0.813 ± 0.025

Features 0.797 ± 0.036 0.762 ± 0.040 0.856 ± 0.025 0.815 ± 0.025

Oracle 0.814 ± 0.019 0.788 ± 0.029 0.869 ± 0.024 0.829 ± 0.024

Table 3. Best DSC values (median ± quartiles) for each structures and for each se-
lection strategy.

4 Conclusions

In this work we tested a novel atlas selection strategy based on feature detec-
tion and machine learning algorithms. The aim is to predict, for each atlas and
for each structure, the DSC prior to deformable registration. This is a very im-
portant novelty since the possibility to estimate the contour accuracy before
registration can substantially decrease the computational time and potentially
improve the results. The original idea was proposed by Sanroma et al. and it was
tested on neurological data (MRI). Here, we applied the method on CT images
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Fig. 1. DSC values (median ± quartiles) obtained for each selection strategy, for each
structure and for each atlas cluster size.

of the HN district. The high computational time does not represent an issue for
clinical applications, since atlas HOG extraction and SVM training phase can be
executed offline. Only the query subject HOG computation and the SVM predic-
tion are left to the clinical routine. Results showed that feature based selection
was closer to the ideal one than the NMI based, demonstrating the effectiveness
of the method. However, DSC values did not reflect such a trend. Looking at the
results of RS analysis we were expecting to get an average DSC higher in feature
based selection than NMI based selection. Nevertheless, the two methods gave
similar results. One possible explanation is that, although a single atlas might
be closer to the GT, when it is combined with other atlases the final contour
is affected by different weight. This is confirmed also by looking at results com-
ing from the two different voting methods, gaussian and STAPLE. In fact, it is
possible to see how, using the same contours as input, the final segmentations
generated by the two voting algorithms are rather different, proving the weight
of the label fusion phase. Finally, as it is shown in figure 1, it was not possible
to identify a specific number of atlases to use to run the segmentation regardless
the structure under analysis. Our conclusion is that, although the method is
very promising and potentially better than NMI based selection, a deeper in-
vestigation is required to understand how the final segmentation can be effected
by the voting step and by the number of selected atlases. Our idea is that it is
not important to select the best single atlases, but the atlases that when used
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together provide the best segmentation. The future goal is then to include the
voting effect in the training step, in order to select the optimal subset of atlases
that combined togheter maximize the labeling accuracy.
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Abstract. With the growing interest in translating multimodal and
functional imaging into the patient pathway it becomes important to
accurately co-register the information from different imaging modalities
at different timepoints. In this work we optimize and evaluate an open-
source deformable image registration algorithm (NiftyReg) for CT and
MR registrations in the head and neck region. The accuracy of the reg-
istrations was assessed using similarity between manual and deformed
landmarks and structures. The properties of the deformation fields were
also quantified.

1 Motivation

Over the last years there has been a growing interest in further introducing
multimodal and functional magnetic resonance (MR) imaging into the patient
treatment workflow. The additional and complementary information can poten-
tially be used to improve the outcome of cancer radiotherapy treatments. To
improve treatment planning multimodal and multiparametric imaging can be
used to aid target delineation [1], for dose painting applications [2] and to de-
cide on treatment strategies and beam arrangements considering the biological
characteristics of the patient. In adaptive radiotherapy (ART) applications, it
can be used as an early biomarker of the patient response and the additional
anatomical and functional information can be fed into the treatment adaptation
process. Early recognition of failure may allow alternative treatments to be ex-
plored, avoiding unnecessary radiation exposure and associated side effects [3].
Functional imaging also provides alternative methods to assess treatment out-
come. Additionally, the treatment follow-up information may be correlated with
the physical dose and biological properties of the tissue pre-therapy to develop
predictive models of treatment outcome [4].
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The ability to fully use clinically the biological information obtained with
anatomical and functional imaging relies on the accuracy in co-registering the
multiple sources of information. Therefore, accurate deformable image registra-
tion (DIR) is a key part in the different applications of multimodal and mul-
tiparametric imaging. In the head and neck (HN) region MR images are more
challenging to register than other popular imaging modalities (such as CT or
CBCT) for several reasons: (i) the image resolution is generally smaller and
within certain volumes, such as the shoulders and thoracic area, the image qual-
ity is considerably poorer (ii) imaging patients in treatment positioning is not
always possible due to coil placement and patient comfort, (iii) image-specific ar-
tifacts, such as those caused by the inhomogeneities of the magnetic field (bias),
and field-of-view (FoV) clipping are common issues of current clinical acquisition
protocols.

Validation of automatic DIR for multimodal and multitemporal data in the
HN region in the context of radiotherapy is a rather unexplored topic in the
literature. Leibfarth et al. use DIR between planning PET/MR and CT images
for HN patients, comparing three different optimization metrics of a B-Spline
DIR, for dose painting applications [5]. Slagmolen et al. present a small feasi-
bility study on CT-MR and MR-MR DIR for radiotherapy treatment planning
[6]. On a more technical side, some groups having been developing specialized
DIR algorithms [7,8]. Other authors looked at various applications in different
anatomical sites [9,10]. In this work the use of DIR for multimodal and mul-
titemporal registrations in the HN region was investigated and optimized. An
in-house DIR tool is used to co-register images from different modalities at sim-
ilar time points (CT and MR) and from the same modality at different time
points (MR), and the quality of the registrations was assessed using manually
annotated structures. The properties of the deformation vector fields (DVFs)
were also assessed.

2 Methods and Materials

2.1 Patient data acquisition

A total of three head and neck datasets were used in this study. Each patient
received a routine radiotherapy planning CT (pCT), a pre-treatment MR booked
as close as possible in time to the pCT (MR1), and a follow-up MR 6 months
after treatment (MR2). The MR study consisted of T2-weighted sequences, but
functional sequences were available for future studies. MR1 was acquired in treat-
ment position. The inclusion criteria of this study was solely based on minimizing
acquisition issues characteristic of routine MR (such as clipping of the FoV), and
not to select patients with smaller anatomical changes.

The imaging protocol consisted of a planning CT (GE Widebore 16 slice
system, GE Healthcare, Little Chalfont, UK) with contrast injection and re-
constructed with a resolution of 0.977×0.977×2.5 mm. The MR images were
acquired using the MAGNETOM Avanto (Siemens Healthcare, Erlangen, Ger-
many) MRI scanner (1.5T). In T2-weighted images, TE varied between 90 and
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110 ms, TR between 2400 and 8100 ms, slice thickness between 3 or 5 mm with
a gap of 0.5 mm, and number of slices between 29 and 61. In addition, image
resolution was 0.703×0.703 mm2 or 0.859×0.859 mm2.

2.2 Multimodal and multiparametric imaging in an ART workflow

For integration of MR data into the radiotherapy pathway, image registration
is necessary between CT at the planning stage and repeat MR at different time
points. To co-register multitemporal MRs with CT, two registration pathways
can be followed:

1. the pos-RT MR is registered with the pre-RT MR, which is independently
registered to the CT;

2. the pos-RT MR is registered directly with the CT.

In this work only the results from the first pathway were assessed quantita-
tively. Due to the 6 months gap between pCT and MR2 we found that it was very
challenging to tune the DIR parameters to be universally good, and in general
the results were poor and physically implausible. Therefore, in our opinion it
was a better approach to independently register similar anatomical information
from different modalities at similar time points (pCT-MR1) and anatomical de-
formations from the same modalities at different time points (MR1-MR2). This
allows to decouple the difference in image intensity between modalities from
the anatomical deformations that occur over time. Therefore, two registration
methods were investigated:

– CT-MR1: if the two images were acquired close in time and with same immo-
bilization, a rigid registrations is the easier and natural approach. However,
DIR can be used to compensate for residual setup errors. This may introduce
additional issues, which will be investigated here.

– MR1-MR2: monomodal DIR was investigated to track over time changes in
anatomy. The ability to map anatomy between timepoints also allows to
propagate co-registered functional information (using the same DVFs as in
the anatomical sequences).

2.3 Image registration settings

All the registrations were performed using the open-source DIR software
NiftyReg (http://cmic.cs.ucl.ac.uk/home/software/). It includes a Block Match-
ing based affine registration [11], and several B-spline Free Form Deformation
based algorithms [12]. NiftyReg’s stationary velocity fields implementation was
the algorithm chosen for the registrations [13]. This is a symmetric and inverse-
consistent algorithm that explicitly generates the transformations in the forward
and inverse direction.

A total of six registration parameters with variable weight of the bending-
energy penalty terms (BE) and control point spacing (CPS) were investigated per
registration type. The values of BE varied between 0.01% and 1%, while the CPS
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Fig. 1. Structure set manually delineated on the CT and MRs of each patient.

values tested ranged from 8 to 12 mm. NMI was chosen as similarity measure for
multimodal registrations, and LNCC for monomodal registrations. LNCC was
preferred over other monomodal similarity measures since it handles better the
nonuniform biases that cause artifacts in MR images. To minimize the impact
of artifacts due to field inhomogeneities, the MR images were corrected for bias
using the N4ITK algorithm [14]. To avoid the optimization of the transformation
in regions were there is no anatomical matching, the tumour was masked out in
MR1-MR2 registrations for patients where the gross tumour disappeared between
MR1 and MR2 (as a result of the treatment). This avoids unrealistic deformations
in these regions of no real one-to-one matching. The resulting deformation is a
smooth interpolation between the mapping outside the mask, guided by the
regularisation of the registration.

2.4 Quantitative analysis

The registrations were compared qualitatively, by visual inspection, and
quantitatively by similarity of deformed points and structures with the man-
ually delineated gold-standard. The registration quality was assessed in both
directions.

A total of 12 structures were manually delineated on the CT, MR1 and MR2

by expert radiation oncologists. The structures chosen provided an indication of
how well the registration accounted for anatomical differences and positioning
errors (Fig. 1). It consisted of vertebrae C3 and C5, mandible, thyroid carti-
lage (bony anatomy), spinal canal, brainstem, parotids (organs at risk, OAR),
submandibular gland and sternocleidomastoid muscles (soft tissues).

We calculated the dice similarity coefficient (DSC), which provides informa-
tion about the similarity between volumes, and the distance transform (DT),
which is the signed Euclidean distances between the manual and deformed sur-
faces and infers about the closeness between contours. We computed mean, stan-
dard deviation and 95% percentile of the DT distribution (DTmean, DTstd and
DT95%).

Additionally, the properties of the DVFs were assessed for all the registra-
tions. The smoothness of the transformations was analysed using the harmonic
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Fig. 2. Example of registrations: (a) MR2, (b) MR1, (c) MR2 deformed to MR1, and
(d) overlay between MR1 (magenta) and deformed MR2 (green).

energy (HE) and the properties of the determinant of the Jacobian of the trans-
formation [det(Jac)]. The HE is inversely proportional to the smoothness of the
deformation, while det(Jac) indicates the level of expansion/contraction at each
voxel with negative values indicating noninvertible and unrealistic deformations.
Additionally, the inverse-consistency error (ICE) was calculated to investigate if
the generated transforms were true inverses.

3 Results

Analysing the quantitative results obtained for all the registrations per-
formed, we concluded that the combination of parameters that worked the best
in our datasets were BE=1% and CPS=12 mm for CT-MR1, and BE=0.1% and
CPS=12 mm for MR1-MR2. In CT-MR1 registrations, we found it was prefer-
able to use a higher weight of the BE than for MR1-MR2. This reduced the risk
of the registration causing additional uncertainties in comparison with rigid-
only alignment (such as deformation of bones). However, if the immobilization
is not present, those constrains should be relaxed to give the algorithm enough
freedom to recover larger deformations. Since multimodal registrations had to
capture larger anatomical changes the constrains had to be relaxed (Fig. 2), and
the properties of the DVFs reflect also this. A higher CPS spacing in general
resulted in DVFs with more desirable properties, which did not compromise the
similarity between structures. For this combination of registration parameters,
the mean and standard deviation obtained for the quantitative evaluation of the
DIR can be found in Table 1.

Additionally to the global results provided in Table 1, we also looked at the
results grouped by structure type. In MR1-MR2 registrations, the DSC values
were 0.62±0.12, 0.77±0.08 and 0.84±0.07 for bony anatomy, soft tissues and
OAR in DIR cases, and 0.4±0.3, 0.63±0.18 and 0.65±0.19 when using a rigid-
only registration. The use of a rigid-only transform in MR1-MR2 registrations
was not adequate, as we found that for some anatomical structures the overlap
could be close to zero due to the large anatomical changes and differences in
positioning between pre and pos-RT scans. For CT-MR1 registrations the DSC
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Table 1. Qualitative assessment of the registrations (mean± standard deviation). The
results are averaged for all patients, structures or DVFs, and registration directions.

Similarity of structures

DSC DTmean (mm) DTstd (mm) DT95% (mm)

CT-MR1 0.72±0.16 -0.1±1.8 2.2±1.2 6±4

MR1-MR2 0.74±0.13 0.1±1.7 2.3±1.6 6±5

Properties of the DVFs

HE det(Jac)1% det(Jac)99% ICEmean (mm)

CT-MR1 0.15±0.01 0.72±0.10 1.32±0.09 0.08±0.10

MR1-MR2 0.39±0.06 0.5±0.3 1.7±0.3 0.8±0.7

values were 0.57±0.18, 0.79±0.06 and 0.81±0.04 for bony anatomy, soft tissues
and OAR when using DIR, and 0.57±0.18, 0.74±0.09 and 0.79±0.04 when using
rigid-only registrations. The results obtained with DIR and rigid-only registra-
tions were very similar, with DIR performing marginally better in the soft tissue
regions.

4 Discussion

Promising results were found for multimodal and multitemporal registra-
tions. For the soft tissues and OARs, values found were in agreement with re-
sults from other multimodal studies [5,6], and comparable to monomodal or
quasi-monomodal (CT-CT/CT-CBCT) studies [15,16]. In spite of the large de-
formations between pre and pos-RT images, it was possible to achieve similar
registration accuracy as for CT and MR in treatment position.

The registration of bony anatomy was poorer than for other types of struc-
tures. On one side, the reduced contrast between soft tissue and bone in MR
difficulties the delineation of bones, particularly for complexly shaped structures
such as the vertebrae, resulting in a non-ideal gold-standard. This low contrast
also affects the quality of the registrations. However, the main interest in using
MR is not to provide additional information on the bone anatomy (where CT
is more relevant), but rather on the soft tissues. Thus misregistrations of the
bones is of reduced importance when considering clinical applications and, in
fact, in regions of higher clinical relevance, such as OAR and soft tissues, DIR
performed in a higher level of accuracy. Nevertheless, the poor registration of
the bones may affect nearby soft tissues so it is of importance to develop DIR
strategies that account for the rigid behavior of bony anatomy.

We found that CT-MR1 DIR slightly improved the anatomical matching in
comparison to a rigid registration; however, the difference was not clinically sig-
nificant. Additionally, we found that one must carefully tune its DIR registration
to avoid introducing errors in this process. Further studies with a larger patient
dataset are necessary to fully understand this additional uncertainty, and also to
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validate CT-MR registrations for patients that can not acquire MR1 in treatment
position (i.e., with considerable setup variation between scans).

The FoV clipping was found to limit of the quality of the registrations. A
clipped body contour reduces the ability to capture global deformations and
generates unrealistic deformations within the patient near the edges of the FoV.
For example, this was found to interfere in the registration of the mandible,
which was very often clipped in the MR scans.

One of our main interests is to use multimodal and multiparametric MR
imaging in the context of ART applications, which is becoming an increasingly
relevant topic with the advent of the MR-Linac [17]. We acknowledge that our
study is not ideal to validate the use of DIR for such applications, as the multiple
MR were not acquired throughout the treatment. However we believe that using
a pos-RT MR results in more challenging registrations, and therefore MR2 can
be considered a surrogate for MR acquired during treatment. This is however
only true when considering the mapping of healthy tissues. Tracking of tumour
volumes has to still be properly validated when the MRs are acquired throughout
the course of radiotherapy. Additionally, the work here presented focused on
anatomical information only, so future work will also focus on tracking functional
information associated with the anatomical scans.

5 Conclusions

In this work we optimized an open-source DIR algorithm for the registra-
tion of CT and MR datasets of the head and neck. This is a first step toward
incorporating additional imaging into the radiotherapy pathway.
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Abstract. Radiation therapy protocols for lung cancer treatment plan-
ning commonly use a 3D CT image to delineate critical regions of interest
and a 4D respiratory-gated CT to track tumor respiratory motion. 4D
CT data sets contain a great deal of information and can be analyzed
to obtain quantitative data on respiratory system dynamics, mechanics,
and function. We describe a method that transfers segmentation contours
from the 3D planning CT to the entire 4D data set, even though the lung
changes size and shape during image acquisition due to respiration. Our
proposed method uses deformable image registration to align all phases of
the 4D CT into the coordinate system of the 3D planning CT. A graph
optimization algorithm is used to segment the lung boundaries of the
aligned phases of the 4D data set. The algorithm is initialized with the
3D segmentation of the planning CT. The segmentations of the individ-
ual phases in the planning CT coordinate system are then transformed
back into each of the original phase coordinate systems providing 3D
segmented volumes at each phase of the 4D CT. We tested the method
on six data sets from subjects about to undergo radiation therapy for
lung cancer. For each subject a 3D planning CT was segmented as part
of the treatment planning process. This planning CT was used to seg-
ment the 4D CT at ten phase points across the respiratory cycle. The
results of our method were compared against manual segmentations of
four phases giving an average surface distance of 0.417 mm and average
Dice coefficient of 0.983. The 4D segmentations appear to be more con-
sistent across phases than the manual segmentations, especially near the
mediastinum. The results show that this method can provide accurate
4D segmentations from a single segmented 3D CT image.

Keywords: segmentation, 4D image analysis, radiation therapy

1 Introduction

Respiratory-gated 4D CT imaging is used in radiation therapy planning for lung
cancer treatment to measure tumor position at different points in the respiratory
cycle. These data sets can be further analyzed to obtain quantitative measure-
ments of lung dynamics [1], lung mechanics [2], and regional lung ventilation [3].
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Accurate lung segmentation of the constituent 3D volumes of a 4D data set is
required before quantitative analysis can be performed.

An initial 3D CT scan (referred to here as the “planning” CT) is conducted
on all patients that undergo a 4D CT scan. The planning scan is performed
in breath-hold and typically provides higher signal-to-noise and superior spatial
resolution than a 4D CT acquisition. As a result, the planning CT image provides
a high quality image of the lung anatomy and — due to acquisition during a
single breath hold — has fewer motion artifacts than a 4D CT data set. The
planning CT is commonly used for radiation therapy planning and includes lung
and tumor segmentations generated by an image analyst.

Several different approaches for lung tissue segmentation in 3D CT images
have been proposed, including optimal thresholding [4], adaptive border track-
ing [5], graph search algorithms [6], and segmentation-by-registration with the
use of a lung atlas [7]. These algorithms vary in segmentation accuracy, computa-
tional complexity, and robustness to abnormalities and disease, but it is unlikely
any 3D algorithm could accurately and consistently segment all volumes of a 4D
data set independently. It seems likely that a direct 4D segmentation may give
better results than 3D volume-by-volume segmentation as all of the available im-
age information is used and temporal coherence across respiratory phases can be
ensured. Additionally, since 4D CT data sets typically have lower image quality
and more motion artifacts than the typical planning CT, conventional segmen-
tation algorithms may fail or perform poorly when applied to the individual 3D
volumes of the 4D CT.

Lung segmentation in a 4D CT data set can be viewed as a multiple surface
segmentation problem, where prior known interactions between surfaces can be
used to improve segmentation robustness. Optimal surface finding is a graph
search method that has been used in many applications to segment multiple
surfaces in n-D medical images [8]. In [9], optimal surface finding is used to
segment multiple objects and surfaces in the brain. In [10] and [11], an active
shape model is combined with optimal surface finding to simultaneously seg-
ment multiple lung volumes. In this work, we propose a similar method for lung
segmentation in 4D CT data sets consisting of ten volumes imaged at different
phases during the breathing cycle.

Our 4D segmentation algorithm is based on a combination of deformable
image registration and 4D optimal surface finding. First, image registration is
used to align all volumes of the 4D data set to the coordinates of the planning
CT so that the planning CT segmentation can be used as a shape prior for all
4D CT lung volumes. A 4D geometric graph is constructed using shape priors
and the optimal surface is found using an efficient maximum flow algorithm.

2 Methods

Our proposed 4D segmentation method consists of two stages: image registration
and optimal surface finding. The processing pipeline is shown in Figure 1. We
assume that the 4D CT consists of N individual 3D phase volumes sampled
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Fig. 1. Processing flowchart. The process starts with the planning CT segmentation
and produces N segmented 3D phase volumes.

across the respiratory cycle. We use the notation 20%IN to refer to the 3D image
reconstructed at 20% of tidal lung volume during inspiration, and 80%EX to refer
to the 3D image reconstructed at 80% tidal lung volume during expiration.

2.1 Registration

In the first stage, each 3D volume of the 4D data set is roughly aligned to the
planning CT volume using deformable image registration. Our method does not
require an accurate registration, so a low resolution registration framework can
be used to reduce computation time. In this work, we used the Elastix image
registration software [12] to perform the alignment of the planning CT to each
of the 3D volumes. A b-spline transform was used with a grid spacing of 20 mm.
Normalized correlation was used for the similarity metric and a gradient descent
optimization algorithm was used with a maximum of 1000 iterations. Note that
it is possible to perform all registrations simultaneously since each planning CT
to 3D phase volume registration is performed independently. Thus, performing
the registrations in parallel can reduce the overall computation time.

After performing the image registration, we obtain a set of deformed 3D
images in the same coordinate space as the planning CT image, allowing the
existing planning CT segmentation to be used as a subject specific shape prior
for the next stage.

2.2 Optimal Surface Finding

Optimal surface finding is a graph search framework used for simultaneous seg-
mentation of multiple interacting surfaces in images [9]. The lungs at each phase
image are treated as surfaces and the interactions between different phases rep-
resent temporal constraints. A shape prior similar to the true surface is used to
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initialize the graph search space. Graph G(V, E) consisting of node set V and
edge set E is constructed in a region around the shape prior. In our work, the
planning CT segmentation is utilized as the shape prior for all phases. Since
the same shape prior was used for all phases, all sub-graphs Gt had the same
geometric structure in space. This greatly simplified the 4D graph construction.

For multiple surface segmentation the following graph construction is done for
each surface, using similar graph construction parameters to those used in [11].
First, the marching cubes algorithm is used to transform the planning CT seg-
mentation into a mesh representation with approximately 10,000 vertices. A
search profile, or graph column Vi, is constructed at each mesh vertex and nodes
vi,j are sampled at equal distances along the profile. For the experiments pre-
sented in this paper, the graph column length was 60 nodes sampled at a distance
of 0.35 mm. The search profiles were defined using the electric field lines gener-
ated by treating each mesh vertex as a charged point source as described in [13].

Graph edges are introduced to define feasible surfaces as those which main-
tain the topology of the shape prior and have a certain degree of surface smooth-
ness. This is achieved by introducing intracolumn edges that force the opti-
mal surface to intersect each graph column Vi at exactly one node vi,j and
intercolumn edges that restrict the surface height from changing more than ∆
nodes between neighboring columns. The intracolumn edges < vi,j , vi,j−1 >
were introduced within each column of the graph and the intercolumn edges
< vi,j , vk,j−∆ > were introduced between all neighboring columns Vi and Vk.
For experiments used in this paper, we used ∆ = 12 nodes. Each node vǫV
was assigned a cost inversely proportional to the likelihood the surface contains
vi,j . The gradient magnitude of the deformed phase images was used as the cost
function in this work. The cost of a feasible surface is the summation of all node
costs on the surface. The optimal surface corresponds to the surface with the
minimum cost among all feasible surfaces.

Interactions between surfaces were enforced by introducing temporal edges
< vt

i,j , v
t+1
i,j−δ > between corresponding columns of the surfaces. In our 4D lung

segmentation, the deformed lung of each image phase t = 1 . . . N was treated
as a surface and the temporal constraint δ enforced surface consistency between
phases. Here we used δ = 20 nodes.

A maximum flow algorithm was used to find the globally optimal solution
of the cost function as described in [14]. This resulted in N surfaces in the
deformed image space. The surfaces were transformed back to the coordinates
of each original 3D phase volume using the transformations obtained from the
registration.

2.3 Data Sets and Experimental Setup

4D CT data sets and a planning CT image from six lung cancer subjects about
to undergo radiation therapy were used for this study. All data were gathered
under a protocol approved by the University of Iowa Institutional Review Board
(IRB 200905703). Each 4D CT contained ten 3D volumes retrospectively recon-
structed in 20% steps from inspiration to exhalation. All images were resampled
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Fig. 2. Automatic 4D segmentation results for subject A. From left to right: 0%EX
coronal plane, 0%EX transverse plane, 100%IN coronal plane, 100%IN transverse plane.

to obtain 1 × 1 × 1 mm3 voxels. Ground truth segmentations were generated for
four respiratory phases (0%EX, 40%IN, 100%IN, 60%EX) by a trained image
analyst (Y.P.) using the AnalyzeTM software package. The same image analyst
segmented the planning CT image for each subject to provide initial shape priors.

To test the sensitivity of the method to the segmentation shape prior, we
ran an additional experiment for one data set where different 3D phase volumes
were used in place of the planning CT image. This was done by using the phase
volumes at 20%IN, 60%IN, 40%EX, and 20%EX to establish the initial shape
priors for the optimal surface finding.

3 Results

3.1 4D Segmentation with planning CT as Initial Segmentation

Tables 1 and 2 show the Dice coefficients and mean absolute surface distance for
each of the four evaluation phases. Figure 2 shows the automatic 4D segmenta-
tion, displayed at two of the individual phase reconstructions, for one subject.

Subject 0%EX 40%IN 100%IN 60%EX Mean
ID Left Right Left Right Left Right Left Right

A 0.985 0.986 0.988 0.988 0.985 0.986 0.985 0.986 0.986
B 0.976 0.983 0.976 0.986 0.973 0.984 0.974 0.984 0.980
C 0.978 0.978 0.977 0.985 0.984 0.982 0.984 0.977 0.981
D 0.988 0.988 0.981 0.982 0.983 0.978 0.982 0.979 0.983
E 0.981 0.983 0.982 0.981 0.982 0.983 0.983 0.981 0.982
F 0.985 0.983 0.984 0.984 0.984 0.985 0.985 0.985 0.985

Table 1. Dice coefficients for the 4D segmentation compared to the ground truth seg-
mentations for each of the four 3D phase volumes used for evaluation. Dice coefficients
are calculated separately for left and right lungs. Mean is calculated across four phases
and both lungs for each subject.
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Subject 0%EX 40%IN
ID Left Right Left Right

A 0.385 ± 0.807 0.437 ± 1.203 0.315 ± 0.860 0.353 ± 0.790
B 0.428 ± 0.890 0.422 ± 0.766 0.410 ± 0.715 0.394 ± 0.743
C 0.431 ± 0.755 0.536 ± 1.375 0.501 ± 1.126 0.320 ± 0.682
D 0.242 ± 0.573 0.297 ± 0.784 0.435 ± 0.959 0.491 ± 1.194
E 0.499 ± 1.315 0.536 ± 1.555 0.455 ± 1.086 0.498 ± 0.959
F 0.307 ± 0.566 0.443 ± 1.135 0.342 ± 0.655 0.376 ± 0.836

Subject 100%IN 60%EX Mean
ID Left Right Left Right

A 0.407 ± 0.841 0.459 ± 0.976 0.417 ± 0.854 0.429 ± 0.853 0.400
B 0.464 ± 0.950 0.434 ± 0.773 0.441 ± 0.778 0.407 ± 0.717 0.425
C 0.365 ± 0.896 0.423 ± 0.909 0.349 ± 0.839 0.520 ± 0.871 0.431
D 0.380 ± 0.694 0.542 ± 0.911 0.399 ± 0.795 0.547 ± 1.197 0.417
E 0.422 ± 0.747 0.468 ± 0.986 0.424 ± 1.009 0.495 ± 0.983 0.475
F 0.347 ± 0.662 0.338 ± 0.625 0.340 ± 0.716 0.353 ± 0.716 0.356

Table 2. Average symmetric absolute surface distance ± standard deviation (mm) for
the 4D segmentation compared to the ground truth segmentations for each of the four
3D phase volumes used for evaluation. Mean is calculated across four phases and both
lungs for each subject.

3.2 Sensitivity to Initial Segmentation

The sensitivity to the choice of initial segmentation was tested by segmenting
one 4D data set (subject A) with four different phase volumes used as the initial
segmentation. Table 3 gives the Dice coefficients for the four evaluation volumes
with four different initializations.

Initialization 0%EX 40%IN 100%IN 60%EX Mean
Phase Volume Left Right Left Right Left Right Left Right

20%IN 0.982 0.985 0.985 0.986 0.984 0.987 0.982 0.985 0.984
60%IN 0.981 0.984 0.985 0.987 0.983 0.987 0.981 0.986 0.984
40%EX 0.982 0.985 0.985 0.987 0.982 0.986 0.982 0.986 0.984
20%EX 0.981 0.985 0.985 0.986 0.983 0.987 0.981 0.985 0.984

Table 3. Dice coefficients for the 4D segmentation of subject A using four different
initial segmentations as the shape prior. Mean is calculated across four phases and
both lungs for each subject.
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4 Discussion

The results show that image registration and optimal surface finding can be used
to produce an accurate 4D segmentation from one initial 3D segmentation. In
our experiments an average symmetric absolute surface distance of 0.417 mm
and a mean Dice coefficient of 0.983 were obtained. This mean surface error is
less than half of a voxel. We observe that most errors were where the airways en-
ter the lungs at the mediastinum. This is a subjective area to manually segment,
as different boundaries may be chosen by different analysts. For comparison, a
3D thresholding based algorithm similar to [4] was applied to each volume and
an average symmetric absolute surface distance of 0.5644 mm and a mean Dice
coefficient of 0.9790 were obtained. Although the simple thresholding gave good
results, tumors were not included in the segmentation thus it is not suitable
for this application. The same mean Dice coefficient of 0.984 was obtained for
all initial segmentations showing the algorithm it robust to the initial segmen-
tation. Since all phase volumes were segmented simultaneously by the optimal
surface finding, our final segmentation contours are consistent across all phases.
The segmentations appear to be more consistent across phases than the manual
segmentations, especially near the mediastinum. Additionally, the method was
able to include large chest wall tumors in the segmentation, which is a difficult
problem due to the similarity in intensity with the surrounding tissue.

We were able to use a computationally inexpensive registration by using the
optimal surface finding to refine the initial segmentation result. In many cases
it is even possible to use an affine registration when the lung deformation across
respiration is not too large. The optimal surface finding incorporates shape prior
information, surface smoothness constraints, and temporal surface constraints
making it ideal for 4D lung segmentation. The optimal surface finding guarantees
a globally optimal minimization of the selected cost function.

The experiments were run on a Linux machine with an Intel Xeon 2.27 GHz
CPU and 48 GB of RAM. The deformable image registration takes 2 minutes
per phase, which can be done in parallel. The optimal surface finding takes
approximately 4.5 minutes with our parameters. This yields a total time of 6.5
minutes to produce segmentations of all 10 volumes of a 4D data set. The manual
segmentation used for evaluation took approximately 30 minutes per 3D volume.

The proposed framework is extensible to segmentation of other surfaces. For
example, sublobar segmentations can be used to study the mechanical properties
and sliding of the lung lobes. Our framework can be easily extended to handle
lobar segmentations.

5 Summary

We proposed a method for 4D segmentation of lung tissue in respiratory-gated
data sets. The method utilizes the planning CT segmentation to obtain accu-
rate segmentations for all phase volumes of a 4D data set. An average surface
distance of 0.417 mm and an average Dice coefficient of 0.983 were achieved.
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Based on preliminary results we showed that the method is robust to the initial
planning CT image segmentation. The 4D segmentation is valuable for further
quantitative analysis of the data sets.
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Abstract. A wavelet-based open-source approach for three-dimensional (3D) surface 
reconstruction of anatomical structures, not yet used for radiotherapy (RT) applica-
tions, was presented. This was obtained from manual cross-sectional contours by 
combining both image voxel segmentation processing and implicit surface streaming 
methods using wavelets. 3D meshes reconstructed with the proposed approach were 
compared to those obtained from other three traditional triangulation algorithms. 
Evaluation was performed in terms of mesh quality metrics and accuracy of contour 
propagation in the pelvic district. Results have shown a smoothness and regularity of 
the reconstructed surface, comparable, or even better, than the other methods, and an 
accuracy of contour propagation in line with the state-of-art literature. This demon-
strated the efficacy of the proposed approach for the 3D surface reconstruction in RT.  

Keywords: surface reconstruction; wavelet; contour propagation; mesh quality 

1 Introduction 

An accurate and reliable organ representation is of great interest in Radiotherapy (RT), 
since dose planning, treatment evaluation and toxicity model are based on organ contours 
or organ volume. The availability of tomographic images acquired during the course of RT 
has opened the possibility to daily or weekly monitoring organ changes, thus improving the 
efficacy of the treatment taking into account these modifications. Deformable image regis-
tration combined with contour propagation methods are able to recover these spatial chang-
es and to automatically recontour organs of interest. This approach was proposed by many 
authors [1-4]; however, not every work has described in detail the whole procedure. In 
general, contour propagation can be faced by deforming binary masks extracted from 2D 
contours [3], [4] or by deforming 3D surface meshes generated from 2D contours [1], [3]. 
In this last case, the choice of the method for the surface reconstruction has an impact on 
the final result: in fact, it is desirable to have regular and smoothed meshes for a good rep-
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resentation of the organs of interest, in order to make some evaluation on the organs surface 
or volume (e.g. Dose Volume Histogram and Dose Surface Histogram) or to obtain an ac-
curate contour propagation. However, the algorithm used to generate surface representation 
is not always described. Several studies in the past decades proposed different methods to 
obtain 3D surfaces from generic cross-sectional data, as, for example, marching cubes [5] 
and power crust [6]. Furthermore, licensed commercial software provide with automatic 
built-in tools for 3D surface reconstruction (e.g. Amira®, Mercury Systems, MA, USA). By 
using these approaches, acceptable results in terms of smoothness, regularization and mesh 
quality are not always obtained. Moreover, they can show a complex and time-consuming 
processing, which sometimes results in failure, especially with large and complex datasets, 
and, regarding commercial software, they are black-box or little is customizable about the 
surface reconstruction from contours.  

In this work we proposed a different approach for 3D surface reconstruction of organs of 
interest from slice contours, based on wavelet [7], which theoretically provides smooth, 
accurate and interpolated 3D geometrical model of the organ, and which has not yet been 
proposed in RT applications. We compared it with other classical methods already used in 
this context [1], [8], [9], by evaluating them in terms of their intrinsic mesh quality and of 
accuracy of contour propagation. In this work we considered patients treated for prostate 
cancer and we focused on relevant structures of the pelvic district: the prostate itself, the 
bladder, the rectum and the penile bulb. 

2 Materials and methods 

2.1 Wavelet-based Surface Reconstruction (WSR).  

Bi-dimensional (2D) manual contours are first mapped into binary voxel image segmen-
tation. Since serial slice data is usually anisotropic, an optional inter-slice thickening step is 
used to obtain isotropic-like voxel segmentation of the structure. The inter-slice thickening 
step generates new slices between two adjacent ones by interpolating the binary segmenta-
tion using logical operators. The binary segmentation is then converted into a set of 3D 
oriented points in the physical-space coordinates. Each 3D oriented point, i.e. �̅ =
[�� 	��		�], is associated with its outward-pointing normal vector ��. The estimation of the 
3D points' normals is determined by the cross product between the vectors joining the two 
closest points of �̅ on the same slice and those on adjacent slices respectively. The set of 
normals is then normalized by the Euclidean norm. The outward-pointing direction is veri-
fied by evaluating the sign of the dot product between �� and the vector joining �̅ and the 
closest inner reference of the structure (i.e., the binary skeletonization), otherwise the direc-
tion of �� is inverted accordingly. This step is performed in order to obtain a dense and ho-
mogeneous cluster of 3D oriented points which represents the discrete sampling of the sur-
face to reconstruct. We refer to [10] for a more detailed description of the binary segmenta-
tion pre-processing step.  

WSR algorithm is employed then to extract a 3D smooth, interpolated mesh of the struc-
ture from the cluster of oriented points. The algorithm, which is accurately described in [7], 
estimates an approximation of the solid structure by means of an indicator function () 
using the input points. The algorithm constructs then an approximation of the original sur-
face as the zero level-set of the indicator function itself. WSR algorithm can be summarized 
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in four sub-steps, namely, octree configuration, estimation of , smoothing  and polygon 
generation. By configuring the octree, the multi-resolution spatial grid for estimating the 
indicator function is defined. It represents a hierarchical structure of maximal depth dm that 
encodes subtrees to cells, corresponding to higher-resolution detail. The greater dm, the 
finer the surface reconstruction. Limitations in dm can be introduced by the finite allocable 
memory and by the intrinsic spatial resolution and extension of the structure's input points. 
The estimation of  at each cell of the octree takes advantage of the multi-scale and hierar-
chical structure of the compactly supported wavelet basis. This allows an efficient represen-
tation of  with a relatively small number of coefficients. By applying the divergence theo-
rem, the wavelet coefficients are approximated over the input oriented points. The resulting 
indicator function  is 0 outside the approximated solid structure, whereas it is 1 on the 
inside. The smoothness of  depends on the choice of the wavelet basis. We adopted the 
Daubechies wavelet (D4) for the surface reconstruction. In general, as the support of the 
wavelet decreases, so it also does the smoothness of the reconstructed surface. To this pur-
pose a further smoothing step is performed on the indicator function before extracting the 
surface mesh. It consists in pruning the isolated cells of the octree, and in filtering the 
octree with a convolution mask on adjacent cells. The convolution mask adopted is the 
tensor product of the mask �¼		½		¼� in ℝ�. Lastly the polygonal (triangle) surface extrac-
tion is obtained by applying an octree contouring method [11] and eventually by running 
Marching Cubes [5], which is guaranteed to produce a water-tight topological and geomet-
rical manifold. Adopted implementation:  http://josiahmanson.com/research/wavelet_reconstruct 

2.2 Dataset 

T2-weighted MRI images acquired before and three months after RT were considered for 
five patients (MRI1 and MRI2, respectively). A set of 2D contours of prostate, bladder, 
rectum and bulb were manually drawn on each MRI study, consisting thus in a total set of 
40 contours (i.e., 5 patients x 2 time-points x 4 structures). The choice of these four organs 
was justified by the need of testing methods on different conditions of size and amount of 
deformation. Surfaces were then generated from each set of 2D contours using the WSR 
method previously described and other three classical approaches already used in RT con-
text, namely Marching Cubes (MCB) [5] combined with a Taubin non-shrinking filter [12], 
Power Crust (PWC) [6] and Amira surface generation (AMR) using the built-in uncon-
strained smoothing modality [13]. 

2.3 Image registration and contour propagation 

MRI2 were mapped on the MRI1 using a non-rigid image registration method implemented 
in the open-source software Elastix [14]. The chosen registration method is the classical 
Free-Form Deformation based on B-splines [15], with the parameters optimization availa-
ble in the Elastix implementation. In particular, Normalized Mutual Information was cho-
sen as the similarity metric, the adaptive stochastic gradient descent was the adopted opti-
mization algorithm, and by setting a sufficiently high number of iterations the registration is 
guaranteed to reach convergence. A multi-resolution approach in 5 steps was adopted, us-
ing a uniform control-points grid at each step; the final grid was made up by isometric cu-
bes of 10 mm. 
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To automatically deform organs' contours of MRI1 on MRI2, a contour propagation 
method was adopted. The propagation procedure was integrated in the Elastix toolbox by 
applying the estimated deformation field on the vertices of the mesh generated from the 2D 
contours. 

2.4 Mesh evaluation 

The evaluation of the WSR method was carried out by comparing it with MCB, PWC 
and AMR algorithms. This comparison was done in terms of indices of mesh quality and 
accuracy of the contour propagation.  

Mesh quality. The evaluation of WSR, MCB, PWC and AMR surfaces, before and after 
deformation, is here performed in terms of aspect ratio (AR) and curvature. AR quantifies 
the mesh quality by evaluating the regularity of each triangular element of the reconstructed 
surface relative to an optimal reference, i.e. the equilateral triangle [16]: the greater the AR, 
the worse the mesh quality. Curvature is a measure of the surface departure from planarity: 
meshes with smooth curvature have a more regular and realistic look. This was done by 
calculating the mean curvature of each vertex of the mesh [17] using the Kitware’s open-
source program ParaView (www.paraview.org).  

Since in RT it is also of interest to have accurate and smoothed contours on 2D slices of 
the images, the reconstructed surfaces were cut on the plane of the correspondent MRI and 
contours were qualitatively evaluated. 

Accuracy of contour propagation. In order to estimate the influence of the choice of the 
surface reconstruction method on contour propagation, accuracy was evaluated in terms of 
distances between the deformed mesh and the reconstructed surface from the originally 
delineated contours on MRI2. For this calculation, each deformed mesh was compared with 
the original one generated with the same method: i.e. WSR deformed surfaces were com-
pared with surfaces reconstructed with WSR, and so on. Distances between surfaces were 
calculated as the Euclidean distance between every vertex point in the deformed mesh and 
the closest vertex point in the manual mesh. The same procedure was repeated inverting the 
reference surface and the mean (D_mean) and maximum (D_max) distances were stored. 

3 Results 

An exemplificative result of the four surface reconstruction methods and their effects on 
contour propagation is reported in Fig. 1, where the prostate is represented before and after 
deformation. WSR, MCB and AMR successfully generated all the surfaces, whereas PWC 
failed in 9 of 40 cases due to a non-reached convergence of the algorithm. 

Mean percentage AR values for the prostate meshes and curvature of the four organs ob-
tained using the considered methods are reported in Table 1 and Fig. 2, respectively. In the 
remaining three organs, values of AR had the same trend of the prostate and were not fur-
ther reported. 
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Fig. 1. Prostate surface reconstruction using the four described method starting from 2D contours 
(PreRT) and after deformation (Deformed). WSR

3.1 Mesh quality evaluation

Table 1. Values percentage's distribution

 1-10 10-10
WSR 0.96 0.04
MCB 1.00 0.00
 
As a general remark, the distribution of mean percentage AR for meshes obtained with 

WSR, AMR and MCB was limited to values in range 1
gles having an AR index lower than 10, thus meaning overall regular shape of 
elements. In particular, MCB showed the best performance, having the 100% of the tria
gles with AR lower than 10. Conversely, the AR percentage distribution of meshes o
tained with PWC spans the whole range of values with a relatively greate
generate triangles (>35%). This was observed in original meshes as well as in propagated 
meshes, after the deformation process. 

Even if MCB had the best AR, when surface curvature was observed, it showed a stai
case effect, with anomalous cu
not happen with AMR and WSR, which had smooth and regular surfaces, with a planar 
mean curvature. PWC, which was already the worse method when AR was considered, 
deviated from planarity with a l
on meshes generated from 2D contours a

2D contours obtained from the deformed prostate meshes were represented in Fig. 3, 
confirming what found in curvature
have a regular and smoothed shape, whereas PWC and MCB contours have an irregular 
look. 

3.2 Accuracy of contour propagation

Results of accuracy of contour propagation are reported in Table 2.

Prostate surface reconstruction using the four described method starting from 2D contours 
(PreRT) and after deformation (Deformed). WSR: purple; MCB: green; PWC: yellow; AMR

Mesh quality evaluation 

alues percentage's distribution of aspect ratio for the four methods in the prostate

Prostate AR percentage 
102 102-103 >103  1-10 10-102 102-10

0.04 0.00 0.00 PWC 0.63 0.17 0.08
0.00 0.00 0.00 AMR 0.99 0.01 0.00

As a general remark, the distribution of mean percentage AR for meshes obtained with 
WSR, AMR and MCB was limited to values in range 1-100, with more than 95% of tria
gles having an AR index lower than 10, thus meaning overall regular shape of the triangular 
elements. In particular, MCB showed the best performance, having the 100% of the tria
gles with AR lower than 10. Conversely, the AR percentage distribution of meshes o
tained with PWC spans the whole range of values with a relatively greater amount of d

35%). This was observed in original meshes as well as in propagated 
meshes, after the deformation process.  

Even if MCB had the best AR, when surface curvature was observed, it showed a stai
case effect, with anomalous curvature on the edges correspondent to slice changes; this 

with AMR and WSR, which had smooth and regular surfaces, with a planar 
mean curvature. PWC, which was already the worse method when AR was considered, 
deviated from planarity with a lot of vertices with anomalous curvature. This was verified 
on meshes generated from 2D contours as well as on deformed surfaces (Fig. 2). 

2D contours obtained from the deformed prostate meshes were represented in Fig. 3, 
confirming what found in curvature. In fact it is possible to note that both AMR and WSR 
have a regular and smoothed shape, whereas PWC and MCB contours have an irregular 

Accuracy of contour propagation 

Results of accuracy of contour propagation are reported in Table 2. 

 

Prostate surface reconstruction using the four described method starting from 2D contours 
; AMR: red. 

spect ratio for the four methods in the prostate. 

103 >103 

0.08 0.13 
0.00 0.00 

As a general remark, the distribution of mean percentage AR for meshes obtained with 
100, with more than 95% of trian-

the triangular 
elements. In particular, MCB showed the best performance, having the 100% of the trian-
gles with AR lower than 10. Conversely, the AR percentage distribution of meshes ob-

r amount of de-
35%). This was observed in original meshes as well as in propagated 

Even if MCB had the best AR, when surface curvature was observed, it showed a stair-
rvature on the edges correspondent to slice changes; this did 

with AMR and WSR, which had smooth and regular surfaces, with a planar 
mean curvature. PWC, which was already the worse method when AR was considered, 

ot of vertices with anomalous curvature. This was verified 
).  

2D contours obtained from the deformed prostate meshes were represented in Fig. 3, 
. In fact it is possible to note that both AMR and WSR 

have a regular and smoothed shape, whereas PWC and MCB contours have an irregular 
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Fig. 2. Representation of the mean curvature of the deformed surfaces of the four organs, reconstruc
ed with WSR, MCB, PWC and AMR. First row: model of the four organs and their area on a 2D 
sagittal plane. 

Fig. 3. A 2D representation of the deformed contours of the prostate on the correspondent T2w
image. a) WSR; b) MCB; c) PWC; d) AMR. 

Among the four presented methods, PWC was the less robust, since it failed in numerous 
cases, thus preventing a successful contour propagation. 
of PWC cannot be directly compared with the other methods and they were removed from 
Table 2. Regarding WSR, MCB and AMR, accuracy was quite different in bladder and 
bulb, whereas was practically the same in prostate and rectum. In general, WSR reported 
lower values of D_mean and D_max with respect to MCB and AMR. 

4 Discussion and Conclusion

In this work a method based on wavelet was proposed to generate surfaces useful fo
contour propagation in RT; this method was compared with other three approaches already 
used in this context. Results have shown that globally the mesh quality and the accuracy of

of the mean curvature of the deformed surfaces of the four organs, reconstruc
ed with WSR, MCB, PWC and AMR. First row: model of the four organs and their area on a 2D 

2D representation of the deformed contours of the prostate on the correspondent T2w
image. a) WSR; b) MCB; c) PWC; d) AMR.  

Among the four presented methods, PWC was the less robust, since it failed in numerous 
thus preventing a successful contour propagation. For this reason, results of accuracy 

of PWC cannot be directly compared with the other methods and they were removed from 
Regarding WSR, MCB and AMR, accuracy was quite different in bladder and 

b, whereas was practically the same in prostate and rectum. In general, WSR reported 
lower values of D_mean and D_max with respect to MCB and AMR.  

and Conclusion 

In this work a method based on wavelet was proposed to generate surfaces useful fo
contour propagation in RT; this method was compared with other three approaches already 
used in this context. Results have shown that globally the mesh quality and the accuracy of
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ed with WSR, MCB, PWC and AMR. First row: model of the four organs and their area on a 2D 

 
2D representation of the deformed contours of the prostate on the correspondent T2w-MR 

Among the four presented methods, PWC was the less robust, since it failed in numerous 
, results of accuracy 

of PWC cannot be directly compared with the other methods and they were removed from 
Regarding WSR, MCB and AMR, accuracy was quite different in bladder and 

b, whereas was practically the same in prostate and rectum. In general, WSR reported 

In this work a method based on wavelet was proposed to generate surfaces useful for 
contour propagation in RT; this method was compared with other three approaches already 
used in this context. Results have shown that globally the mesh quality and the accuracy of 
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Table 2. Accuracy of contour propagation in bladder, bulb, prostate and rectum using different sur-
face reconstruction methods. Data are presented as mean ± st. dev. over the five subjects. 

 D_mean [mm] D_max [mm] D_mean [mm] D_max [mm] 
 Bladder Prostate 

WSR 1.65 ± 0.46 11.10 ± 3.33 1.59 ± 0.45 7.45 ± 2.56 
MCB 1.55 ± 0.48 14.78 ± 6.65 1.57 ± 0.41 8.16 ± 2.47 
AMR 1.80 ± 0.57 11.24 ± 3.02 1.62 ± 0.47 7.71 ± 2.44 

 Bulb Rectum 
WSR 1.18 ± 0.24 6.22 ± 2.35 1.95 ± 0.45 15.82 ± 5.24 
MCB 1.27 ± 0.24 5.45 ± 1.77 2.19 ± 0.54 16.87 ± 5.04 
AMR 1.42 ± 0.31 5.35 ± 1.67 2.19 ± 0.57 16.10 ± 6.19 

 
contour propagation obtained with the proposed method are comparable, or even better, 
than the others. 

Although all the considered approaches make use of intrinsically different smoothing 
paradigms, distinctive features and critical aspects of the resulting meshes are highlighted 
prior to deformation in terms of mesh quality. The analysis of mesh quality metrics has 
reported a very high shape regularity of the triangles of WSR and AMR surfaces; MCB, 
which presented the best values of AR percentages, revealed a staircase effect in curvature, 
not observable by the AR. It is likely that the staircase effect observed on MCB meshes can 
be reduced by introducing an anisotropic gaussian-smoothing kernel, however this would 
require a specific and ad-hoc tuning process of the pre-filtering step. PWC, presenting the 
worse yield both in AR and curvature, resulted in inadequate triangles. This suggests that 
surfaces reconstructed with WSR and AMR have a more regular lattice of the triangular 
mesh, resulting in more reliable organ surfaces. 

The accuracy of contour propagation is comparable with other state-of-art works in the 
pelvic district [18], [19]. These results highlighted that the contribution of the registration 
error is larger than the effect of the surface reconstruction method, as can be noted from the 
quantitative analysis, where distances were similar over the considered methods. However, 
this second aspect has an impact on the final yield of the 2D deformed contours. In fact, as 
can be seen in Fig. 3, the MCB and PWC methods resulted in irregular contours, while 
WSR and AMR showed a smoothed shape. This is particularly true for bladder and pros-
tate, whereas smoothed contours were found in rectum and bulb, due to a lower variability 
along the z-axis, which minimizes the staircase effect of the MCB.  

Lastly, runtime performances showed similar values among the considered methods. 
Overall, a mean processing time of <1.0 s is observed for surface generation and mesh 
propagation together in each evaluated structure using the described configuration. 

In conclusion, the WSR proposed method was able to generate qualitatively optimal sur-
faces, which can be used in the contour propagation framework with an accuracy in line 
with the state-of-art works. No limiting assumption, nor any ad-hoc tuning of the parame-
ters is performed with the proposed approach. These results are comparable with those 
obtained with AMR; nonetheless, WSR has also the advantage of being open-source and 
can be easily integrated in Elastix. 
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Abstract. In commercially available clinical radiotherapy software there is no 

turn-key solution for adaptive radiotherapy. For example the applications that 

are designed for organ contouring and treatment plan optimization do not pro-

vide solutions to generate new contours based on a (non-rigid) organ motion 

model. To interpolate linearly between two extreme positions and/or filling 

states of patient’s organ contours, a MATLAB-based tool was integrated into 

3DSlicer / SlicerRT using the Matlab Bridge, allowing generation of intermedi-

ate uterus as well as bladder contours that are used for treatment plan optimiza-

tion in adaptive radiotherapy of cervix cancer.  

Keywords: Adaptive radiotherapy, workflow automation, Slicer, Matlab. 

 

1 Introduction 

For patients with cervical cancer, despite the increased accuracy of irradiation tech-

niques, sparing of bladder, rectum and small bowel is still challenging because all 

organs at risk (OAR) in the pelvic area change shape and position on a daily basis due 

to variations in filling (Fig. 1). With the introduction of cone-beam CT scanners that 

are mounted directly at the linear accelerator, it became possible to observe these 

changes of internal organ configurations of patients during each treatment fraction. 

Theoretically, this enables re-adaptation of plans according to tumour shrinkage and 

changes in OAR morphology, resulting in reduction of toxicity [1,2]. Full online plan 

adaptation requires that re-delineation, re-optimizing of dose distributions and repeti-

tion of all legally required quality assurance steps should be performed in a few 

minutes. These workload intensive procedures would require a high degree of auto-

mation and workflow-integration that is currently absent in off-the-shelf products. 
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Nonetheless, by finding a well-balanced compromise between full automation and 

degree of plan adaptation, it is possible to apply a simplified scheme of adaptation 

that provides improved treatment. 

Based on our own experience and that of other research groups [3], patients can be 

divided into two groups: the first group consists of patients who show uterus motion 

as a function of bladder filling (called “Movers”) and the second group are those pa-

tients whose uterus position stays relatively stable regardless of bladder volume 

(“Non-Movers”). With a model for the uterus position, a pre-determined set of plans 

for can be constructed for the “Movers” and the most appropriate treatment plan can 

be selected on a daily basis, while for the “Non-Movers” a single plan will suffice 

(See Fig. 2).  

Although an empty bladder might be more reproducible and easy to obtain for the 

patients, it is favourable for the patient to have a full bladder because it pushes the 

bowel out of the high dose area. In addition, a full bladder will increase the distance 

of the ventral bladder wall to the high dose area. Patients are routinely instructed to 

have a full bladder at the time of treatment by means of a standardized drinking pro-

tocol. This in order to ensure that we are able to irradiate the largest portion of frac-

tions with the half full to full library plan before it starts to get difficult for the patient 

to maintain a full bladder due to the early bladder radiation response (irritation, onset 

of inflammation).  

 

 

Fig. 1. Example of changing organ positions between planning and 3rd week of treatment. 
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The patients are asked to empty their bladder after treatment and the weight of the 

patient is assessed before and after this micturition to provide immediate feedback 

about their bladder volume and the effectiveness of the drinking protocol. However, 

despite these measures, bladder filling is hard to manage on an individual basis.  

The patient specific relation between bladder filling and the position of the uterus can 

be assessed by making a set of CT scans with full and empty bladder. A two stage 

approach, consisting of two treatment plans, one for an empty to half full and one for 

half full to full bladder, has been shown to give a good level of plan adaptiveness [2], 

ensuring both a good tumor coverage as sparing of the surrounding healthy tissue. 

Commercially available clinical software that is designed for organ contouring and 

treatment plan optimization does not provide solutions to generate new contours 

based on a motion model that interpolates between two extreme (filling) positions of 

an organ.  

We developed a MATLAB-based tool that allows generating intermediate contours of 

uterus as well as bladder, according to the available bladder volumes. Its main pur-

pose was to interpolate linearly between two extreme positions and/or filling states of 

patient’s organ contours. Non-rigid deformation between one organ position and the 

other is made by matching the outer contour of both structures. To facilitate data han-

dling and DICOM import/export options, the Matlab code is integrated to 3DSlicer / 

SlicerRT [4,5] by using the MatlabBridge.  

 

 

Fig. 2. Clinical workflow. 

2 Materials and Methods 

MatlabBridge is an extension of 3DSlicer / SlicerRT to allow running Matlab func-

tions directly in 3D Slicer: it takes the input from the data loaded into 3DSlicer / Slic-

erRT, processes the Matlab routine inclusive user interaction and transfers the pro-
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cessed data back to Slicer allowing visualization of the results in Slicer right after the 

execution is completed. 

The Matlab code to interpolate contours has been developed in-house, but the gener-

ated contours could not directly be read by the treatment planning system. Loading 

them into 3DSlicer / SlicerRT and saving the contours solved this problem. To avoid 

unnecessary and time-consuming data transfer between the two programs, Matlab-

Bridge was used to connect them. Furthermore, all 3DSlicer / SlicerRT’s built-in 

image processing features could be used, without having to program them into 

Matlab, and on the other hand also all Matlab functionality can be used unlimited.  

The registration of empty and full organ structures was based on the continuous point 

drift code package (CPD2) [6]. CPD2 simultaneously finds both the non-rigid trans-

formation and the correspondence between two point sets without making any prior 

assumption of the transformation model except that of motion coherence. This meth-

od can estimate complex non-linear non-rigid transformations, and is shown to be 

accurate on 2D and 3D examples and robust in the presence of outliers and missing 

points. For our specific purpose, an interpolated half full contour was created by using 

an interpolation factor (Fig. 2) that could be automatically calculated based on detect-

ed bladder volumes, or could be user defined. The interpolation factor depends on the 

bladder filling as measured in the available full and empty bladder CT scans and does 

not necessarily have to be 50% because sometimes a considerable remaining volume 

is present in the empty bladder scan, or the bladder in the full bladder scan is not 

completely full (as often can be estimated based on the patient anatomy as appearing 

in the scans). In case one of the two CT scans of the patient has a too small full blad-

der contour, or a too large empty bladder contour, extrapolated contours can be creat-

ed as well (to some extent and with sanity check of the results). This reduces the need 

for the patient to be rescanned and reduces patient radiation exposure. The (extra- 

and) interpolated contours were added to an existing DICOM file and transferred to 

the commercial treatment planning system (Monaco, Elekta AB, Stockholm, Swe-

den). Connectivity to other planning systems can be easily added.   

3 Results 

For adaptive radiotherapy for patients with Cervix cancer, a two stage approach, con-

sisting of two treatment plans, one for an empty to half full and one for half full to full 

bladder was found to increase target coverage (Table 1). For the creation of an inter-

mediately filled bladder contour and the corresponding intermediate uterus contours 

out of two CT scans with full and empty bladder, the new software was used.  

Some results and the integration of the in-house developed Matlab code into 3DSlicer 

/ SlicerRT is shown in Fig. 3. Newly generated contours can be checked directly after 

creation using the corresponding CT images in the 3DSlicer / SlicerRT user interface 

before they are exported to the clinical treatment planning system. The whole proce-

dure takes between 30 and 45 minutes. With the newly created structures we were 

able to create two different treatment plans (Fig. 4). With daily CBCT scans that are 

made just before the treatment starts with the patients at the treatment table of the 
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linear accelerator, the current position of bladder and uterus can be determined and 

the most appropriate dose distribution can be chosen. The procedure was tested for 3 

patients and a “sanity” check on the produced contours was performed by comparing 

the generated intermediate structures by CBCT scans that had similar bladder vol-

umes. All intermediate structures created by the system were considered to be ana-

tomically logical with a clinically relevant level of accuracy. The effect of the new 

structures on the dose distributions is shown in Table 1. Especially for the Mover 

patient (P3, Fig. 4), the target coverage increased a lot, by the cost of higher dose to 

the bladder. For the non-Mover patients the differences are smaller, although for P1 

the dose to the bowelbag decreased significantly due to ART.      

 

 Target 

V<42.75(%) 

Bladder 

V30 (%) 

Rectum 

V30 (cc) 

Bowelbag 

V30 (cc) 

average SD average SD average SD average SD 

P1 Clinical 8 5 52 9 85 21 601 180 

 ART combi 4 4 53 9 71 20 393 183 

          

P2 Clinical 0 0 75 4 30 10 392 75 

 ART combi 0 1 79 5 27 9 346 75 

          

P3 Clinical 22 15 49 4 53 24 447 148 

 ART combi 1 3 86 15 53 25 447 139 

Table 1. Dose-volume parameters for radiotherapy treatment plans that were made using the 

newly created structures, compared to the clinical pan that was based only on the planning-CT 

scan. For the target, the relative volume that received less than the prescribed dose of 42.75 Gy 

was calculated, for the OARs, the relative (bladder) or absolute (rectum and bowelbag) volume 

that received more than 30 Gy was calculated. P1 and P2 were non-movers, P3 was a mover. 

The average values were determined by evaluating the planned dose distributions for contours 

obtained from daily CBCT scans.  

4 Conclusions 

For adaptive radiotherapy for patients with Cervix cancer, a two stage approach, con-

sisting of two treatment plans, one for an empty to half full and one for half full to full 

bladder will be implemented soon in our clinic. 3DSlicer’s MatlabBridge enabled us 

to integrate in-house developed Matlab code in a way so that the image viewing fea-

tures and DICOM in- and export routines of SlicerRT could be used, combined with 

the more flexible programming options regarding contour deformation of Matlab. 

Especially the reviewing option for the newly created contours provided us with an 

extra safety step before importing the generated contours directly into the clinical 

planning system.  
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Fig. 3. Screenshot of the user-interface of 3DSlicer / SlicerRT and Matlab screens. Point clouds 

of input uterus and bladder contours and interpolated middle uterus and bladder contour are 

shown. New slices are determined by the triangulated surfaces. DICOM export is done using 

3DSlicer / SlicerRT modules and user interface.  

 

.  

Fig. 4. Example of two optimized dose distributions (color wash) for the motion model of the 

uterus for empty to half-full (left panel) and half-full to full (right panel) bladder. The corre-

sponding uterus positions as measured by the daily CBCT (yellow) for all treatment fractions of 

one patient are overlaid.  
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Abstract. In prostate cancer radiotherapy, inter-fraction organ variations intro-
duce geometrical uncertainties that cause that the delivered dose to healthy organs
to considerably di↵er from the planning dose distribution. The aim of this work is
to propose a new model based on principal component analysis and mixed-e↵ects
model to describe and predict the bladder motion and deformation during treat-
ment by separating intra and inter-patient variability. Two population databases
are used for training and validating the motion/deformation model. Using the first
database, a set of directions of maximum organ variability is determined to char-
acterize the organ shape and variation. Later on, a mixed-e↵ect model is fit to
predict geometrical variability along each direction. Two validation phases are
carried out to assess the performance of the model: in the first phase, the set
of directions of geometrical variability are evaluated using a leave-one-out cross
validation over the first database; in the second phase, the prediction performance
of the model is assessed by comparing the estimated motion/deformation region
with the region obtained with the available images of the second database.

1 Introduction

In prostate cancer radiotherapy during the treatment planning a single computed tomog-
raphy (CT) is usually used to design the planned dose distribution and to determine the
toxicity e↵ects in the healthy organs called organ at risk (OAR). However, the OARs ex-
hibit considerably internal organ motion and deformation during the treatment, which
may lead to considerably di↵erence between the actual and planned delivered dose
([7]). Thus, geometrical uncertainties can lead to dosimetric consequences that may
impact on the tumor control and normal tissue complication probabilities ([8]). There-
fore, quantify and characterize the inter-fraction organ variability during the treatment
is important to design robust treatment plan with less side e↵ects in the OARs.

Several approaches have been developed to quantify and characterize geometrical
uncertainties produced by inter-fraction organ variations. Some of these approaches are:
serial imaging measurements ([10]), fiducial markers ([3]), OAR margins ([9]), rigid-
body motion ([12]), parametrization of the organ structure ([6]), biomechanical models
([13]), and statistical models ([11], [1]). However, a promising approach is given by
using weighted scenarios of fundamental directions of patient’s geometrical variability
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([11], [1]). These directions of variability called motion/deformation modes are ob-
tained by applying principal component analysis (PCA) to a data set of (pre-)treatment
organ geometries, which are parametrized by sets of corresponding surface points ([2]).

To model anatomical organ variation, PCA based model was initially applied by
Shön et al. (2005) to the rectum, bladder and prostate, where intra-subject variability
was just considered to developed a model. However, this approach was limited by the
required number of CT scans per patient for developing the model. Therefore, Budiarto
et al. (2011) proposed a method that considered a population database of prostate and
seminal vesicles, where the aim was to describe the geometrical uncertainties for a
new patient by using a small number of CT scans. The developed method is based on
the assumption that organs move and deform on a similar way despite the variation
of the shape of a specific organ over a population. However, the prediction of inter-
fraction organ variations is still not properly approached. Therefore, in this paper we
propose a model that predicts the intra-fraction geometrical variations by separating
and quantifying the inter and intra-patient variability. It allows us to predict the patient’s
motion/deformation region during the treatment by means of an image that describes
the occupation probability of the organ and is called as probability map. Basically, given
a new patient with a planned delineation, the clinical perspective behind this work is to
quantify the geometrical uncertainties produced by inter-fraction organ variations, and
to analyze its e↵ects in the relation between dose distribution and morbidity prediction
in the OARs.

2 Materials

For this study, the method is applied to two population databases treated for prostate
cancer with external beam RT. The first database consists of 20 patients, where for each
patient a planning CT scan and several (ranging from 5 to 8) on-treatment CT scans are
available. Similarly, the second database consists of 3 patients, where for each patient
a planning CT scan and several (ranging from 35 to 39) on-treatment CBCT scans are
available. For each patient, the bladder, rectum, prostate and seminal vesicles (SV) are
manually contoured following the same protocol. For each patient, the prescribed dose
is computed in a standard Treatment Planning System (TPS) step and then is re-sampled
into the CT native space. Finally, the size of the images is 135 ⇥ 215 ⇥ 55 with 1 mm
pixels and 2 mm thick slices.

In this paper, all the segmented bladders are brought into the same spatial referential
system by selecting a reference patient. Thus, all the patients with his organ delineations
are rigid registered on this reference patient by aligning the barycentre of the prostates.
Then, the segmented bladders are propagated using the same transformations. Finally,
each segmented bladder is reconstructed with a triangulated surface points. The trian-
gulation process is initially done by finding the point with maximum distance to the
bladder surface; and later on, a regular meshing process is carried out with constant
sampling that ensure the corresponding points. Therefore, all the segmented bladder
are discretized with 64442 points over its surface.
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3 Methods

The proposed method consists in two phases of dimensionality reduction and a fitting
process. An initial phase of dimensionality reduction is made by coding each segmented
bladder into a vector of spherical harmonics coe�cients. Then, a second phase is done
by applying PCA to a population of bladders represented in the spherical harmonic
space. Finally, a mixed-e↵ects model is fit to predict the motion/deformation patterns
of a training set.

3.1 Spherical Harmonics

In mathematics, spherical harmonics (SP) are solutions of Laplace’s equation expressed
in spherical coordinate system and define an orthonormal base of the solution space. In
several applications based on medical images, they are used to model anatomical shapes
with high accuracy and dimensionality reduction ([4]). Then, any organ shape f 2 IR3

in spherical coordinates can be approximated as a linear combination of spherical har-
monics:

f (✓, �) =
1X

l=0

LX

m=�L

cm
l Ym

l (✓,') ⇡
LX

l=0

lX

m=�l

cm
l Ym

l (✓,'), 0 < L < 1 (1)

where l denotes the harmonic degree, Ym
l (✓, �) is the spherical harmonic function

of degree l and azimuthal degree m, and the coe�cients cm
l are the coordinates in the

space spanned by spherical harmonics basis. The coe�cients cm
l could be obtained as

the projection of the sampled points function onto the spherical harmonics basis, i.e,
cm

l =< f (✓, �,Ym
l (✓,') >. Therefore, fixing a harmonic degree to L, the bladder’s surface

at the j-th CT scan of the i-th patient denoted by xi , j can be represented in spherical
harmonics coordinates as follows:

Ci j =
h
c0

i j ,0 c0
i j ,1 · · · cL

i j ,L c�1
i j ,1 · · · c�L

i j ,L

iT 2 IRp (2)

where p = L2 � (L2 � L)/2.

3.2 Principal Component Analysis

In this study, our motion/deformation model is based over some assumptions that are
already stated in the methodology developed by Budiarto et al. (2011) and Shön et al.
(2005), which are described as follows: first, it is assumed that the organs move and
deform according to a limited number of variability directions that are imposed by the
body anatomy; second, it is assumed that the inter-fraction geometrical organ variation
is random along the set of variability directions; third, although the organs may be
di↵erent in sizes and shapes from one patient to other, it is assumed that the directions
of variability are similar for all the patients.

In order to find the directions of maximum variability, a data matrix of bladders
represented in spherical harmonics is build up in order to obtain a singular value de-
composition(SVD), where the aim is to have a sample that describe all the possible
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shapes and sizes of the bladder space. Thus, consider the bladder structure of the i-th
patient at the j-th CT parametrized as Ci j, the data matrix would be defined as follows:

Csnapshot =
h
C10 C11 · · · C1 j1 C21 · · · Cn1 · · · Cn jn

i
= U⌃VT (3)

where ji is the number of observations available for the i-th patient, ⌃ is the diagonal
singular value matrix, and U and V are the left and right singular vectors, respectively.
The column vectors of the matrix U are the directions of variability of the bladder
population and they are called modes of variability. As a result, each bladder in the
spherical harmonics space could be approximately expressed as an linear combination
of the modes, as it is described as follows:

Ci j ⇡ zi j, 1 '1 + · · · + zi j, k 'q, with q << p (4)

where the vectors 'i are the singular vectors of matrix U, zi j, k = CT
i j 'k. Mathe-

matically, the modes 'i define a new coordinate system, where each bladder Ci j can be
represented by L new coordinates zi j, 1, . . . , zi j, q.

3.3 Linear Mixed-e↵ects model

Mixed-e↵ects models provide a powerful tool for analyzing longitudinal data, where
there are two sources of variability: the intra and inter-subject variability. Linear mixed-
e↵ects models allows to model separately both source of data variability ([5]).

Considering that zi j,k represents the variability measurement along the k-th mode of
the i-th patient at the j-th delineated bladder. Then, the population database is repre-
sented as a serial of population measurements of geometrical variability as follows:

{z11, k, . . . , z1 j1, k}, {z21, k, . . . , z2 j2, k}, · · · , {zn1, k, . . . , zn jn, k} (5)

where k = 1, . . . , q. Then, a mixed-e↵ects model is proposed to describe the intra
and inter-variability of the mode’s measurements, as it is depicted as follows:

zi j, k = µk + bi, k + ✏i j, k, (6)

bi, k ⇠ N(0,�2
b), ✏i j k ⇠ N(0,�2),

where i = 1, . . . , n and j = 1, . . . , ji. The term µk is the mean geometrical varia-
tion measurement along the k-th mode across the population, bi, k is a random variable
representing the deviation from the population mean of the mean for the i-th patient,
the ✏i j, k is a random variable representing the deviation for observation j on patient i
from the mean for the i-th patient. Finally, the variances �2

b and �2 denote the inter and
intra-patient variability, respectively.

Given a new patient with his planned delineated bladder, the representation of the
organ structure in the reduced space ẑ = [ẑ1, . . . , ẑq] is obtained, see (4). Then, the
inference of the most probable structures of the organ along the treatment fractions is
given by the following predictive model:
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C = Wz, (7)

C =
h
c0

0 c0
1 · · · c�L

L

i
, W =

h
'1 '2 · · · 'q

i
, z =

h
z1 z2 · · · zq

i

zk ⇠ N(µ̂k, �̂k)

µ̂k = µk + ⇣k (ẑk � µk), ⇣ =
1

1 + �2/�2
b

�̂2
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0BBBB@1 �
�2

b

�2

1CCCCA
n

�2 + �2
b

0BBBB@1 �
�2

b

�2

1CCCCA �
(�2

b)2

�2 + �
2 + �2

b

Sampling each normal distribution of zk, a 3D region of motion/deformation of the
patient’s bladder can be predicted, where each voxel provides the probability of being
occupied by the bladder during the treatment. Such 3D region is called probability map
(PM).

3.4 Validation

The validation of the model is split in two phases in order to determine whether the
result obtained can be applied to other patient outside of the population database. First,
in a first phase a leave-one-out cross validation procedure is used to evaluate the po-
pulation modes obtained with PCA. The aim is to determine if the modes accomplish
to describe the motion/deformation patterns of a typical patient not included in the
database. Thus, consider a delineated bladder Ci and its approximation Ĉi given by the
Eq. 4, a reconstruction error ei and a metricM are defined as follows:

ei = 1 � k Ci � Ĉi k
k Ci k , M = 1

n

nX

i=1

ei, (8)

where the metricM is used to provide a quantitative measure of the approximation
error in the training and validation set. Finally, in a second phase, the prediction per-
formance of the model is assessed by using the second database. For each patient two
PMs are calculated: a PM estimated by means of the bladder structures generated by
the model, which is called estimated PM; and a second PM obtained by means of the
bladder structures available from the patient, which is called empirical PM.

4 Results

Fig. 1 illustrates an example of the rigid registration process that is carried out over the
bladder population in order put them into the same framework. The segmented bladder
and prostate of an unregistered patient are illustrated before and after the registration
process. The impact of the number of the spherical harmonic coe�cients on the bladder
reconstruction is evaluated on the bladder population. The evaluation is done in terms
of the Dice Score (DS) and Hausdor↵ distance (HD) as a function of the level of the
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Fig. 1. Visualization of the rigid registration process that is used to put all delineated bladders in
the same spatial referential system.
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Fig. 2. Mean metric errorM as a function of the number of modes in both training and validation
database.

basis functions. A level of L = 15 is selected as a good bladder shape representation
with a mean DS equals to 0.954 ± 0.0522 and a mean HD equals to 6.112 mm ± 4.997.

Following a leave-one-out procedure over the first database, motion/deformation
modes are obtained from the training population of 19 patients and evaluated with the
remaining patient. Thus, SVD is applied to a data matrix Csnapshot 2 IRp⇥n with n rang-
ing between 151 � 154 images and p = 512. In average, from all the 20 combinations
of cutting the first database, the first mode has the biggest variance contribution with a
mean value of 34.7%, and the first 40 modes covers in average 90% of the accumulated
variability. Also, Fig. 2 shows that the first 40 modes, the mean reconstruction errorM
in both training and validation sets are 0.98 and 0.96, respectively.

Figure 3 illustrates the estimated and empirical probability maps that are obtained
from a patient from the second database. It depicts the deformation/motion region that
is estimated by means of the model after sampling the normal distribution of the vector
z. Similarly, an empirical deformation/motion region is obtained for the same patient by
means of the 36 segmented bladders available.
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Fig. 3. The left images shows the estimated probability map using the deformation/motion model.
The right images shows the empirical probability map using the available images of the patient.

5 Discussions and Conclusions

We have proposed a methodology for predicting inter-fraction geometrical variations of
the bladder in prostate cancer radiotherapy. A rigid registration process was done for
mapping the population of bladders into the same space. The proposed methodology
consisted in two phases of dimensionality reduction and a fitting process. Our proposed
model has been validated in two phases by using two databases. In the first phase, leave-
one-out cross validation was applied to validate the direction of geometrical variability
by using the first database. In the second phase, the estimated motion/deformation re-
gion was compared with the region obtained with the available images of the second
database.

A rigid registration process was proposed to define a spatial referential system by
using the prostate barycentre of a reference patient. Although the prostate presents rigid
motions during the treatment, its volume is nearly identical to the volume in the planned
CT ([10]). Therefore, we have chosen the prostate barycentre because its overall struc-
ture remains stable during the course of the treatment. At di↵erence to previous works,
an initial phase of dimensionality reduction with SP was proposed, which allows a pre-
reduction of the number of variables needed to represent each bladder shape. Therefore,
the combination of SP and PCA achieved a significant dimensionality reduction of the
number of variables needed to explain the internal structure in the population data,
where a delineated bladder represented with of millions of voxels was reduced to a few
number of scores.

Comparing our results with previous works ([1]), we found that a higher number
of modes are needed to properly describe the variability of the data. However, there is
significant di↵erence between the organ considered in both studies, where geometrical
variations by motion and deformation during treatment in prostates and seminal vesicles
are less significant than those in the bladder. As a result, a lower number of modes may
be required to describe the geometrical variability in a composite of prostate/seminal
vesicles than in the bladder.

To summarize, a method was proposed for predicting motion/deformation region for
a typical patient by using just his planned segmented bladder. Therefore, as significant
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contribution of this study is to propose a population based model that accomplishes to
better personalize the prediction of the inter-fraction bladder variations. In addition, af-
ter learning geometrical variations in a training population, the population based model
allows to quantify a priori the treatment uncertainties due to internal motion and defor-
mation of the organ. Thus, possible applications of such information could be margin
evaluations, estimation of delivered actual dose, toxicity prediction and robust design
of planned dose. In addition, when more CT scans are available inside an adaptive RT
scheme, the model could be used to adapt the dose during the treatment by using such
information to improve the personalization of the model patient-specific parameters.
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Matthias Wilms1, René Werner2, Tokihiro Yamamoto3, Heinz Handels1, and
Jan Ehrhardt1

1Institute of Medical Informatics, University of Lübeck, Lübeck, Germany
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Abstract. Many respiratory motion compensation approaches in radi-
ation therapy of thoracic and abdominal tumors are guided by external
breathing signals. Patient-specific correspondence models based on plan-
ning 4D data are used to relate signal measurements to internal motion.
The motion estimation accuracy of these models during a treatment frac-
tion depends on the degree of inter-fraction motion variations. Here, we
investigate whether motion estimation accuracy in the presence of inter-
fraction motion variations can be improved by (sub)population models,
which incorporate patient-specific motion information and motion data
from selected additional patients. A sparse manifold clustering approach
is integrated into a regression-based correspondence modeling framework
for automated identification of subpopulations of patients with similar
motion characteristics. In an evaluation with repeated 4D CT scans of 13
patients, subpopulation models, on average, outperform patient-specific
correspondence models in the presence of inter-fraction motion varia-
tions.

1 Introduction

Respiratory motion is a key problem in external beam radiation therapy (RT)
of thoracic and abdominal tumors. In clinical practice, this problem is typically
tackled by the use of technical motion compensation approaches (e.g., gating
or tumor tracking) [1]. Most compensation approaches are guided by (external)
breathing/surrogate signals (e.g., spirometry, skin surface displacements). Given
a signal measurement, a trained correspondence model, which relates signal mea-
surements to internal motion patterns, can be used to estimate the complex 3D
motion of internal structures during the treatment [2].

Several approaches for correspondence modeling and model-based respiratory
motion estimation in RT in general have been proposed over the past decade (see
[2] and [3] for overviews). From a methodological point of view, most approaches
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are either patient-specific or population-based. Patient-specific correspondence
models [4–6] are built prior to the treatment based on planning 4D CT/MRI data
of the specific patient. In contrast, (inter-patient) population-based models are
build from motion data of several patients and typically model the mean motion
(+ deviations from the mean) [7, 8]. Population models can, e.g., be adapted to
unseen patients to allow for model-based motion estimation in the absence of
patient-specific 4D planning data.

In most population-based approaches, the complete population is used to
compute the model. Hence, the possible existence of subpopulations that opti-
mally resemble the unseen patient’s true motion is ignored. Recently, approaches
for selecting/determining subpopulations of patients with motion patterns most
similar to those of the unseen patient have been proposed [9–12].

Despite these developments, most of the time patient-specific models still
outperform population models. However, the accuracy of a patient-specific corre-
spondence model built on planning data and applied during a treatment fraction
highly depends on the degree of inter-fraction motion variations [6]. We hypoth-
esize that a patient’s inter-fraction motion variability resembles the inter-patient
motion variations observed in a subpopulation of patients with similar breath-
ing characteristics. In this work, we, therefore, investigate whether the motion
estimation accuracy in the presence of inter-fraction motion variations can be
improved by correspondence models, which incorporate both, patient-specific
motion information obtained from a planning data set as well as motion infor-
mation from selected additional patients. To automatically identify subpopula-
tions of patients with similar motion characteristics, we propose using a sparse
manifold clustering approach, which is integrated into a regression-based corre-
spondence modeling framework. The proposed approach is evaluated by means
of repeated 4D CT scans of 13 lung cancer patients.

2 Methods

The goal of our approach is to build a correspondence model for a patient p = 0
with available planning data acquired prior to the treatment. We assume the
planning data of this patient to consist of a 4D CT data set (I0,j)

nph

j=1 with

nph 3D images I0,j : Ω0 → R (Ω0 ⊂ R3) capturing the patient’s anatomy at
breathing phases j and corresponding nsur-dimensional surrogate signal mea-
surements (ζ0,j)

nph

j=1 with ζ0,j ∈ Rnsur . We furthermore assume a population of
npat other patients to be given. The data available for each of these population
patients p ∈ {1, . . . , npat} also consists of a 4D CT image sequence (Ip,j)

nph

j=1

with Ip,j : Ωp → R and nph corresponding surrogate signal measurements
ζp,j ∈ Rnsur . For the sake of simplicity, we assume temporal correspondence
between the phases j across all patients.

After explaining the preprocessing of the data (Sec. 2.1), we will briefly re-
view our patient-specific correspondence modeling approach (Sec. 2.2), before a
general population-based extension (Sec. 2.3) and the new subpopulation-based
approach (Sec. 2.4) are presented.
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2.1 Preprocessing

As a first step, the 4D images sequences of all patients are mapped to a common
atlas space ΩA to establish anatomical correspondence between all data sets. The
atlas space is generated following the approach presented in [13] by using the
population patients. After this preprocessing, the reference breathing phases j =
1 (here: end-inspiration) of all patients are anatomically aligned, while breathing-
related anatomical differences between patients in other phases are preserved.
Please note, that the surrogate signals need to be transformed accordingly.

2.2 Patient-specific correspondence modeling

Our patient-specific correspondence modeling approach [4] is based on the as-

sumption that a linear relation between a surrogate signal measurement ζ̂0
and the corresponding internal motion ϕ̂0 exists. The non-linear transformation
ϕ̂0 = id + û0 : ΩA → ΩA represents the deformation of the internal structures
between the reference phase I0,1 and the breathing state represented by ϕ̂0. Here,
û0 denotes a displacement field. Mathematically, we define the relationship be-
tween ζ̂0 and ϕ̂0/û0 as

û0 = u + Bζ̂0 , (1)

where û0 ∈ R3m (m: number of image voxels) denotes a vector containing all
elements of the displacement field û0, B ∈ R3m×nsur is a coefficient matrix, and
u ∈ R3m is the mean displacement vector.

Model training consists of learning the coefficient matrix B (and calculating
u) in Eq. (1). First, internal motion data is derived from the planning data by
estimating non-linear transformations (ϕ0,j)

nph

j=1 between the reference phase I0,1
and each I0,j via image registration [14]. Subsequently, least squares regression is
performed based on the vectorized displacements fields (u0,j)

nph

j=1 of the estimated

transformations and the corresponding surrogate signal measurements (ζ0,j)
nph

j=1

to obtain B. See [4] for further details. This model represents the breathing
characteristics captured by the patient-specific planning data.

2.3 Population-based correspondence modeling

The patient-specific correspondence model built in Sec. 2.2 is extended to a
general population-based model by adding internal motion information and cor-
responding surrogate signal measurements from all npat population patients to
the training data used to estimate coeffcient matrix B in Eq. 1. Therefore, non-
linear transformations (ϕp,j)

nph

j=1 between the reference phase Ip,1 and all other
images Ip,j of each patient p have to be computed. Finally, the training data
consists of displacement fields (up,j)

npat,nph

p=0,j=1 and corresponding surrogate signal

measurements (ζp,j)
npat,nph

p=0,j=1 .
As all patients are represented by the same number of samples in the training

data and no weighting is applied, least-squares regression averages out differences
between patients. Hence, the influence of the patient-specific planning data of
patient p = 0 depends on the population size.

83



2.4 Subpopulation-based correspondence modeling

As stated before, we hypothesize that a patient’s inter-fraction motion variability
resembles the inter-patient motion variations observed in a (sub)population of
patients with similar breathing characteristics. The general population model in
Sec. 2.3 is built based on data from all population patients, which might lead to
an improved estimation accuracy. However, we assume that most of the time the
heterogeneity of the population/large inter-patient differences will negatively
impact the accuracy. We are therefore interested in identifying a subset S ⊆
{1, . . . , npat} of population patients with breathing characteristics most similar
to that of the unseen patient p = 0 to build a more accurate model.

Our idea is to determine subset S by clustering the motion of all patients with
respect to their similarity. In the end, the cluster the new patient p = 0 belongs
to is chosen as S. Motion clustering has also been used by Peressutti et al. [11]
to identify patients with similar breathing characteristics to personalize affine
population models for cardiac respiratory motion compensation. However, in
our application we have to deal with non-linear deformations and, furthermore,
our clustering approach based on sparse coding is more general than the one
used in [11] as it is able to effectivly handle high-dimensional data with complex
structure.

Motion representation We start by representing the motion of each patient p ∈
{0, . . . , npat} by a vector mp = [uT

p,EE ,u
T
p,MI ,u

T
p,ME ]T ∈ R9m. Each vector

mp consists of a concatenation of three selected displacement field vectors up,j ,
which encode the motion between the reference phase EI (end-inspiration) and
the phases of end-expiration (j = EE), mid-inspiration (j = MI), and mid-
expiration (j = ME) extracted from the 4D CT data sets (cf. Sec. 2.3). While
the motion between EI and EE serves as a general representative for the motion
of patient p, hysteresis-related patterns are captured by integration of the motion
between EI and MI/ME.

Motion clustering We now assume that these vectors mp lie in or close to multiple
low-dimensional manifolds embedded in the high-dimenional ambient space. A
(spectral) clustering solely based on pairwise distances computed in the ambient
space might ignore this (possible) structure and assign motion vectors belonging
to different manifolds to the same cluster. In order to avoid this, we employ the
Sparse Manifold Clustering and Embedding (SMCE) method [15]. The approach
aims to find a small number of neighbors {mi}i 6=p of each data point/motion
vector mp that belong to the same manifold and, therefore, approximately span
a low-dimensional affine subspace passing near mp. An advantage of SMCE over
other approaches is that these neighbors are automatically found, without the
manual selection of a neighborhood radius or a fix neighborhood size.

Next, for each motion vector mp a sparse weighting vector wp ∈ Rnpat+1

is computed whose non-zero elements indicate the (inverse) distances of the
selected neighbors of mp to mp. From these vectors {wp}, a similarity matrix

W =
[
|w0| . . . |wnpat

|
]

(2)
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is build, which is subsequently used for k-means-based spectral clustering [16].
Here, k denotes the number of clusters to be obtained. This parameter should
be chosen with respect to the low-dimensional structure of the high-dimensional
data (k ≥ # of manifolds).

Finally, the subpopulation of patients (including p = 0) specified by motion
vectors belonging to the same cluster as m0 are used to generate a subpopulation
model following the steps outlined in Sec. 2.3.

2.5 Experiments

An evaluation of the different models presented in Sec. 2.2–2.4 in the presence
of inter-fraction variations of respiratory lung motion is carried out on repeated
4D CT data sets (10 breathing phases; resampled to a spatial resolution of
2.5× 2.5× 2.5 mm) of 13 lung cancer patients (see [17] for details). For each of
these 13 patients, 2 4D CT data sets acquired at different days (Day1 and Day2)
are available. 20 4D CT data sets of different patients are additionally used as
population patients. In total, 46 4D CT data sets are used for the experiments.

During preprocessing (cf. Sec. 2.1), intra-patient/intra-fraction registrations
restricted to the lungs are performed to estimate the respiratory lung motion
of all patients in atlas space. The resulting transformations are used to build
different models and serve as ground-truth motion data for evaluation. Model-
based estimation accuracy is quantitatively evaluated by computing mean vector
differences between a displacement field ûj estimated by a correspondence model
and the ground-truth field uj computed via registration for all inner-lung voxels.
Due to the lack of available real surrogate data for the data sets used, a nsur = 2-
dimensional spirometry signal (signal value + time derivative) is simulated by
an image-based analysis of the air content inside the lungs (see [4] for details).

For each of the 26 4D CT data sets of the different day cohort (13 pa-
tients with 2 repeated scans), 4 different correspondence models are built: (1) a
patient-specific intra-fraction model, (2) a patient-specific inter-fraction model,
(3) a population model, and (4) a subpopulation model. Each model is used to
estimate the lung motion between the reference phase EI and the phases at MI,
ME, and EE in the experiment-specific test data set.

Patient-specific intra-fraction model To establish a reference for performance
comparison, a patient-specific intra-fraction model (cf. Sec. 2.2, [4]) is built for
each data set by using a leave-out strategy. Phases at MI, ME, and EE are left
out during training, respectively, and the motion between the reference phase
EI and the left-out phases is estimated by the trained correspondence model.

Patient-specific inter-fraction models Patient-specific inter-fraction models (cf.
Sec. 2.2) are built based on the internal motion data and the surrogate signal of
the Day1 (Day2) data set to perform a model-based estimation of the motion in
the Day2 (Day1) data set. Results of these models will give an impression on how
well a patient-specific correspondence model build on pre-treatment planning
data is able to estimate motion during a treatment fraction at a different day.
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Table 1. Mean estimation errors obtained for the surrogate-based estimation of inner
lung motion for the different correspondence models, given as mean±standard deviation
per phase for the 26 data sets considered. Last column: mean results over all 3 phases.

Mean estimation error [mm]

Motion estimation EI → EE EI → MI EI → ME Mean

No motion estimation 8.59± 3.92 4.80± 2.27 7.09± 3.36 6.83± 3.58
Inter-fraction motion difference 4.06± 1.48 3.17± 0.85 3.62± 1.36 3.62± 1.30

Models:
Patient-specific intra-fraction 1.45± 0.70 2.19± 1.02 1.47± 0.73 1.71± 0.89
Patient-specific inter-fraction 3.75± 1.31 2.91± 1.04 3.34± 1.14 3.34± 1.20
Population model 4.52± 1.56 2.87± 0.91 4.06± 2.08 3.82± 1.72
Subpopulation model 3.33± 0.99 2.59± 0.85 3.01± 0.93 2.97± 0.96

Population model For each data set, a population model (cf. Sec. 2.3) is built
using a population of npat = 44 data sets (both data sets of the remaining 12
patients with repeated data + 20 patients with single session data) and the Day1
(Day2) data set of the specific patient. Each model is used to estimate the lung
motion in the corresponding Day2 (Day1) data set.

Subpopulation model For each data set, a subpopulation model (cf. Sec. 2.4)
is built using the same population as for the population models. However, a
spectral motion clustering based on the Day1 (Day2) data set is carried out
as described in Sec. 2.4 to identify a suitable subpopulation of patients. The
k−means algorithm is run with k = {2, . . . , 44} clusters. In this work, k is
retrospectively optimized for each patient with respect to the estimation error.
Resulting models are used for motion estimation in the Day2 (Day1) data sets.

3 Results

Quantitative results of our evaluation are listed in Tab. 1. As expected, patient-
specific intra-fraction models are giving (by far) the best results in terms of
estimation accuracy. For the experiments where the motion in the different day
data sets has to be estimated, the patient-specific inter-fraction models have on
average a significantly higher estimation accuracy than the general population
models (paired t-test; p < 0.05). This result supports our hypothesis that the
heterogeneity of the population negatively impacts the accuracy of general pop-
ulation models. In contrast, the results of the subpopulation models show, on
average, a significant improvement in terms of estimation accuracy compared to
the results of the patient-specific inter-fraction models (p < 0.01). For some pa-
tients with large inter-fraction motion differences, mean improvements > 1mm
are achieved by using the subpopulation models instead of the patient-specific
inter-fraction models (see Fig. 1). On average, 7.77 ± 10.18 patients were used
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Fig. 1. Mean estimation errors of inter-fraction and subpopulation models for all 26
data sets (mean results over all 3 phases). In addition mean motion and inter-fraction
motion differences are given.

for building the subpopulation models. A strong correlation (correlation coeffi-
cient of 0.85) between inter-fraction differences and mean estimation accuracy
improvements achieved by the subpopulation models compared to the patient-
specific inter-fraction models is observed.

4 Conclusion

Current respiratory motion compensation approaches in radiation therapy usu-
ally employ patient-specific correspondence models to relate surrogate signal
measurements to internal motion patterns. In this work, an investigation on
whether the motion estimation accuracy in the presence of inter-fraction motion
variations can be improved by correspondence models that incorporate both
patient-specific motion information obtained from a planning data set as well as
motion information from selected additional patients with similar breathing mo-
tion was carried out. A sparse manifold clustering approach was employed to au-
tomatically identify subpopulations of patients with similar motion characteris-
tics. The evaluation based on 13 patients with repeated 4D CT scans showed that
these so-called subpopulation models, on average, outperform patient-specific
correspondence models in the presence of inter-fraction motion variations. How-
ever, for most patients, only small differences between both models exist. Fur-
thermore, it has to be noted that the parameter k in our clustering approach,
which controls the number of patients in the chosen subpopulation, was ret-
rospectively optimized with respect to the estimation error. Future work will
therefore focus on finding ways to choose this parameter automatically. More-
over, all experiments in this work were carried out in a common atlas space.
Hence, an efficient integration of this approach into a clinical workflow will be
another challenge.
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Abstract. A crucial and time-consuming task in adaptive radiotherapy
is the propagation of contours from an initial planning CT image to a
control image taken during the course of treatment. Precise adaptation of
contours for organs at risk, as well as target volumes is necessary in order
to calculate an adapted treatment plan. Although several commercially
available solutions exist that aim at solving this task, manual editing and
correction of such automated mappings is still an inevitable requirement
making the overall process tedious and time-consuming in clinical rou-
tine. We present a processing pipeline aiming at fast and fully automated
propagation of contours between different datasets of an ongoing therapy.
The method is based on a non-linear image registration combined with
GPU accelerated contour generation. We evaluate our method by cal-
culating Dice similarity coefficients and 3D Hausdorff distances between
our results, and manually generated contours which serve as a ground
truth. Additionally, we compare our results against contours mapped
using a state-of-the-art commercially established contouring software.

Keywords: Adaptive radiotherapy, contour propagation, non-linear registra-
tion

1 Introduction

Adaptive radiotherapy attempts to improve the outcome of radio-therapeutic
tumor treatment by adapting an original treatment-plan during the course of
therapy to physiological changes occurring in the patients body. To facilitate
this, CT-imaging is performed at certain stages during therapy, building the
foundation for adaptation of the treatment plan. In order to calculate an adapted
plan, contours of both target structures as well as organs at risk need to be
transferred to the control CT image, taking into account the current anatomical
situation.
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Fig. 1. Overview of the complete processing pipeline.

This goal can theoretically be achieved in two ways. First, the control CT
could be completely re-contoured, resulting in a new set of contours, independent
of the initial structures. Alternatively, the original structures can be transferred
to the target image by means of non-linear image registration with subsequent
transformation of all structures. The latter approach offers two significant ad-
vantages: First, the time requirement can be reduced given the fact that a well
fitting set of contours builds the basis for typically required corrections. Second,
the correspondence between structures from the planning image to the control
image remains intact, facilitating precise calculations of volumetric changes of
individual structures over time.

Both approaches are supported by current commercially available software
systems such as ABAS [1]. Complete re-contouring is supported by means of
multi-atlas based pre-segmentation of organs at risk, followed by inevitable man-
ual adaptations of the resulting contours. Alternatively, the original contours can
be used for a single-atlas based segmentation.

In this paper, we present a novel approach for fully automated transfer of
contours from different CT images relying on a non-linear image registration with
automatic patient table removal, followed by re-generation of contours of the
original structures on the target image. We evaluate our method by comparing
the results of the mapping process to those obtained using ABAS.

2 Methods

Our method is based on a processing-pipeline consisting of two main stages: First,
the non-linear image registration and second the image based contour mapping.
The registration stage consists of a pre-processing step aiming at automatic table
removal, followed by a coarse linear volume alignment with subsequent non-linear
image registration as presented in [4]. The mapping stage consists of structure
voxelization, GPU accelerated deformation and resampling, and finally contour
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Fig. 2. A representative slice of the input image volume is displayed in (a). The pro-
jection along the z-axis results in (b), and a further projection along the x-axis in (c).
(d) displays the resulting cropped output image after automatic table removal.

generation using the marching squares approach. Figure 1 gives a schematic
overview of the complete pipeline.

2.1 Automatic table removal

To eliminate the influence of the CT scanning table on the results of the image
registration, we have implemented a simple technique for table removal. As an
exact registration of the patient table would have no impact on the addressed
problem, a VOI including the patient volume only is automatically calculated.
This eliminates the influence of structures outside the patient on the distance
measure and also reduces computation costs effectively speeding up the regis-
tration process as the considered image domain Ω is reduced to the VOI only.

The proposed method is derived from [9], but has been adapted to images
used in radiotherapy. We exploit the circumstance that the patient table is typ-
ically aligned in parallel to the direction of image acquisition. This allows to
easily identify the table by performing an orthogonal projection of locally maxi-
mal image intensities along the z-axis of the input image. This sums up all table
voxels, forming a very dominant line in the projected image. A second projection
along the x-axis generates a one-dimensional image profile, where the maximum
image intensity depicts the surface of the table. Figure 2 gives a short overview
of the performed steps.

2.2 Non-linear image registration

One of our general expectation regarding the non-linear, intra-patient image
registration here is, that the deformations will be considered as smooth. The
future-oriented trend of standardized patient positioning in advanced head and
neck radiotherapy supports this assumption. Therefore, we chose the Normal-
ized Gradient Fields (NGF) [3] as distance measure, focusing on edges in the
CT images to be registered, and a curvature regularizer, aiming for smooth de-
formations.
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Consider R : R3 → R as the fixed reference image and T : R3 → R as
the moving template image with compact support in domain Ω ⊆ R3. Image
registration aims to find a transformation y : Ω → R3 such that T (y) is similar
to R. In our specific application of contour propagation we aim to be able to
propagate contours as images with the transformation y.

The variational approach used for the non-linear image registration step here,
models the image registration process by the objective function J

J = D (R, T (y)) + α · S (y) , (1)

where D is the distance measure, S is the regularizer, and α is the regularization
parameter, a weighting factor affecting data fit and regularity.
We used the Normalized Gradient Fields (NGF) [3] as distance measure. For
x ∈ Ω it is given by

D (R, T (y)) :=

∫

Ω

1−
( 〈∇T (y (x)) ,∇R (x)〉η
‖∇T (y (x)) ‖η‖∇R (x) ‖η

)2

dx (2)

with

〈f, g〉η :=
3∑

j=1

fjgj + η2 and ‖f‖η :=
√
〈f, f〉η (3)

to describe image similarity. The NGF distance measure considers the angle
between image gradient vectors in the reference and the template image at each
point. The edge parameter η is used to define a threshold, that specifies which
gradients are counted among the noise level.

For regularization purpose we used the curvature regularizer as proposed
in [2], which is based on second order derivatives, penalizing the Laplacian of
the displacement components. The curvature regularizer S is given by

S (y) :=
1

2

3∑

l=1

∫

Ω

‖∆u‖2dx (4)

with the decomposition y (x) = x + u (x), where u is the displacement. One
beneficial characteristic of the curvature regularizer is, that it results in very
smooth deformations, meeting our expectations.

A discretize-then-optimize scheme [5] is performed to optimize J using a
quasi-Newton L-BFGS optimizer [7]. To avoid local minima, the iteration scheme
is embedded into a multi-level approach [5]. Therefore, the optimization problem
is solved consecutively on coarse to fine image resolution levels. In this imple-
mentation, the objective function is evaluated on 5 levels. The proposed results
were obtained with an edge parameter of η = 0.1 and a regularization parameter
of α = 1.
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(a) (b) (c) (d)

Fig. 3. Illustration of the mapping process: Axial source contours (a). 3D image rep-
resentation (b). Deformed image representation (c). Resulting contours (d).

2.3 Contour propagation

Contour propagation is performed individually for each ROI loaded from a DI-
COM RTSTRUCT file by following a sequence of standard image-processing
operations. The mapping is always performed from the source image to the tar-
get image, such that no deformation is applied to the target image and the
resulting contours are placed in the correct coordinate system.

First, the axially aligned contours defining an anatomical structure are con-
verted into a 3D image object, by rasterizing them in to the coordinate system
of the corresponding reference image. Anti-aliasing is applied in order to cor-
rectly account for partial volume effects. This image mask is then deformed
non-linearly using an OpenCL accelerated GPU implementation. During the de-
formation, resampling to the target coordinate system with tri-linear filtering is
also performed on the GPU .

This results in a deformed 3D image representation of the given structure
living in the coordinate system of the target image. An additional smoothing
step using a Gaussian filter kernel is applied to reduce aliasing artifacts.

Finally, result contours for each structure are generated by processing the de-
formed image representation slice by slice. A marching-squares algorithm with
interpolation is utilized for this step. The combination of anti-aliasing dur-
ing rasterization, tri-linear filtering during resampling, and interpolation in the
marching-squares step assures to minimize undesired artifacts in the resulting
contours. Figure 3 illustrated this process.

3 Evaluation

We have implemented our pipeline in a prototypical software assistant called
CUTE. An initial quantitative assessment of our method was presented in [6].
Here, we present results of an in depth comparison of the performance of our
method over a set of 15 structures. Eight replanning CTs of five randomly se-
lected head and neck cancer patients have been retrospectively auto-contoured
using CUTE. These contours were compared to manually created contours from
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(a) (b) (c)

Fig. 4. Comparison of automatically propagated contours (a), and manually delineated
contours (b). Image (c) shows both contour sets simultaneously, manual contours drawn
with dashed lines.

an experienced radiotherapist. In addition, the commercially available ABAS
software (Atlas-based Autosegmentation, Elekta AB, Stockholm) [1] was used to
automatically create another set of contours. Then, the two automatically prop-
agated contour sets were individually compared to the manual re-contourings.
Similarly to [8] Dice similarity coefficient (DSC) and 3D Hausdorff distance (HD)
were chosen as evaluation metrics. Results are shown for a subset of all con-
tours that includes the main target volumes with nearby organs-at-risk (OARs).
Target volumes have been classified to low or high depending on the patient’s
prescriptions dose.

4 Results

Figures 5 and 6 show box plots illustrating distribution of DSC and HD metrics
of the two methods for all structures of the 8 replanning CTs. The box plot
for all structures shows that both ABAS and CUTE perform well with no sig-
nificant differences. Our method delivers more robust results as the quantiles
are closer to the median. The best DSC-values of ABAS outperform the best
ones of CUTE, yet the variation and median DSC is better in contours propa-
gated by CUTE. Comparison of box plots created for OARs and target volumes
shows that ABAS performs better for latter structures, while CUTE for the for-
mer ones. Taking a look at box plots for individual structures provides an insight
into which method is superior for a given structure. We found comparable results
for certain structures (e.g., larynx, PTV high) as well as significant differences
for others (e.g., brainstem, mandible, both parotids).

5 Discussion and Conclusion

Our evaluation results show, that the overall quality of contouring in sense of
DSC and HD is quite similar for both methods. The atlas-based method performs
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better than our method for target volumes resulting in higher DSC and lower HD.
This is quite reasonable, considering that ABAS takes knowledge about nature
of PTV into account. PTV contains large safety margins which do not correlate
with the intensity values. Our registration based method cares about true image
similarities and smooth transformations and not about safety margins. For OARs
it is vice versa. Here only the intensity contrast and the surrounding structures
rule and give an advantage to the individual registration.

Summarizing, atlas-based methods are good for bone structures and target
volumes, for structures where the surroundings determine the concrete alter-
ations, our approach performed significantly better in terms of both quality and
robustness. We expect, that a combination of ABAS and CUTE could poten-
tially optimize the overall workflow of re-planning situations in daily routine.
Furthermore the fully automatic and robust approach can be performed in the
background supporting automatic quantifications and dose accumulations. This
will be a focus of future research.

In conclusion, contour propagation using automated mapping can be consid-
ered a reliable way to reduce the manual effort of re-contouring structures in
adaptive radiation therapy.
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Abstract. We present a method for organ motion compensation based
on a statistical motion model. The novelty of our method is, that the
surrogates for prediction can be independent of the model’s topology
i.e. the surrogate signal does not have to correspond to a point of the
motion model. By non-linear regression, we grasp the correlation be-
tween a captured signal during free breathing and the motion model
parameters. Such a signal could be a spirometer, a breathing belt or an
abdominal ultrasound signal. Our method performs on par with state-
of-the-art methods, where model points have to be tracked. However, we
solely incorporate one-dimensional and even topology independent sur-
rogates. In our experiments on the right liver lobe we have achieved an
average motion prediction accuracy of 2-3mm using population models
and below 1mm with patient specific models.

1 Introduction

Respiratory organ motion compensation is central in image-guided thoracical
and abdominal interventions. Especially in dynamic dose delivery methods as
in radiotherapy or in high intensity focused ultrasound, tumor localization is
crucial. Typically, a motion model is used to predict the organ motion given
some external respiratory signal (surrogates). Thus, the treatment of healthy
tissue can be reduced.

A prominent class of methods [3,7] is based on statistical motion models of
organ shape deformations. During treatment, the shape deformation is inferred
based on detected points in ultrasound (US) images which serve as surrogates.
However, obtaining such surrogates is difficult, since they have to correspond to
specific points in the model.

In this paper, we present a statistical motion model in which surrogates are
incorporated that originate from arbitrary signal sources provided that they are
correlated to the organ motion. For breathing, these might be a spirometer, a
breathing belt or a 1D US where the sensor is placed on the abdominal skin
[10]. The key idea is to predict the statistical motion model parameters given
these surrogate signals using non-linear regression. This greatly simplifies the
treatment setup since the absolute position of the surrogate sensor is no longer
needed.
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Beside the motion prediction, our method enables the synthesis of a respi-
ratory cycle with a high temporal resolution. This can be used to investigate
the patient specific motion pattern for planning. Further, in contrast to stan-
dard statistical motion model approaches, we construct our motion model with
a different number of temporal samples per individual, to make full use of the
training data. Finally, the dense underlying shape model opens the possibility
to automatically fit the model into the 3D volume. However, this is not in the
focus of the present paper.

In our experiments, we study the respiratory motion of the right liver lobe.
To predict the organ motion, as surrogates, we simulate a correlated signal to
the liver’s motion. As such, we have reached an average accuracy between 2 and
3mm using a population based model. Using patient specific motion models,
we have reached an accuracy of less than 1mm. The influence of organ drift
[11] or rotations caused by change in posture during treatment has not been
investigated.

Previously, [7] presented a statistical motion model, where physical points
on the diaphragm serve as surrogates which correspond to points in the model.
They detected and tracked such points using lateral US images. In [10], a low-
cost 1D US signal has been proposed. As surrogate data, they map the US
signal to positions on the organ. In our experiments, the depth of the diaphragm
is simulated in the view to capture the signal from such a 1D US sensor which
is placed on the abdominal skin. A comprehensive review on respiratory motion
models can be found in [6].

The estimation of relationships among random variables has priorly been
shown in [2] with the application to attribute manipulation in 3D face models.
There, regression analysis of facial attributes and face models have been studied.
However, to our best knowledge, such an approach has previously not been
established in clinical applications.

2 Materials and Methods

2.1 Shape Modeling

For each volunteer v, we have a 4DMRI sequence of τv time steps, stacked by
the method of [12], resulting in τv times an MR image Ivt : Ω → IR where
Ω ⊂ IR3 is the image domain and Ivt denotes the image at a time point t. For
each volunteer, an exhalation master image Ivt=m is selected which serves as
reference to determine relative displacements to each other time point. By non-
rigid free form registration [9] of the exhalation master to each other image of
this volunteer Ivt6=m the displacement fields Dv

t : Ω → IR3 are derived. To deal
with across organ boundaries the surrounding of the liver structure is masked
out during registration.

The liver structure within each exhalation master image has been manually
segmented yielding a label map L : Ω → {0, 1} which indicates liver structure
when L(x) = 1, x ∈ Ω. Using margin cubes, for each label map a shape S ⊂ IR3
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is obtained. We perform an iterative group-wise registration of the shapes to
reduce a bias of the mean shape S̄ to a specific exhalation master shape Sv.

S̄1 = Sv=m, S̄i+1 =
1

V

∑

v

S̄i +∆Svi , (1)

where m is randomly chosen and ∆Svi is obtained by the Gaussian process
registration method of [5] such that S̄i +∆Svi ≈ Sv. In the following, by Sv we
always mean the registered shapes S̄ +∆Sv, if nothing else is mentioned.

We equidistantly sample inside of S̄ and with thin-plate-spline interpolation
we add several interior points to each Sv. To recap, for each volunteer we have
now an exhalation master shape Sv, which is in correspondence with the pop-
ulation mean shape S̄. By the displacement fields F vt := Dv

t (Sv) induced by
motion, for each time point we derive a shape Svt := Sv + F vt ⊂ IR3 with 2571
surface and 368 interior points.

2.2 Statistical Shape Model

We distinguish between the modeling of shape and the modeling of shape motion.
In the shape model, the variation among a population of shapes originating
from different individuals is considered. Whereas in the motion model, the shape
deformation over time relative to a reference shape is investigated.

For each volunteer v, we have a segmented exhalation master shape Sv of the
right liver lobe. The exhalation master shapes, which were brought into corre-
spondence (Equation 1), are assumed to be Gaussian distributed p(Sv|Sµ, ΣS) ∼
N (Sµ,ΣS) where

Sµ =
1

V

∑

v

Sv∧= S̄, ΣS =
1

V − 1

∑

v

(Sv − Sµ)⊗ (Sv − Sµ) (2)

are the maximum likelihood estimates of p(Sv|Sµ, ΣS), V is the number of vol-
unteers and ⊗ is the outer-product. Thus, a shape can be parametrized by
Sα = Sµ +

∑M
i=1 αiψi, where ψi are orthogonal basis vectors of ΣS weighted

by the model parameters αi and M denotes the number of basis vectors.

2.3 Statistical Motion Model

In addition to the shape variation among a population we model the relative
shape deformation over time. Since each volunteer has been observed for a differ-
ent amount of time, we assume that the displacements are a mixture of Gaussian
distributions

p(F ) =

V∑

v

p(v)p(F |v) =

V∑

v

πvp(F |v), (3)

where
∑V
v π

v = 1, πv ∈ (0, 1),∀v = 1, ..., V . Each component distribution is
assumed to be Gaussian p(F v) ∼ N (F vµ , ΣFv ) with

F vµ =
1

τv

τv∑

t

F vt , ΣFv =
1

τv − 1

τv∑

t

(F vt − F vµ )⊗ (F vt − F vµ ). (4)
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The first two moments of the mixture p(F ) are estimated by

Fµ =
V∑

v

πvF vµ , ΣF =
V∑

v

πv
(
ΣFv +

(
F vµ − Fµ

)
⊗
(
F vµ − Fµ

))
, (5)

where πv = τv/
∑V
v τ

v is the weighting of the component distribution with
respect to the number of temporal samples per volunteer (see more details about
moments of Gaussian mixtures in [4])

The variation of the shape displacements is finally parametrized by F =
Fµ +

∑N
i=1 βiφi, where φi are N orthogonal basis vectors of ΣF .

With the combination of the shape and the motion model a shape to a
particular time point can be synthesized by

Sαβ = Sµ +

M∑

i=1

αiψi

︸ ︷︷ ︸
shape model

+Fµ +

N∑

i=1

βiφi

︸ ︷︷ ︸
motion model

, (6)

where αi and βi are coefficients of the shape and the motion model respectively.
Typically, the shape model is priorly fitted to an exhalation master shape [5].
Subsequently, the shape motion is additively imposed to the derived shape.

2.4 Attributes and Regression

Let a ∈ IRd be a d-dimensional attribute vector which corresponds to a particular
time point. Consider an observed finite set A = {(a0, β0), ..., (an, βn)} ⊂ IRd ×
IRN of n pairs of i.i.d. attribute vectors ai and motion coefficient vectors βi.
Let further assume that there exists a function f : IRd → IRN which maps the
attribute vectors to the coefficient vectors, while we only observe noisy instances
of β such that β ∼ N (f(a), σεI).

Gaussian Process Regression Let f ∈ GP(0, k) be a Gaussian process with
the covariance function k : IRd × IRd → IR. Assuming a Gaussian likelihood, the
posterior distribution p(f |A) is given in closed form [8] and is again a Gaussian
process GP(µA, kA) with

µA(a) = KT
a,A(KA,A + σεI)

−1B (7)

kA(a, a′) = k(a, a′)−KT
a,A(KA,A + σεI)

−1Ka′,A, (8)

where Ka,A = (k(ai, a))ni=1 ∈ IRn, KA,A = (k(ai, aj))
n
i,j=1 ∈ IRn×n and B =

(β0, . . . , βn)T ∈ IRn×N . The expectation of an unseen output β∗ given an at-
tribute a∗ yields Equation 7.

In our application, we use a straight forward Gaussian process model, where
we apply a Gaussian kernel as covariance function

kg(x, x
′) = θ20 exp

(
−‖x− x

′‖2
2θ21

)
, (9)
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Fig. 1: Example liver shape Sv deformed by an average respiratory cycle c =
[0, 2π]. The shape is colored with respect to the absolute value of the displace-
ment of a point |∆p| ∈ [0, 14] mm. In the right plot, the average distance to the
exhalation master is plotted (blue - population mean, orange dotted example of
a patient specific cycle).

where θ0 is a scaling parameter and θ1 is a length scale or smoothness parameter.

Given an attribute signal which is correlated with the organ motion, we have
defined now the tools to predict the motion model parameters β of the current
respiratory state with Equation 7. Based on that, a shape deformation can be
synthesized using Equation 6.

In the following, we first synthesize a high-temporal resolution respiratory
cycle. This is followed by the evaluation of the prediction performance of our
method.

3 Results

3.1 Average Breathing Cycle

In this first study, we analyze the respiratory motion of the liver in general.
We built a motion model out of the motion samples among all the V = 9
volunteers, while we have kept 99.9% of the variance. For each sample shape St,
an attribute c ∈ [0, 2π] has been considered which indicates the cycle state of t
within a respiratory cycle1. This rather abstract attribute is applied to synthesize
an average respiratory cycle of the liver shape. For the regression, 8 000 pairs

1 This cycle attribute was computed using a greedy cycle detection algorithm which
is based on the average vertical coordinates of the displacement fields Ft.
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Fig. 2: For each L1O experiment, the average corresponding point difference
between the ground truth and the predicted shape is visualized. We compare
our method Attribute Regression with the Conditional Model [1,7]. The upper
x-axis indicates for how many time points the motion has been predicted.

of cycle attributes resp. motion model coefficients have been randomly picked
among all volunteers.

In Figure 1, an example right liver lobe and its displacements within this
average respiratory cycle is visualized. Note that here, we synthesize a semantic
and non-linearly captured respiratory cycle of a shape, where we do not simply
vary the most dominant principal component of the motion model. Thus, for each
patient we can generate an average respiratory cycle e.g. for planning. While the
source 4DMRI has a framerate of 2.8Hz the temporal resolution can be arbitrary
high. In this example, 100 samples have been synthesized which corresponds to
approximately 25Hz.

3.2 Motion Model Prediction

In the motion prediction experiment, we simulate a surrogate signal which indi-
cates the depth of the diaphragm measured from the abdominal skin for example
by a 1D US sensor. We define a 1D signal which is generated by a ground truth
model point in the region of the diaphragm. Let s : [0, τ ]→ IR3 be the 3D signal
of absolute coordinates of this point at time point t ∈ [0, τ ]. To get invariant to
the absolute positioning of the patient lets project the signal into its dominant
mode of variation

F [s] = (s− µs)ψ0 + ε, (10)

where µs = 1
τ

∫ τ
0
s(t)dt is the signal mean value, ε ∼ N (0, σε) is additive noise,

which has been set to σε = 2mm and ψ0 is the orthonormal eigenfunction corre-
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Fig. 3: Evaluation of the average prediction error for each patient specific exper-
iments, where θ1 = 5, 700 training samples have been picked and 210 tests have
been performed.

sponding to the largest eigenvalue λ0 of the equation
∫ τ
0

cov(si, sj)ψ0(si)dsi =
λ0ψ0(sj). Here, cov is the covariance function of the signal s.

In this evaluation, we show the motion prediction performance of our method
given the simulated signal F [s]. For each volunteer, we generated a leave-one-out
(L1O) motion model, where only motion samples from the other volunteers have
been considered. 99.9% of the variance has been kept yielding L1O-models of
20 to 22 principal modes. Note that for each sample, we additionally computed
F [s] for the later usage as an attribute (Equation 10).

For the Gaussian process regression, we randomly picked 8 000 F [s]-attributes
resp. ground truth coefficient vector pairs, again only from the other volunteers.
We manually optimized the parameters and used θ1 = 3, while the exact value of
θ0 = 5 000, had only minor influence to the prediction performance. In Figure 2,
for each volunteer the average prediction error is plotted. The prediction error
is robustly kept below 5mm, whereas the median stays around 2 to 3mm. For
radiotherapy these are reasonable error bounds.

We compare our method to [7] where the simulated 3D point signal s serves
as surrogate data. The prediction is performed by estimating the mean of a
statistical motion model which is conditioned on s [1]. For a fair comparison,
we added to s an isotropic Gaussian noise N (0, σε/

√
3). The conditional model

performs equally well, while it better generalizes in the experiment with volunteer
7 and 9. Certainly, our model with only 9 volunteers is not capable to generalize
to the respiratory motion of these two subjects. This can be confirmed when
comparing to the results with patient specific models (Figure 3). Here, for each
volunteer, we built a motion model where only samples from the volunteer of
interest are considered. For the regression, 700 attribute/coefficient pairs have
been randomly picked and we adjusted θ1 = 5. For all volunteers including for
volunteer 7 and 9, the average error has been considerably improved to less than
1mm. In Figure 1 on the right, a patient specific average respiratory cycle is
plotted for a comparison to the population mean cycle.
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4 Conclusion

We have presented a new method for organ motion compensation based on a
statistical motion model, in which the surrogate data can be independent of the
model’s topology. The major novelty of our method is the non-linear regression
of the surrogate data and the model parameters. Although already a simple
Gaussian process model yields reasonable results the potential of our method is
far from being exhausted. The regression is not limited to one attribute and will
gain robustness and precision with additional surrogate sources as e.g. 2D US
data. Further, we will investigate more complex and combined covariance func-
tions and a full Gaussian process inference to obviate parameter selection. In
the experiments, we have shown a reasonable prediction performance using pop-
ulation based models. The generalization of the respiratory motion was further
improved by a patient specific regression as shown in the last experiment.
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Abstract. Accurate localization and tracking of moving targets is one
of the major challenges faced today during high-precision radiotherapy.
Typically, the position of the treatment target is either determined us-
ing infrequent X-ray images or cone-beam CT scans. A totally different
approach currently under active development makes use of ultrasound
imaging to continuously track the target region. We have evaluated a
robotized setup where Microsoft’s Kinect v2 sensor is used to localize the
patient and specific ultrasonic view ports previously defined in the plan-
ning CT. The setup is validated using an anthropomorphic torso phan-
tom and four predefined view ports (apical and parasternal echocardio-
graphy, liver sonography, suprapubic prostate sonography). The Kinect
sensor and an optical tracking system (used to determine the position of
the torso phantom) were calibrated to the robot using the QR24 hand-
eye calibration algorithm. Then each view port was approached fifteen
times from different directions, showing that the accuracy achievable is,
on average, approximately 2.1 cm. This number can mostly be attributed
to the difficulty of obtaining accurate calibration of the geometric rela-
tionship between the robot and the Kinect sensor. It was observed that
the Kinect sensor system suffers from substantial distortion in the cen-
timeter range, severely compromising the accuracy of the whole setup.

1 Introduction

To compensate for tumor movements and thus to minimize the injury of healthy
tissue is the aim of today’s robotized radiation therapy systems like the Cy-
berKnife. These systems would greatly benefit from developing a method for
non-invasive live tracking of tumors. Given that the only currently existing such
method relies on live monitoring using fluoroscopy [12], the need to come up
with an approach not relying on ionizing radiation is evident. In recent years,
there have been multiple studies on using ultrasound for target localization dur-
ing radiotherapy; see for example [3,11]. These approaches, however, all lack one
important feature: it is implicitly assumed that the robot can find the target or
that it is guided to the target manually. In reality, this approach is not feasible: it
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might be necessary to automatically position or re-position the robot during de-
livery because the arm may obstruct the treatment beam path for certain beam
directions. Consequently, a fully autonomous setting for transducer placement
would be the ultimate goal. In this work, we present an approach to dynamically
locate the patient during treatment using a spatial sensor (Microsoft Kinect v2)
mounted to the tool flange of an industrial robot (Adept viper s850). This mount-
ing is envisioned to be in parallel to an ultrasonic transducer also attached to
the tool flange. Clearly, this setup now requires knowledge about spatial trans-
forms describing the geometric relationship between the individual components,
being the robot, the ultrasonic transducer and the spatial sensor. More specifi-
cally, these transforms need to be known with varying degrees of accuracy: The
transform from the patient’s body surface to the robot coordinate system needs
to be known with medium (centimeter range) accuracy only, since it is expected
that the optimal transducer position needs to be found adaptively by machine
vision and force feedback. In reality, it is not possible to determine this trans-
formation with high (millimeter range) accuracy because it will inevitably be
based on some kind of pre-treatment volumetric scan (CT, MRI or CBCT) and
cannot take body deformation or physiological changes into account. The other
transforms, however, which describe the location of the spatial sensor and the
transducer with respect to the tool flange must be determined with the high-
est possible accuracy (ideally with an accuracy of better than one millimeter).
The accuracy of these transformations will directly affect the capabilities of the
system to reach a defined target position.

2 Material and Methods

To be able to more easily asses the accuracy of patient localization, the ultra-
sonic probe has been replaced by an optically trackable pointing device. This
pointing device is factory calibrated with respect to the tracking system, thus
allowing us to accurately determine the position and orientation of the pointer’s
tip with respect to the tracking system. In a real scenario, it would of course
be required to determine the spatial relationship between the ultrasonic probe’s
transducer surface and the carrying system. This can be done with high accuracy
by following the procedure described in [5]. It was shown that sub-millimeter ac-
curacy can be achieved when the calibration procedure is carried out with the
appropriate care.

2.1 Robot-to-Ultrasound (Pointer) calibration

In a first step, the transformation between the robot’s effector and the tip of
the pointing device ETM has to be determined. Here, a matrix of type ATB

describes the homogeneous transform from the coordinate system A to the coor-
dinate system B. In our setup, E stands for effector, i.e. the coordinate system
at the robot’s tool flange. This transformation matrix can be readily obtained
by using any of the many algorithms available for hand-eye calibration [6,10,13].
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Fig. 1: Calibration and evaluation setup of our experiment

We use the QR24 algorithm for hand-eye-calibration, see [7], since it also takes
imperfections of the tracking system into account. This algorithm not only de-
termines the transformation ETM but also the transformation RTTC , i.e. the
transformation from the robot’s base coordinate system R to the tracking cam-
era’s base coordinate system TC. This calibration is carried out by moving the
robot to multiple random poses (n ≥ 30) within a sphere while the position of
both the robot’s effector Mi and the tracked marker Ni is recorded. The result-
ing equation systems of the form Mi · ETM = RTTC ·Ni, i = 1, . . . , n, can then
be solved for the unknown transformation matrices. These transformations are
conceptually shown in Figure 1.

2.2 Robot-to-Kinect calibration

To calibrate the Kinect v2 sensor’s internal coordinate system with respect to
the robot’s effector, the same algorithm is used. Note, however, that in this case
the calibration process is an eye-in-hand calibration since the Kinect sensor is
mounted to the robot’s flange. A custom-built tracking phantom (see Figure 2,
(c)) is used as the marker object required for calibration. A ground truth for
the geometry of this object was obtained from a CT scan (Siemens Somatom
Balance; 1mm slice thickness, 0.59mm in-plane resolution). Then the surface of
the phantom was extracted from the CT data (visualized in Figure 2, (d)) and
was consequently used as a template for ICP-based registration [2] to the point
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(a) (b)

(c) (d)

Fig. 2: A photo of the anthropomorphic phantom (a) and its CT data (b). The
calibration tool for the Kinect sensor (c) and the corresponding CT data (d).

clouds delivered by the Kinect sensor. In the same way as for the tracking camera,
the QR24 calibration algorithm was performed on multiple measurements of the
static phantom from different robot poses.

2.3 Coordinate transformation CT-to-Tracking camera

To be able to accurately determine the overall accuracy of the system, we used
an anthropomorphic torso phantom, see Figure 2, (a). An optically trackable
active marker device (IR LEDs) was rigidly attached to the torso phantom. This
marker was also detectable by the same tracking camera as the pointing device
used to mimic the ultrasound probe. A surface point cloud of the torso phantom
was again extracted from a CT scan (same protocol as before). A ray casted
rendering of this scan — also showing the attached marker device — is given in
Figure 2, (b). The CT data was also used to determine the relationship between
the LEDs of the marker device and the phantom’s surface.

2.4 Definition of ultrasonic view ports

To determine the accuracy achievable with this setup, four patches representing
typically used ultrasonic view ports (two echocardiographic ports, a liver port

108



and a suprapubic prostate port) were selected as target templates from the torso
phantom’s CT point cloud. These patches are shown in Figure 3. Using the
approach described in [4], these view ports can be determined from the planning
CT data. An example is given in Figure 4.
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Torso surface points from CT data

Region 1: Parasternal echocardiography

Region 2: Apical echocardiography

Region 3: Sonography of the liver

Region 4: Suprapubic sonography of the prostate

Fig. 3: The four patches used to test the registration and calibration accuracy

Fig. 4: View port determination based on the planning CT. Left: manual target
definition (red sphere). Right: Quality of ultrasonic view port (blue). The darker
the color, the better the visibility of the target becomes. Optimal view port is
shown in red. Figures from [1].
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Fig. 5: The translational point-to-point Mean Absolute Error in [mm] based on
fifteen localization approaches and four view port patches.

3 Results and Discussion

To evaluate the overall accuracy, we compared all points in the preselected view
port patches inside the reference CT (used as ground truth), to the position
of the corresponding patches after being registered by ICP to the point cloud
coming from the Kinect sensor (see Figure 1). In fact, all points in a single patch
in the reference CT have their corresponding points in the registered planning
CT. Hence, in case of perfect calibration and tracking of the Kinect, these two
patches would be exactly superimposed, but are practically not. We calculated
the point-to-point translation and rotation error based on fifteen initial patient
localizations for four different view port regions. To determine the translation
error, we used the Mean Absolute Error (MAE) with a point-to-point corre-
spondence. The rotation error was calculated by using the Horn algorithm [8]
for determining the transformation between two corresponding point clouds (in
this case, the two patches). The calculated rotation matrix was then converted
into the axis-angle representation to obtain the rotation error in one axis. In Fig-
ure 5, we can see that the MAE point-to-point translation error varies around
a mean of 21.6mm with a maximum of 32.1mm (Region 2) and a minimum
of 9.5mm (Region 4). Figure 6 shows the results for the rotation error with a
mean error of 21.8◦, a maximum of 23.9◦ in Region 3 and a minimum of 21.0◦

in Region 1.

4 Conclusions

Clearly, the results obtained are not perfect: even under the initial assumption
of the Kinect sensor being a consumer product – and thus probably not perfectly
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Fig. 6: The Mean Absolute rotation error in [◦] based on fifteen localization
approaches and four view port patches.

calibrated – and its limitations (noise, resolution, etc.), we had hoped for better
results. Nevertheless, the results obtained are acceptable and useable in so far
that exact positioning of the ultrasonic probe is not really needed. As stated
before, the scanned patches will always be registered to a surface extracted from
a planning CT scan taken days (or even weeks) before treatment. Additionally,
the patient will not necessarily stay in the exact same position, resulting in
deformation of the skin surface. Furthermore, as can be seen in Figure 4, a
typical view port is not exactly small and it is not required to perfectly place
the transducer. Fully automatic systems will also incorporate machine vision
methods and force adapting strategies to improve the image quality (see, for
example, [9]). Of course, there is a potential risk of unwanted collisions between
probe and patient, but since robotized ultrasound is partially based on force-
servoing, there exist several features to avoid this complication [9].

During our experiments, it was observed that the Kinect’s reconstruction of
a planar surface (lab floor) deviated substantially from the expected. When the
scanned plane (about 1.2 by 0.5m) was aligned to the coordinate axes using
PCA, the z coordinate exhibited a strong distortion, where the top part of the
plane was displaced by as much as two centimeters relative to the bottom part
of the plane. Considering these findings, the following points will have to be
analyzed in future works:

– What is the quality of the intrinsic calibration of the Kinect v2 sensor?

– Is there a nonlinear behavior on the depth values reported by the sensor?

– Can calibration of the spatial relationship between the Kinect sensor and
the robot be improved by additionally incorporating information from the –
currently not used – color image?
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Assuming that these questions can, at least in part, be solved, it is expected
that the registration accuracy of the setup presented will fall considerably.
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Abstract. Rotational radiotherapy treatments such as volumetric mod-
ulated arc therapy (VMAT) can have superior overall quality while hav-
ing shorter delivery time with respect to conventional intensity mod-
ulated radiotherapy (IMRT). As with conventional treatments, intra-
fractional tumor motion is a major source of uncertainty in dose appli-
cation. To ensure full tumor coverage the planning target volume (PTV)
margins are enlarged. Tumor tracking using intensity based 2D/3D regis-
tration can reduce uncertainty and would enable margin reduction. The
challenge for full arc rotational treatments is the poor tumor visibility at
certain irradiation angles. In this work we investigate the feasibility of
tumor tracking in VMAT treatments with partial arcs where the tumor
is well visible. For three patients, we determined for which subset of an-
gles it was possible to track the tumor using raw projections from CBCT
acquisition. We then generated VMAT plans with the obtained partial
arcs. Full arc VMAT plans were used as benchmark. For all cases is was
possible to track the tumor in two arcs of about 90 degrees, typically
with imaging around anterior-posterior (AP) or posterior-anterior (PA)
projections. The plans with the partial arcs were clinically comparable to
the plans with full arc in terms of target coverage and OAR sparing. The
results indicate the feasibility of partial arc VMAT treatments with tu-
mor tracking. Based on this we will investigate generation of plans with
reduced PTV margins. These treatments could be delivered by gating
the LINAC beam if the tumor motion exceeds a certain margin.

Keywords: 2D/3D registration, motion tracking, radiation therapy, VMAT

1 Introduction

In radiotherapy, rotational treatments such as intensity modulated arc therapy
(IMAT) or volumetric modulated arc therapy (VMAT) have shown superior
overall quality while treatment times are shorter [3]. As with conventional treat-
ments, intra-fractional tumor motion remains as one of the main challenges to

113



solve. The uncertainty due to tumor motion imposes an enlargement on the
planned target volume (PTV) in order to assure sufficient dose delivery to the
tumor to achieve local control [9]. The PTV enlargement typically leads to in-
creased dose delivery to organs at risk (OAR). In the case of lung tumors, the
target site of this work, the main cause for motion is breathing. But, depending
on the tumor location heartbeat can also contribute.

Continuous efforts to manage tumor motion have been made especially in
the last decade. Management can be done by tracking the tumor position during
treatment in order to reduce the uncertainty. Among the different approaches
for tumor tracking, purely intensity based 2D/3D registration [11] using x-ray
images acquired intra-fractionally is a feasible approach. This technique can deal
well with both periodical and non-periodical motion patterns in conventional
SBRT treatments [8][7]. However, results for this technique are for the time
being limited to specific imaging angles. Investigation at tumor tracking for
different gantry angles is underway [13] but early results suggest that for many
cases there are imaging angles where tumor tracking will not be possible due
to poor visibility. This would limit the applicability of 2D/3D registration for
rotational treatments as typically they consist of a full arc rotations around
the patient. Tracking approaches using implanted fiducial markers [5] are very
successful and have therefore been investigated for VMAT treatments as well
[1]. But, implanting markers in the lung has associated complications [4].

In this work we investigate the feasibility of performing partial arc VMAT
treatments for lung cases using markerless real-time 2D/3D registration for tu-
mor tracking. The partial arcs consist of the angle intervals where the tumor
is well visible and therefore tracking is possible. To assess the feasibility of tu-
mor tracking we used x-ray projections acquired for CBCT reconstruction of the
patients under treatment. The projections form a basis for assessing the angle
intervals where tracking is possible. Based on individual patient findings, partial
arc treatment plans were generated and their clinical relevance compared to a
regular full arc VMAT plan. Our aim is to create partial arc treatment plans with
reduced PTV margins and to deliver treatment with the tumor under constant
monitoring.

2 Materials and methods

2.1 Image datasets and Image preprocessing

For this investigation we used data from three patients undergoing hypo-fractionated
SBRT treatment at our hospital. Each patient was treated with 3 fractions. As
a routine at each fraction, a cone beam CT (CBCT) is acquired for the purpose
of daily patient positioning. This setup step is well established and guarantees
that during treatment, uncertainties in tumor location are typically only due to
breathing or heartbeat.

Each of the CBCTs is reconstructed from 657 planar kV x-rays. These x-rays
are the ones used in our study. The diaphragm position was manually annotated
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in each of the projections and is the basis for deciding when the tumor was
correctly tracked or not.

Tumor visibility depends on the x-ray path through the body. Therefore,
for optimal tumor tracking the image intensity settings have to be adjusted as
a funtion of each projection angle. An automatic intensity adjustment method
based on contrast maximization in the PTV region was used [6]. As an exam-
ple, figure 1 shows CBCT projections for 12 different gantry angles which are
automatically intensity adjusted based on this method.

For creating the new VMAT plans, we used the conventional planning CT
which has all the target volumes and organs at risk (OARs) delineated. Both
the full and partial arc VMAT plans were generated using these CT datasets.

-179 -153 -125 -97

-69 -42 -14 14

42 69 97 125

Fig. 1. Illustrative set of x-ray projections obtained during CBCT acquisition for pa-
tient 2. The figure shows 12 projections with the angle indicated. All images were
automatically intensity adjusted to maximize contrast around the tumor region. The
tumor is well visible in projections around the AP or PA directions (angles -153, -125,
-97, -69, 42, 69, 97) and not well distinguishable in the other angles.
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2.2 2D/3D registration

Intensity based 2D/3D registration is an optimization process which aims at
finding the spatial transform for a volume dataset of the patient that generates
a digitally reconstructed radiograph (DRR) that best matches a real x-ray image
acquired during treatment.

The first step of the registration consists of generating an initial DRR from
the planning CT. The planning CT is initially aligned by 3D/3D registration to
the CBCT volume. The initial transform for the first DRR is defined automat-
ically by using the imaging angle for each of the CBCT projections. The DRR
is then compared to the CBCT projection by means of a merit function. An
optimizer iterates through the previous steps (new DRR and merit calculation)
searching for the rigid spatial transformation T with the highest similarity be-
tween the DRR and the x-ray. The final translational and rotational parameters
(tx, ty, tz, ωx, ωy, ωz) represent the tumor displacement.

The registration was limited to a region-of-interest (ROI) defined as the pro-
jection of the PTV on the x-ray images. We selected this ROI mainly because
this is the area where we want to track motion and where this motion is assumed
to be rigid as our method does not account for deformation. One advantage of
using a small ROI is also that rendering a smaller region is much faster.

DRR generation is the most time consuming step therefore we used ray-
casting implemented on a general purpose graphics processing unit (GPGPU).
We used normalized mutual information [10] or stochastic rank correlation [2]
as merit functions. We used the NEUWOA algorithm proposed by Powell [12]
for the optimization.

2.3 Evaluation methodology

The evaluation consists of two steps. The first step is to determine the angle
interval for which the tracking is feasible. This was done by applying the 2D/3D
registration for each of the CBCT images and comparing the obtained results
with the annotated diaphragm motion. The range of angles where tracking is
possible was determined to be the range where the correlation of tracking and
annotated motion is good. This was determined by visual inspection of the plots
shown in Figure 2 and by cross checking with inspection of the CBCT images.

The second step is the creation of a VMAT plan for the partial angle arcs
where tracking is possible. Since the kV images are acquired with a fixed 90
degree angle in relation to the treatment beam (gantry), the angle arcs used
for planning are perpendicular to the imaging angles. The generated plan is
then compared with a clinically "conventional" full arc VMAT plan. If the the
partial arc plan fulfills the clinical requirements for the given treatment it is then
considered accepted.

3 Results

Table 1 summarizes the tracking results for all three patients. For all cases, two
arcs were defined with the angle intervals where the tumor could be tracked.
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The angles were always with imaging roughly around anterior-posterior (AP)
and posterior-anterior (PA) directions. The table shows for each patient, the
angle interval for imaging around AP, the interval for imaging around PA and
the total angle range for which imaging is available. All but one of the partial
arcs are over 90 degrees and the total range of angles where tracking is possible
exceeds 180 degrees for all three patients. Figure 2 shows for each patient plots
of the full tracking sequence from the CBCT projections which was used to
determine the arc ranges. Finally, figure 3 shows the obtained plans for full arc
(left) the partial arcs (middle) and the corresponding DVHs (right). As it can
be seen, the DVHs of the full and partial arc plans are comparable in terms of
both target coverage and OAR sparing. The dose distributions for the partial
plans are in general acceptable though for patient 1 there is an increase of low
dose to the heart which should be better investigated.

Angles (deg) Total (deg)
Patient AP PA

1 -136 -25 32 155 234
2 -160 -65 20 108 183
3 -141 -48 52 149 190

Table 1. Summary of the angle intervals for which tumor tracking was possible. For
each of the patients two arcs were obtained, one around the AP and the other around
the PA directions. For these two partial arcs, the minimum and maximum angle where
tracking was possible is indicated. The last column shows the total angle range.

4 Discussion and Conclusions

The results obtained in our study suggest that it is clinically feasible to perform
VMAT treatments with partial arcs where tumor imaging is possible.

In terms of tumor tracking feasibility, in all cases the total range of angles
where imaging is possible exceeded 180 degrees that is, equivalent to over a half of
a full arc. The imaging angles are always around the AP or PA directions which
is to be expected as this is the direction where the heart or other structures
within the mediastinum are not occluding the tumor.

During actual treatment, scatter from the treatment beam will have a nega-
tive effect on the kV images so they will actually contain more noise than these
CBCT projections. Nevertheless, in our previous work, the same scatter was
present when using simultaneous kV-MV acquisition but the additional noise
had a small impact on tracking accuracy [7].

The treatment plans that were generated based on the tumor visibility show
DVHs which are clinically acceptable. The dose distributions however need to
be closely analyzed. In the case of patient 1, there is an increased low dose
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Fig. 2. Tumor tracking in the full range of 360 degrees (657 CBCT x-ray projections).
The tracking results (blue line) are compared to the annotated diaphragm motion
(dashed black line). The angles where the tumor could be tracked is shown in green.

delivered to the heart. Since there is no contour of the heart on this dataset
(as it was not considered an OAR for the SBRT planning), is was for the time
being not possible to evaluate the amount of delivered dose. With a contour
it would be possible to optimize treatment planning to minimize the dose. For
this and subsequent cases, relevant organs will be additionally delineated and
used as constraints in treatment planning. In all three cases higher doses were
observed close to the spinal cord. Though the study is promising, these plans
have to be considered as preliminary and need careful plan optimization and
clinical validation by a radiation oncology expert.

In terms of clinical implementation, tracking the tumor position in the CBCT
projections was done retrospectively and can therefore be seen as a planning step.
The tracking method used was the same which is to be used intra-fractionally
which means that as long as there are no important anatomical changes, the
tumor can be tracked during treatment for the same angles. In terms of workflow
this means that for each patient, a partial arc and a full arc plans would be
generated and the decision of which one to use would be based on the CBCT
acquired immediately before treatment.
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Fig. 3. Comparison of full arc VMAT (left) partial arc VMAT (middle) dose distribu-
tions and corresponding DVHs (right) for the three patients in the study.

Also, in a clinical scenario, imaging and registration latency will have to be
taken into account. The imaging latency could be up to a few hundred millisec-
onds while one registration takes slightly less than 100 ms. This means that
a motion prediction scheme will have to be used to estimate the true tumor
position at a given time.

The method shown here is dependent on the availability of a CBCT prior
to irradiation. CBCT is commonly available as it is used for patient setup. In
cases where it might not be available, an alternative approach could be used.
The planning CT can be used to generate DRRs in the full 360 degree arc. These
DRRs could then be the base to asses on which angle arcs tumor tracking would
be possible.

The final aim will be to create treatment plans with reduced PTV margins.
As the tumor position will be known during treatment, margins can be reduced
and the plan delivered as long as the tumor moves within the expected limits. If
this is not the case, the beam can be turned off until the tumor position is again
within limits. In the future, the dosimetric benefits of margin reduction have to
be weighted against the additional dose burden imposed by kV imaging and the
additional planning time required to implement this approach.

Despite the preliminary nature of these results, they represent a very positive
indication that tracking during VMAT treatments is feasible, bringing the benefit
of shorter delivery times, high conformal dose distributions and reduced margins.
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Abstract 

The aim in this study is to develop a generalized strategy for 3D dose verification of 

IMRT and VMAT planes using EPID transit images in combination with Monte Carlo 

(MC) simulations. An EPID-based dosimetric verification procedure was developed to 

convert EPID-measured transit images into 2D exit photon fluence by de-convoluting 

with the MC-simulated EPID response kernels. The present scatter from the phantom to 

the EPID was iteratively corrected by using a series of pencil beam scatter kernels derived 

from MC simulations. The primary fluence is therefore yielded by subtracting the cor-

rected scatter from the total reconstructed exit fluence and used to reconstruct the dose 

distribution in multiple 2D planes parallel to the EPID by convoluting with the pencil 

beam deposition kernels. After summing up all the reconstructed 2D dose planes, the 3D 

dose distribution is obtained. The EPID-based dosimetric system was validated using 6 

MV photon beam available from Varian TrueBeam STXTM. The results show that the 

EPID-based dosimetry system developed in this study is an accurate and robust tool for 

dose verification of IMRT/VMAT plans. 

 

Keywords:   
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1 Introduction  

With more than 1.6 million new diagnoses of cancer and over one-half million projected 

to die of cancer in 2013, in the U.S. alone, almost 1,600 people died per day and cancer 

has been becoming a major health problem [1]. Radiation therapy (RT) is a major mo-

dality in cancer treatment and approximately 60% of all cancer patients in the U.S. 

receive RT as therapy or for palliation as an adjunct to surgery or chemotherapy. Over 

past two decades, intensity-modulated radiation therapy (IMRT) and volumetric-mod-

ulated arc therapy (VMAT) have become the mainstay for treating different types of 

cancers because of its capability of producing highly conformal dose distribution [2-9]. 

Practically, IMRT is composed of 5 to 10 radiation beams, with the intensity of each 
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beam modulated by a computer-controlled dynamic movement of a multi-leaf collima-

tor (MLC). In a VMAT delivery [10-12], the position and speed of MLCs, and the 

gantry rotation vary dynamically [13]. While IMRT or VMAT offers a valuable tool 

for enhancing the therapeutic ratio and shows significant potential for improved sur-

vival and treatment outcome, their treatment planning and delivery are more technically 

involved and prone of errors due to dramatically increased complexity of the process.  

It is widely recognized that the efficacy of IMRT/VMAT can only be fully exploited 

with an effective quality assurance (QA) procedure to ensure the safe and efficient de-

livery of the exquisite dose distributions. However, current IMRT/VMAT QA proce-

dure is labor intensive and inefficient. Moreover, it is unsafe and may lead to wrong 

conclusion as the measurement data are collected on one or two 2D planes, instead of 

3D volume. The objective of this study is to develop a clinically practical 3D pretreat-

ment dose verification for rapid IMRT and VMAT QA using a high spatial-resolution 

and high frame rate a-Si EPID  and transit images in combination with Monte Carlo 

(MC) simulations. 

2 Materials and methods 

2.1 The portal electronic portal imaging device 

The EPID used in this study is a standalone portable PerkinElmer XRD-0822 AP20 a-

Si flat panel detector (PerkinElmer, Sunnyvale, CA). The size of detector was 20.48 × 

20.48 cm2, with a matrix of 1024 ×1024 pixels and a minimum pixel size of 0.2 mm. 

Its maximum frame rate is 50 frames per second (fps).  The images were acquired in a 

“cine-mode” and a PerkinElmer image acquisition software XIS (version 3.0, Perki-

nElmer, Waltham, MA) was used to acquire and process all the EPID images. Meas-

urements were performed on a Varian TrueBeam Stx Linac (Varian Medical Systems, 

Palo Alto, CA) for 6 MV photon beam. A source to detector distance (SDD) of 130cm 

and source to axis distance of 100cm were used. The thickness of the water-equivalent 

slab phantom was set to 20 cm and was positioned at the iso-center of the linear accel-

erator. 

2.2 Corrections of the EPID raw images 

Before images acquisition, a dark field (DF) image and a flood field (FF) image were 

acquired for offset and gain corrections. The offset correction took into account the 

dark current of each pixel and acquired with photon beam off.  In order to create the 

offset correction image, an averaged image (EPIDDF) of 300 frames of DF images had 

to be acquired and would be subtracted from the incoming pixel data during acquisition 

time. To homogenize differences in pixel sensitivities, an FF gain correction was car-

ried out by irradiating the EPID with the incident photon beam fully covering the entire 

detector sensitive field (20×20 cm2). To create the FF image, an averaged image 

(EPIDFF) of 300 frames of offset-corrected images has to be acquired. Each EPID-

measured raw image is corrected by using the following equation: 
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EPIDraw|corrected=
EPIDraw-EPIDDF

EPIDFF-EPIDDF
  (1) 

2.3 EPID images to incident fluence conversion kernel 

To determine the incident photon beam fluence, it was necessary to simulate and cali-

brate the EPID device to establish a relationship between EPID pixel values and radia-

tion dose. Detailed structure and composition of the EPID were provided by the manu-

facturer and were modeled using the GATE (Geant4 Application for Tomographic 

Emission) [14] to generate a deconvolution kernel Kde(x, y). The incident photon flu-

ence Φ𝑀(x, y) on the EPID can thereafter be reconstructed from the corrected EPID 

raw image using the flowing equation: 

 Φ𝑀(x, y) = (EPIDraw|
corrected

(x, y)) ⨂−1(Kde(x, y) ) (2) 

2.4 Scatter prediction kernels 

When the EPID was placed close to the phantom, a large amount of scattered radiation 

is incident on the EPID surface. Therefore, the EPID-measured transit fluence (Φ𝑀) 

behind a slab phantom comprises primary Φp (un-scattered) and scattered contribution 

(ΦS), that is 

Φ𝑀= Φp + ΦS (3) 

In order to reconstruct the dose distribution with the phantom using the transmit im-

ages Φ𝑀, those scatter must be removed firstly.  

 

MCNPX [15] was used to produce a series of MC scatter kernels, which allows scatter 

fluence predications from uniform water slab phantoms exposed to a divergent beam. 

It simulates a pencil beam impinging upon a slab phantom from divergent angels sep-

arately. The phantom is water-equivalent with a thickness of 20 cm. The scattered ra-

diation present in the EPID surface was estimated point-by-point with the MC-

generated pencil beam scatter kernel and was iteratively scatter-corrected using the MC 

simulated scatter kernels which give the primary fluence Φp at the plane of the EPID.  

2.5 Dose deposition kernels  

The extracted primary fluence at the EPID plane is scatter-corrected and converted to 

2D dose distributions within the phantom in multiple planes parallel to the EPID. By 

summing up the 2D dose planes, the 3D dose distribution is obtained. A series of pencil-

beam dose kernel Kpb(x, y) was simulated using the MCNPX code at different depths 

of the slab phantoms for the dose reconstruction. 
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3 Results 

A de-convolving dose kernel Kdp(x, y) was generated from GATE MC simulations 

with the consideration of the MV photon dose deposition in the EPID screen, the optical 

photon creating and scattering process, as shown in Fig.1. The incident photon fluence 

on the EPID was therefore reconstructed from the corrected EPID raw images. 

 

Fig. 1. The GATE generated kernel used in de-convolution of EPID-measured raw images to 

incident photon fluence.   

Fig.2 shows an example of MCNPX simulated scatter prediction kernel. During the MC 

simulation, two separated tallies were simultaneously used to record the fluence from 

scatter only and primary plus scatter on the EPID plane. 
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Fig. 2.  An example of MCNPX simulated scatter prediction kernel used to remove the scatter 

from the reconstructed transit fluence. 

 

Fig.3. shows the simulated Kpb(x, y) of pencil beam used in the dose re-

construction. 

 

 Fig. 3. The MCNPX generated dose kernel used in the dose reconstruction  
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To evaluate the performance EPID dosimetry system on photon beam applications, the 

absolute 2D dose distribution of square fields of 4×4 to 15×15 cm2 fields were tested 

firstly against water scan results and PTW729 ion chamber array measurements, as 

shown in Fig.4. 

 

Fig. 4. Water-scan, PTW729, and EPID-measured dose profiles 

To further validate the EPID measurement, one typical patient-specific case was deliv-

ered and compared with TPS calculation. Overall, as shown in Fig.5., the comparison 

data showed good agreement for both cases. EPID measurements vs TPS calculation, 

the γ-index pass rates were greater than 99% for criterion of 3%/3mm in the selected 

dose plane.  

  

Fig. 5. Isodose line overlay of EPID measurements with TPS calculation and in-plane profiles 

of EPID and TPS calculation for the tested patient case. 

0

0.2

0.4

0.6

0.8

1

1.2

-100 -50 0 50 100

R
e
la

ti
v
e
 D

o
se

Off axis position (mm)

6MV WFF
Water scan

EPID

PTW729

0

1

2

3

4

-100 -50 0 50 100

D
o

se
 (

G
y
)

Off-axis distance (mm)

In-Plane Profile

TPS

EPID

126



4 Conclusions 

We have developed a generalized procedure for dose verification of IMRT and VMAT 

using EPID transit images in combination with MC simulations. It provides a viable 

solution to the unmet need for a 3D dosimetric tool for IMRT/VMAT plan validation 

and for a number of intractable dosimetry problems, such as small fields and fields with 

high dose rates. 
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Abstract. A preliminary simulation of MRI sequences to derive a 4D MRI phan-

tom for abdominal organs is presented, with the aim of providing a framework 

for the evaluation of MRI-guided methods in external beam radiotherapy. Specif-

ically, we propose an extension of the 4D NCAT phantom including tissue pa-

rameters obtained via T1 and T2 DESPOT sequences, the simulation of dedicat-

ed abdominal MR sequences such as VIBE and TrueFISP, the modeling of radio-

frequency coil response and noise followed by k-space sampling and image re-

construction. Analysis of tissue parameters and reconstructed images were per-

formed to show the robustness of the implemented phantom. 

Keywords. 4D MRI phantom, abdominal MRI, MRI reconstruction 

1 Introduction 

Over the last few years, there has been growing interest in the use of Magnetic Reso-

nance Imaging (MRI) in image guided radiotherapy [1,2]. Due to the absence of ioniz-

ing radiation and increased soft tissue contrast relative to Computer Tomography (CT), 

MRI is an attractive technology for target definition [2]. Moreover, it has sufficient 

temporal resolution to study organ motion due to respiration [3]. Early studies investi-

gating the use of MRI in treatment planning for organ motion quantification mainly 

followed cineMRI approaches [4,5], in which few slices are acquired allowing the 

description of a significant amount of breathing cycles. New four-dimensional MRI 

(4D MRI) retrospective sorting methods were also proposed to provide volumetric 

information of respiratory motion [6,7]. These features of MRI motivated also several 

recent technological developments towards the integration of MRI with radiation ther-

apy treatment units, raising the prospect of fully MRI-guided treatments [8].  

A standard approach to validation is the use of acquired in-vivo images as ground 

truth [9], which are not always available. In 4D MRI sorting, for example, a full resolu-
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tion 4D MRI cannot be obtained due to limited spatial and temporal trade-offs. Other 

solutions involve scanning MRI-compatible moving-structure phantoms [7,10], which 

do not often reflect the real internal anatomy. An MRI-compatible anthropomorphic 

moving phantom is under development [11], but the use of physical phantoms is gen-

erally limited due to their cost and the lack of flexibility to mimic the range of motions 

encountered in-vivo. Numerical digital phantoms offer a practical approach to evaluate 

and determine optimized methods. Examples have already been proposed for CT with 

the 4D cardiac-torso (NCAT) phantom, which incorporates natural beat-to-beat heart 

rate and respiratory motion variations, and then the extended (XCAT) version [12]. A 

number of MRI simulators have been developed, mainly for application to brain imag-

ing, based on Bloch equations [13,14], but largely neglecting organ motion effects. The 

first implementations of numerical phantoms that incorporate motion in MRI for body 

radiotherapy were based on the extension of the 4D NCAT (and its extended XCAT 

version) by assigning MR properties to each tissue mask. Sharif et al. [15] proposed a 

physiologically improved NCAT (PINCAT) phantom in which the signal intensities 

were modified for MRI application to validate a dynamic MR imaging scheme in real-

time cardiac MRI. In [16], a moving phantom was generated by segmenting cardiac 

images from an in-vivo acquisition by using a random affine transformation to simu-

late motion. However, in these cases a gray level to each tissue signal was also as-

signed, i.e. neglecting specific tissue properties. Wissmann et al. [17] designed a more 

realistic numerical phantom for cardiovascular MRI (MRXCAT) by extending the 4D 

XCAT phantom to MRI. They applied different tissue signal, multiple receiver coils 

and noise models, and selected arbitrary trajectories and undersampled acquisition of 

the k-space for accelerated cine and myocardial perfusion imaging, with specific cardi-

ac MRI sequences. 

In this work, we propose the basis for the construction of a 4D MRI phantom based 

on the 4D NCAT with an approach similar to the one proposed by Wissmann et al. 

[17] but extending the phantom to the abdominal site (abdoMRCAT) to account for 

organ motion due to respiration.  

2 Materials and Methods 

As proposed by Wissmann et al. [17], the phantom 𝑃(�⃗� , 𝑡) is described in k-space 

through a combination of several weighting functions:  

𝑃(�⃗� , 𝑡) = 𝑅 ∙ 𝐹 ∙ [𝑆(𝑁𝑐𝑜𝑖𝑙) ∙ 𝑇(𝑇1, 𝑇2, 𝜌) ∙ 𝐶(𝑇𝐸, 𝑇𝑅, 𝛼) ∙ 𝑂(𝑥 , 𝑡) + 𝑛(𝑥 , 𝑡)] 

where 𝑂(𝑥 ,𝑡) represents the 4D NCAT phantom defined in space and time and 𝑛(𝑥 ,𝑡) 
is the noise model. 𝑇 is the tissue contribution as a function of relaxation times T1 and 

T2 and proton density ρ. The MR sequence is described by the operator 𝐶, which ex-

presses the acquired signal as a function of repetition time TR, echo time TE and flip 
angle α. 𝑆 describes the sensitivity of Ncoil coils. These physical space functions under-
go Fourier transformation 𝐹 and the sampling of k-space 𝑅 is applied to produce the 

raw k-space phantom 𝑃(�⃗� , 𝑡). Once a complete k-space representation has been ob-

tained, image reconstruction of the phantom can then follow via inverse Fourier trans-

formation, as in the case of data sampled during image acquisition. 
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2.1 Tissue parameters 𝑻 and MR sequences 𝑪 

Two pulse sequences that are typically performed in abdominal MRI imaging were of 
interest for this study: (1) a T1-weighted spoiled volumetric interpolated breath-hold 
sequence (VIBE) [18] to acquire a 3D volumetric image in breath-hold and (2) a T2-
weighted balanced steady-state free precession sequence (TrueFISP) [19] used during 

free-breathing to repeatedly acquire fast 2D images able to describe respiratory motion. 
Specifically at steady-state, the signal equations of the two different sequences 𝐶 ap-
plied to each organ mask according to the specific relaxation times T1, T2 and proton 

density ρ values were as follows: 

 (1) VIBE: 𝐶 =
𝜌sin𝛼(1−𝑒

−𝑇𝑅
𝑇1 )

(1−cos𝛼𝑒
−𝑇𝑅
𝑇1 )

𝑒
−𝑇𝐸

𝑇2  

 (2) TrueFISP: 𝐶 = 𝜌sin𝛼
1−𝑒

−𝑇𝑅
𝑇1

1−(𝑒
−𝑇𝑅
𝑇1 − 𝑒

−𝑇𝑅
𝑇2 )cos 𝛼−𝑒

−𝑇𝑅
𝑇1 𝑒

−𝑇𝑅
𝑇2

𝑒
−𝑇𝐸

𝑇2  

The target sequence for in-vivo T1 and T2-weighted acquisitions (Fig. 1) used the 
following parameters (1.5T Siemens Magnetom Avanto): 
- axial VIBE: TR/TE: 4.8msec/1.75msec;  α: 68°; bandwidth: 601Hz per pixel; scan 
matrix: 256x224 pixels with spacing of 1.28x1.28mm; slice thickness of 5mm; acquisi-
tion time: 180msec/slice. 
- sagittal TrueFISP: TR/TE: 2.9msec/1.26msec;  α: 10°; bandwidth: 252Hz per pixel; 

percentage sampling: 70%; scan matrix: 240x320 pixels with spacing of 1.25x1.25mm; 
slice thickness of 4mm. 
The imaging parameters of the acquired in-vivo images (TR, TE and α) were used in 
equations (1) and (2) for the generation of the abdoMRCAT images.  
The dominant properties determining tissue appearance in MR imaging are T1 and T2 
relaxation times and the proton density of the tissue. Proton density values ρ were not 

available for all abdominal organs in the literature [20], whereas relaxation times T1 
and T2 were well defined in different works [21]. Therefore, in a first approach, an 
estimation of ρ (i.e. estimated ρ) was derived from in-vivo T1-weighted (i.e. VIBE) 
and T2-weighted (i.e. TrueFISP) acquisition, by segmenting a region of interest in each 
organ, and deriving ρ from the sequence equations (1) and (2) and performing a mean 
between the two ρ values. However, in order to avoid dependency from other factors 

(such as noise and potential artifacts), specific MRI sequences were acquired to esti-
mate both T1, T2 and ρ values. Driven equilibrium single pulse observation of T1 
(DESPOT1,11 flip angles in the range 3°-45°) and T2 (DESPOT2, 8 flip angles in the 
range 8°-64°) as described in [22] were acquired on the abdomen of one healthy volun-
teer. These acquisitions were used to derive T1-map, T2-map and ρ-map.  
T1, T2 values were compared with the literature and ρ values derived from DESPOT 

acquisition were compared to the estimated values from equation (1) and (2) of in-vivo 
VIBE and TrueFISP (Wilcoxon test, alpha=5%). Differently from Wissmann et al. 
[17], no contrast agent concentration was considered.  

2.2 Coil operator 𝑺 and noise 𝒏 

The effect of the coil sensitivity operator was implemented as proposed by [16], in 

which the phantom signal (𝑇(𝑇1, 𝑇2, 𝜌) ∙ 𝐶(𝑇𝐸, 𝑇𝑅, 𝛼) ∙ 𝑂(𝑥 ,𝑡)) was combined with a 

130



simulated sensitivity map of the coil. The maps were designed as a linear fall-off with 
the sum of squares was equal to 1 and a circular arrangement of the coils around the 
abdomen (Ncoils=8). 
The presence of noise in MRI images was simulated by adding a Gaussian noise in 
order to satisfy the signal to noise ratio of in-vivo acquisitions (SNR=20). 

 

Fig. 1. In-vivo acquisitions. T2-weighted TrueFISP (left) and T1-weighted VIBE (right). Red 

arrows indicate blood. 

2.3 k-space generation 𝑭 and k-space sampling 𝑹 

The image-domain model was transformed to the k-space domain via the discrete Fou-
rier transform. Then, the k-space was sampled according to the sequence sampling 
approach. Specifically: 
- VIBE [18]: the k-space was filled with a 70% sampling factor in the phase encoding 
(PE) directions. The remaining k-space was filled with zeros to provide smaller voxel 

size and maintain short imaging time. 
- TrueFISP [19]: the k-space sampling was based on a generalized auto-calibrating 
partially parallel acquisition (GRAPPA) [23], with the aim to speed up the MRI pulse 
sequence in order to acquire fast slices able to describe the respiratory cycle(i.e. acqui-
sition time ranged from 180msec to 300msec, as proposed in the literature [5]). 
In the GRAPPA algorithm, unsampled k-space lines (i.e. sampling factor = 2, i.e. ac-

quisition of interleaved lines) are synthesized by a linear combination of acquired 
neighboring k-space data (NFE=256 and NPE=256) using spatial information contained 
in the coil elements. The acquisition of additional lines in the k-space center is a form 
of self-calibration (i.e. auto-calibration (AC) lines, Nac=16).  

2.4 Image reconstruction 

Once all k-space (3D for VIBE and 2D for TrueFISP) samples were obtained for a 
particular coil, an inverse Fourier transform was used to generate the uncombined im-
age for that coil. The full set of Ncoils uncombined images can then be combined using 
a normal sum of squares reconstruction [23]. 
Reconstructed images of all respiratory phases were qualitatively compared to in-vivo 
T1-weighted (VIBE) and T2-weighted (TrueFISP) acquisitions. Errors were quantified 

by computing the difference between the reference phantom and the reconstructed 
images. 

in-vivo TrueFISP in-vivo VIBE
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3 Results 

Table I shows the T1 and T2 values reported in the literature and ρ values derived from 
VIBE and TrueFISP equation (i.e. estimated ρ). In addition, T1, T2 and ρ values quan-
tified via DESPOT acquisitions are also reported. Background and air were set to 0. 
Blood was not measured via DESPOT because of flow effects that cannot be compen-
sated with the acquisition.T1 and T2 values derived from DESPOT differed from the 
literature [21] of 28% and 38% on average across tissues respectively, and the two 

populations (i.e. T1 and T2 literature vs. T1 and T2 DESPOT) did not result signifi-
cantly different. The difference between ρ values derived from DESPOT and the ones 
estimated from VIBE and TrueFISP equations was as 37%. No significant difference 
was also observed between these two groups (i.e. estimated ρ vs. DESPOT ρ). Bowel, 
spleen and heart yielded higher estimated ρ values than the ones obtained with 
DESPOT. Values for ρ obtained with DESPOT for liver, spleen and bone were closer 

to literature ones [20] with respect to the estimated ρ. 
Fig. 2 shows the abdoMRCAT images obtained by changing the proton density value 
of blood ρblood by using the estimated blood value from TrueFISP (12766) and VIBE 
(1397) separately and by using the mean of the two acquisitions (7081) for both se-
quences. A comparison with an in-vivo acquisition (Fig.1) shows that in the abdoM-
RCAT with a ρblood specific for each sequence, blood in the heart for the phantom re-

sulted more similar to blood in vessels shown in in-vivo acquisitions (i.e. dark for 
VIBE and bright for TrueFISP) with respect to using the mean ρblood value (i.e. 7081) 
for both TrueFISP and VIBE simulations. 
A quantitative analysis was also performed by computing the error as difference be-
tween the original phantom and the reconstructed one for all the respiratory phases 
(Fig. 3).The error maps showed pronounced edge effects for VIBE, whereas a more 

homogeneous distribution was maintained for TrueFISP. The errors obtained compu-
ting the difference between the original phantom and the reconstructed one were 10% 
and 7% (mean among all the phases) for VIBE and TrueFISP respectively. 

Table 1.Tissue parameters. First and second columns: T1 and T2 values [msec] in the literature. 

Third column: estimated proton density ρ values [a.u.] from VIBE and TrueFISP acquisitions 

(literature values in brackets). Last columns: T1, T2 and ρ obtained from DESPOT maps. 

 T1 [msec] 

literature 

T2 [msec] 

literature 

estimated ρ 

(literature 

value) [a.u.] 

T1 [msec] 

DESPOT 

T2 [msec] 

DESPOT 

ρ [a.u.] 

DESPOT 

background 0 0 0 0 0 0 

air lung 0 0 0 0 0 0 

body  240 85 1198 376 30 1336 

bowel 100 10 1325 122 8 117 

muscle  900 50 3342 825 28 3195 

kidney 650 70 3832 921 40 1972 

heart 1000 20 6150 1032 20 1346 

liver 420 45 2797 (2182) 506 30 2023 

blood 1500 20 7081 - - - 

spleen  1514 65 4968 (2088) 1466 52 1428 

cartilage 1060 35 977 588 16 1100 

bone 732 30 916 (1343) 753 36 1041 
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Fig. 2. Blood proton density. abdoMRCAT with a ρblood value selected in a sequence-specific 

fashion (i.e. 12766 for TrueFISP and 1397 for VIBE) and a mean value approach (7081) for both 

sequences. Red arrows indicate blood. 

 

Fig. 3. Image reconstruction. (A) TrueFISP and (B) VIBE with the original reference MRI phan-

tom, the reconstructed image and the error for both exhale and inhale. 

4 Discussion and Conclusion 

In this work, we describe the basis for the implementation of an abdominal 4D MRI 
phantom by extending the 4D NCAT phantom designed by Segars et al. [12]. A similar 
work has previously been reported in the literature by Wissmann et al. [17] for cardiac 
acquisitions. Our aim was to provide a phantom able to describe respiratory motion of 
abdominal organs in MRI that can be used for validation purposes.  

The tissue parameters T1 and T2 obtained using specific MR sequences (i.e. 
DESPOT1 and DESPOT2) [22] were consistent with the literature [21], supporting 
their use in the phantom. Our acquisitions did not however take into account inhomo-
geneities which are recognized to influence T1 and T2 measurement. Subtle correc-
tions in the T1 and T2 values may therefore be warranted in the future. Proton density 
values for abdominal organs appear to be largely absent from the literature. The values 

obtained from ρ-maps derived from the DESPOT data were compared with estimated 
values extracted from in-vivo T1-weighted and T2-weighted acquisitions (i.e. deriving 
ρ values from equation (1) and (2)): a mean discrepancy of 37% was found, with com-
parable values in all organs, without a significant difference between estimated ρ and 
DESPOT ρ. Spleen, bowel and heart ρ values were over-estimated by in-vivo T1/T2 

abdoMRCAT - TrueFISP
ρblood = 12766

abdoMRCAT - TrueFISP
ρblood = 7081

abdoMRCAT - VIBE 
ρblood = 1397

abdoMRCAT - VIBE 
ρblood = 7081

(A)
TrueFISP

reference image reconstructed image error

(B)
VIBE

reference image reconstructed image error

reference image reconstructed image error

reference image reconstructed image error

exhale inhale
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acquisitions (4968). However for spleen, a lower value was observed in DESPOT 
(1428) resulting more similar to the literature (2088). Also bowel and heart presented 
lower values in DESPOT estimation, however these two organs were difficult to ana-
lyze due to artifacts associated with filling and contraction. Furthermore, we did not 
derive the proton density value for blood as flow effects [24] could not be adequately 
compensated for with the available DESPOT sequences, and in the presence of in/out-

flowing blood, the signal equations (i.e. equation (1) and (2)) are not appropriate for 
the VIBE and TrueFISP signals. Moreover, the magnetization described by the signal 
equations does not include signal alteration due to motion during sampling [17]. In 
addition, steady-state free precession MRI as TrueFISP is a type of gradient echo MRI 
pulse sequence in which a steady, residual transverse magnetization is maintained be-
tween adjacent breathing cycles. Conversely, spoiled gradient echo MRI, such as 

VIBE, is an MRI technique which destroys residual transverse magnetization at the end 
of each excitation cycle. Blood and other fluids may therefore exhibit spoiled contrast 
behavior, even though stationary tissue remains in a steady-state free precession. For 
this purpose, in order to obtain simulations similar to in-vivo acquisitions, we applied 
to blood the specific estimated ρ value obtained via in-vivo T1 and T2-weighted acqui-
sitions, allowing to have dark blood and bright blood in VIBE and TrueFISP respec-

tively, even if blood flow is not adequately accounted for by their signal equations. In 
addition, the reconstruction errors were 10% and 7% for VIBE and TrueFISP respec-
tively, with more errors along the edges being present in the VIBE reconstruction (Fig. 
3) due to a central sampling of the k-space and to a volumetric interpolation in contrast 
to the calibrated and bi-dimensional reconstruction of the TrueFISP acquisition. 
In conclusion, we presented the preliminary steps on the simulation of MRI sequences 

for the construction of an abdominal 4D MRI phantom that can be considered as a 
framework for the validation of MR image reconstruction and quantitative post-
processing approaches to improve organ motion quantification and compensation. 
Furthermore, our work provided also a preliminary quantification of tissue parameters 
including proton density values of abdominal organs. Future works on tissue parame-
ters are needed as MR-based measurements are dependent on sequence used and 

sources of error such as field inhomogeneity. Because a spin’s history of radio-
frequency pulses and relaxation intervals determines the appearance in MRI, a more 
extensive consideration of the object model is required in MR simulations. In addition, 
a deep analysis of the reconstruction effects on the 4D motion will be taken into con-
sideration. Further extensions to the phantom include the incorporation of spin history 
and additional effects such as susceptibility and magnetization transfer. 
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Abstract. The ImagingRing, a novel cone-beam computed tomography
(CBCT) imaging device with independently rotatable x-ray source and
flat-panel detector arms, allows for planar and CBCT acquisitions of
arbitrary regions inside the device’s cylindrical imaging volume. Due to
its special geometry, an adjustment of standard methods for generating
flat-field planar images is required in order to fit the particular geometric
conditions. This work gives an overview of the current implementation
of the flat-field correction pipeline for the ImagingRing as well as an
outlook to further planned improvements for CBCT enhancing quality.

1 Introduction

The ImagingRing [1,2], a cone-beam computed tomography (CBCT) imaging de-
vice, has recently been developed by medPhoton GmbH which is a spin-off com-
pany of the Paracelsus Medical University. This novel device is a couch-mounted
scanner with independently rotatable x-ray source and flat-panel detector arms,
which allow for special use cases in conventional and particle radiotherapy. The
scanner is moveable along the couch to allow for covering all relevant anatomical
regions and the x-ray beam is shaped with a source-mounted 2D collimator. Sup-
porting independent rotations, the ImagingRing is capable of performing planar
and CBCT x-ray acquisitions focusing on arbitrary regions inside the cylindrical
imaging volume. Due to the ImagingRing’s special geometry, an adjustment of
standard methods for generating flat-field planar images is required in order to
fit the particular geometric conditions.

This work gives an overview of the current implementation of the flat-field
correction pipeline integrated in the open-radART ion software suite [4] for the
ImagingRing as well as an outlook to further planned improvements.

2 Methods

The pipeline for flat-field correction of planar images acquired with the ImagingRing
consists of several customized standard methods. In a first step the multi-level-
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gain (MLG) correction is responsible for creating dose-equivalent images by ac-
counting for the non-linear dose response of the flat-panel detector. A subsequent
bad-pixel correction handles outlier intensities resulting from dysfunctional pix-
els or sectors of the detector. Afterwards, the images are oriented in the device’s
imaging coordinate system (ICS) using a flexmap calibration to account for the
gravity-induced flex of the source and detector arms. After successful image ori-
entation, the projections are corrected for the beam fluence of the x-ray source.
Finally, beam attenuation caused by varying incidence angles and source-to-
detector distance (SDD) is accounted for.

2.1 Geometry of the ImagingRing

The basic geometry of the ImagingRing is defined as shown in Figure 1. S de-
notes the position of the x-ray source focal spot and R denotes the flat panel
detector image origin. The unit vectors v1 and v2 depict the detector row and
column orientation vectors, respectively. The mechanical isocenter (ISO) is dif-
ferent from the virtual axis of rotation N . The SDD measured from S to the
detector center C usually cannot be considered constant, due to the possibility of
independent rotations for imaging a region around an arbitrary point N . Even
in an opposite position, where the isocenter is on the line between S and C,
v1 is not perpendicular to this line to enable for large-field-of-view CBCT ac-
quisitions. Hence, for simplification of post-processing (e.g. reconstruction) the
images are projected on a consensus plane which is perpendicular to SISO.

vcax

S

C

R v1

ISO

N

Fig. 1: ImagingRing geometry for an acquisition of a region around the effective
imaging isocenter N , showing the focal spot position S, the detector origin R,
the detector center C and orientation vector v1 with respect to the table and a
cylindrical phantom object.
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2.2 Multi-Level-Gain Correction

As described in Huber et al. [3], MLG correction is used for correcting the
nonlinear detector response, especially at low dose rates. For this method, an
offset image without irradiation and multiple flood-field gain images at different
dose rates are acquired. In contrast to the application for other imaging devices,
the flood-field MLG calibration for the ImagingRing is more complex since a
short SDD results in varying incidence angles of the x-rays at the detector. To
overcome this limitation a slit collimation is utilized, allowing for irradiation
of just a few columns of the detector while rotating the detector through the
slit. Each column is irradiated with the same slit beam profile, avoiding the
requirement of correcting for the inhomogeneous fluence of the x-ray tube in
rotation direction. Since the source-mounted 2D collimator allows for arbitrary
jaw positions, it can be used to form a slit with adjustable size. The mean value
of the intensities for which a specific pixel on the detector has been irradiated
then defines its intensity on the MLG calibration image as shown in Figure 2a.
The beam profile at calibration time normalized in the range [0.0, 1.0], which is
visualized in Figure 2b, can be extracted from the MLG calibration image.

(a) MLG calibration image (b) calibration beam profile

Fig. 2: MLG calibration image (a) which has been generated from slit collimation
acquisitions of the ImagingRing, showing different intensity levels for sub-panels.
The beam-profile (b) extracted from the MLG image is used for correcting the
beam-dependent intensity variations due to, e.g., the anode heel effect.

The correction method itself has been implemented similar to what is de-
scribed in Huber et al. [3]. Using the MLG supporting points measured at mul-
tiple known dose-rates, a nonlinear mapping between a pixel intensity and a
specific dose rate value can be performed, resulting in a dose-equivalent inten-
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sity. For a given intensity at the detector Id, the dose-equivalent intensity Dd is
computed by linear interpolation between the closest MLG calibration images
(high, low) followed by a correction for the calibration beam profile Dcalib.

Dd =
Dlow + (Id − Ilow)

Dhigh−Dlow

Ihigh−Ilow
Dcalib

: Ilow ≤ Id ≤ Ihigh (1)

2.3 BadPixel Correction

A pixel on the detector pd is considered bad if its intensity deviation from the
surrounding pixel intensities U is greater than a given intensity threshold It.
Static bad pixels are present in all acquisitions, whereas dynamic bad pixels
appear and vanish at certain energy levels. Therefore, the calibration of this
method consists of acquisition of homogeneous frames at multiple beam energies
and subsequent evaluation of the outliers in each image. Hence, the resulting
binary bad-pixel map in which non-zero pixels identify bad pixels is computed
by:

Ib =

{
0, if |Ii − Id| ≤ It ∀Ii ∈ U
1, otherwise

(2)

The correction method utilizes a spiral interpolation approach of n intensities
of the original image for replacing the intensities of marked bad pixels defined
in (2). The intensity sampling is started at a random angle and continues with
golden angle increments and progressive distance pd. For each interpolated in-
tensity Ii, the Euclidean distance to pd is used as a weighting factor wi. The
replacement intensity is then computed by the weighted mean value of the in-
terpolated intensities given in (3).

Ic =

n∑

i=1

wiIi where

n∑

i=1

wi = 1 (3)

2.4 Image Orientation and Flexmap Correction

For further corrections, the acquired image has to be oriented in the ICS. In
order to account for dynamic movement of the source- and panel-arms due to
gravity based effects, a 9-degrees-of-freedom (9-DOF) flexmap is applied. The
9-DOF flexmap specifies for combinations of source and panel arm positions a
vector [tSx, tSy, tSz] for translations of S, a vector [tCx, tCy, tCz] for translations
of C and a set of 3 Euler angles for transformation of v1 and v2. This approach
is similar to what has been described in Warmerdam et al. [5] for investigating
geometric uncertainties in 2D/3D image registration of cranial images.

2.5 Incidence Angle Correction

For a single ray emerging from the focal spot position S and passing through
a specific detector pixel, the acquired intensity at the detector is attenuated
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depending on the incidence angle α and the beam energy E. The correction of
the former effect is referred to as geometric incidence angle correction whereas
the latter is referred to as physical incidence angle correction. Measurements for
different energies E = {60kV, 120kV } and various angles α ∈ [−40 deg, 40 deg]
to account for the maximum field-of-view have shown the separability of those
effects.

The geometric incidence angle correction as shown in (6) can be seen as a
relative correction from a pixel position at a given detector plane pd to another
plane pc (e.g. the consensus plane) using the incidence angles αd and αc respec-
tively. Specifically, α depends on S, its projection onto the specific plane Sd, Sc
and the point on the plane pd, pc.

αd = arctan

( ||S − Sd||
||pd − Sd||

)
(4)

αc = arctan

( ||S − Sc||
||pc − Sc||

)
(5)

Ic = Id
cos(αc)

cos(αd)
(6)

The physical incidence angle correction can be seen as the deviation of the
measured angle dependency from the cosine function, depending on the used
energy E and the incidence angle α. Having specified the measurements in a
polynomial of degree four for a low energy Ylow(x) = 1 + c2lowx

2 + c4lowx
4 and a

high energy Yhigh(x) = 1+c2highx
2+c4highx

4, a linear interpolation for arbitrary
energies is used for the correction:

Ic =
Id

Ylow(α) + (Yhigh(α)− Ylow(α)) E−Elow

Ehigh−Elow

(7)

2.6 Distance Correction

The intensity produced on the detector surface is dependent on the distance
of the focal spot to the specific detector pixel. Projecting the intensities from
a pixel position at the detector plane pd onto another plane pc (e.g. consensus
plane) therefore requires a relational correction according to the inverse square
law. Using the Euclidean distance d(p, q) = ||p− q|| from the focal spot S, the
equation can be stated as:

Ic = Id
||pd − S||2

||pc − S||2
(8)

2.7 Fluence Correction

For the calibration of the fluence correction, multiple projections are taken such
that the whole cone has been imaged at least once. A continuous detector move-
ment as described for MLG calibration can be used again for this acquisition.
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The acquired images are subsequently pre-processed by bad-pixel correction and
MLG correction. The fluence plane is defined perpendicular to vcax at the isocen-
ter. A stitched projection of all pre-processed images onto the fluence plane
considering flex calibration, incidence angle correction and distance correction
followed by a normalization to the range [0.0, 1.0] creates the fluence map. A
fluence map as shown in Figure 3 is created for multiple energies E. For a given
position of a pixel at the detector pd, the most relevant fluence map, i.e. closest
matching E, for the given energy is evaluated at a point pf which is the intersec-
tion of a ray between S and pd with the fluence plane. The evaluated intensity
is subsequently corrected for the geometric incidence angle and the distance of
the detector plane before using it for the correction, as stated in (9).

Ic =
Id

If
cos(αd)
cos(αf )

||pf−S||2
||pd−S||2

(9)

Fig. 3: Fluence map for 120kV with a source cone angle of 50 deg which is used
for fluence correction. The anode heel effect is visible at the top of the cone. The
yellow line represents the horizontal intensity profile extracted in Figure 4.
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Fig. 4: Horizontal intensity profile of the fluence map for 120kV with a source
cone angle of 50 deg.
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3 Results

An acquisition of images with the ImagingRing at various positions of the source
and detector arm show clearly an effect of the specific geometry to the intensity
profile, as can be seen in Figure 5a, Figure 6 and Figure 7. After correcting the
images with the proposed pipeline, the bad-pixels and differences in sub-panel
intensity levels have been removed as shown in Figure 5b, Figure 6 and Figure 7.
Furthermore, the impact of the geometric effects and the heel effect as part of
the beam fluence have been minimized. Especially in the homogeneous table
region, the flattening of the intensity profiles is obvious. However, even though
the vertical intensity profile of the corrected table image shows a straightened
curve, there is a remaining slope visible. In the left lower corner of the images, the
cone border is visible since the 9DOF-flexmap correction does not account for a
flex induced tilt of vcax, effectively leading to an insufficient fluence correction.

(a) original (b) corrected

Fig. 5: A planar x-ray acquisition of the couch carrying the ImagingRing before
(a) and after (b) the application of the correction pipeline. The yellow lines rep-
resent the horizontal (Figure 6) and vertical (Figure 7) intensity profile positions.
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Fig. 6: Comparison of the horizontal beam profiles from the images of Figure 5
before (red) and after (blue) application of the correction pipeline.
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Fig. 7: Comparison of the vertical beam profiles from the images of Figure 5
before (red) and after (blue) application of the correction pipeline.

4 Discussion

As successfully shown in the results section, the presented correction pipeline
is able to handle x-ray acquisitions created by arbitrary source and panel arm
positions. However, the offset response of the flat-panel detector used for MLG-
correction may change over time due to reasons of varying detector temperature
and age factors. Since the detector response is non-linear especially in a range
close to the offset value, a dynamic replacement of the offset values is considered
critical for long-term operation of the device and currently under investigation.
For the case of CBCT acquisitions, a basic lag correction may also be added to
the correction pipeline. However, the dynamic offset replacement can be seen as
a prerequisite for successful ghosting correction. The use case of CBCT recon-
struction with correct hounsfield units in addition requires for a scatter correc-
tion considering head scatter and patient scatter as key factors. A replacement of
the 9DOF-flexmap correction with an 11DOF equivalent, additionally account-
ing for tilts of vcax, is currently examined. Future developments may also include
advanced temperature correction algorithms as have been described in Huber et.
al [3] for electronic portal imaging.
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Abstract. As external beam radiation therapy has advanced in com-
plexity and precision there have been few new tools developed to monitor
the accuracy of treatment delivery. To this end, a system for real-time
beam visualization (RT-BV) was developed. The system consists of a
flexible scintillating film, common optical detectors and image process-
ing algorithms. The scintillating films were formed by mixing Gd2O2S:Tb
(GOS) with silicone. The films were placed in the path of therapeutic
beams generated by a medical linear accelerator (LINAC). The emit-
ted light was captured by cameras and processed. The RT-BV system
was able to achieve sufficient contrast-to-noise at 20 frames/second with
normal ambient room lighting. Pixel intensities were found to be linear
with dose-rate and the system demonstrated sub-millimeter resolution
in identifying collimator movements.

Keywords: Image Guided Radiation Therapy · Quality Assurance ·
Cameras

1 Introduction

Each year, thousands of radiation therapy (RT) treatments are performed ac-
curately. However, reports indicate that between 0.6 to 4.7 incidents per 100
radiation therapy visits have been reported to occur even in advanced oncology
centers operating with modern equipment and trained staff [1,2,3,4]. A signifi-
cant number of these incidents occur during the delivery of RT and can result
in underdosing or overdosing patients, irradiating healthy tissue or, at worst,
patient death [5]. As EBRT techniques continue to increase in complexity and
dose delivered per fraction, there is a clear and growing need for a monitoring
and validation methodology that enables clinicians to have greater confidence
that they are delivering the planned dose where and how it was intended [6].

In current practice, on-board MV electronic portal imaging (EPID) is uti-
lized for monitoring the RT beam after it exits the patient [7]. However, due to a
lack of soft tissue contrast and multileaf collimator (MLC) blockage of the field
of view, the available anatomic references provided by the approach are limited
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to bony anatomy or implanted fiducial markers that lie within the beam’s eye
view making the interpretation of the data non-trivial [8,9]. More recently Jarvis
et al. have presented work demonstrating the potential of Cherenkov emission
as a means of visualizing therapy in real time [10]. Fahimian et al. also pro-
posed a method of utilizing air scintillation to visualize the radiation beam [11].
While both seek to visualize therapeutic beam delivery, the signals generated
are at least three orders of magnitude smaller than typical room lights [12]. The
technical complexity involved in utilizing such techniques has limited their im-
plementation. Hence, the ability to visualize the position, shape and intensity
of the radiation beam as it passes through the patient in real-time is not yet
available in clinical practice.

As a first step toward developing a system capable of realizing this ability,
we developed a simple imaging approach utilizing a flexible scintillating film and
an inexpensive digital camera to image the radiation beam as it enters or exits
the patient’s anatomy.

2 Materials and Methods

The real-time beam visualization (RT-BV) system consists of a flexible scintil-
lating film and a digital camera. The film is placed on the patient’s skin such
that it will emit an optical signal when the beam passes through it. The camera
is arranged such that it can image the emitted signal as well as the surrounding
patient surface anatomy.

Fig. 1. Photograph of the imaging setup.

The desirable features of a scintillation film to be placed on the patient in-
clude ample signal generation, minimal dose attenuation and sufficient flexibility
to conform to anatomy. In our study, scintillating films were prepared by mixing
GOS powder and a silicone elastomer in a 1:1 mass ratio. The resulting mixture
was cast on a level surface at a thickness of 0.8 mm and allowed to cure at room
temperature.

The imaging setup, shown in Figure 1, consisted of a 2048 x 2048 CMOS
digital camera equipped with a 50 mm lens and a band-pass filter. The camera
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was placed 100 cm inferior and 50 cm anterior of iso-center. The halogen lights in
the treatment room were set to maximum intensity for all image acquisition. The
camera was selected primarily based on its resolution, bandwidth, and cost with
secondary consideration given to noise characteristics. All images were acquired
with a 42 ms integration time with the gain of the camera set to its minimum
value. At this integration time a frame rate of 23 frames per second (fps) is
achievable. In general, a set of data for a static field was created by sampling
10 frames over a 2 second interval. Images were analyzed using ImageJ 1.47v
(National Institute of Health, Bethesda, MD), Matlab 7.8.0 (The MathWorks
Inc. Natick, MA) and OpenCV.

Radiation was delivered using Varian EX and TrueBeam medical linear ac-
celerators (LINAC) (Varian Medical Systems, Palo Alto, CA). Beam energies
between 6 and 15 MV were investigated with dose rates ranging between 200
and 600 MU/min. Square fields were delivered while imaging. Bright outliers,
caused by x-ray interactions with the imaging sensor were median filtered and
a background image was subtracted from each frame. Average pixel values and
contrast-to-noise ratios (CNR) where evaluated. See Figure 2 for a graphical
overview of the image processing approach.

Fig. 2. An overview of the image processing algorithm used to evaluate images and
locate field edges. The left column indicates processing that was applied to all images.
The small square region indicates the image area magnified at right for demonstrating
the localization portion of the algorithm.

In order to verify the resolution and beam shape fidelity of the system, com-
plex MLC shaped fields with gaps ranging from 0.1 cm to 8 cm were delivered
and imaged simultaneously with the RT-BV system and a Varian EPID portal
imaging system (see Figure 4a). Finally, a full VMAT plan was imaged as it was
delivered to an anthropomorphic phantom.
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An image processing algorithm was designed to robustly identify and locate
the beam within each image in a beam-on dataset. Refer to Figure 2 for a
graphical overview of the image-processing algorithm utilized.

A perspective transformation was determined from extracting the corners of
a square field in a test image and used to correct for the distortion introduced due
to the angled positioning of the camera. The Otsu method was used to identify a
threshold value that would best segment the resulting images [13]. A binarization
based on this value was applied to the images. Connected components were
extracted from the binary images using the algorithm presented by Suzuki et al.
[14]. The contours were then filtered by size to identify one that corresponds to
the beam profile. The center of the field was calculated from the mass center of
the pixels along the identified contour. The outline of the contour was then fit
for straight lines using a probabilistic Hough Transform [15]. Lines were grouped
according to their angle and location within the image to identify each of the
four collimators. An average location for each group was calculated from

cd =

∑
d̄le−|δ|

∑
le−|δ| (1)

where cd is the reported collimator location, d̄ is the average pixel coordinate
for each line (in the direction of interest), l is the length of the line and δ is the
angular deviation of the line from the ideal collimator direction (i.e. 90◦ for the
x-collimators).

3 Results and Discussion

The fabricated films were confirmed to have a thickness of 0.8 mm ± 0.1 mm.
They were flexible and molded easily to the contours of an anthropomorphic
phantom (Figure 5).

Fig. 3. Images of 10 cm x 10 cm fields at various beam settings. Pixel intensities are
reported in arbitrary units.
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Processed images of 10 x 10 cm fields for 6 and 10 MV beams with dose
rates between 200 and 600 MU/min are shown in Figure 3. Images show clear
field boundaries and reasonable uniformity across the field. For beams delivered
at a higher dose rate, the penumbra of the beam can also be observed. Pixel
intensity values increased with dose rate in a highly linear (R2¿0.97) fashion
(data not shown). Increasing beam energy reduces the slope of this relationship.
This is consistent with the reduction, at higher energies, in the rate at which
dose is deposited at the surface. The average contrast-to-noise (CNR) for sets of
10 images at each beam setting is reported in Table 1. The standard deviation is
also presented offering insight into the variation in measurements. These results
indicate that the system is capable of monitoring beams across the clinical range
in the presence of full room lighting.

Table 1. CNR (SD) for 10 x 10 cm fields at various beam settings.

Dose rate (MU/min)
Beam energy (MV) 300 400 600

6 4.0 (0.11) 9.4 (0.38) 18.7 (0.82)
10 1.9 (0.12) 4.9 (0.16) 8.6 (0.32)

Fig. 4. Images of a test field imaged simultaneously with an EPID portal imaging
system (a) and the RT-BV system (b).

Figure 4 shows the result of a simultaneous acquisition with an EPID portal
imager and the presented system for a complex test field. All features are dis-
cernible, including those created by 1 mm leaf movements near the center of the
field. A discernible difference is also observable between features created by leaf
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locations that vary by 1 mm. The distortions in the RT-BV system image are
due to the fact that the film was not perfectly flat on the couch at the time of
imaging. While these distortions are undesirable on a flat surface, they demon-
strate the ability of the film to represent the field shape as it appears on the
contours of a patients anatomy. Several frames from the imaged VMAT plan are
presented in Figure 5. The field, film and phantom are all visible. This test also
confirmed that the system was also capable of imaging beam exit profile as well
as entry. The algorithm was generally able to properly locate the collimators
well within the 1 mm machine tolerance (see Figure 6). The average deviation
between machine and estimated locations was 0.5 mm. The maximum deviation
was 2mm.

Fig. 5. Sequential images of a VMAT plan being delivered to an anthropomorphic
phantom. The top three frames show an entry beam profile as the gantry moves from
approximately 0◦ to 30◦. The bottom three frames show a beam exit profile as the
gantry moves from approximately 70◦ to 90◦. Full video is available at http://youtu.
be/X6n-aDPBDGw.

Imaging approaches based on air scintillation [11] or Cherenkov radiation
[10] also offer the ability to visualize the beam. These techniques enjoy the
advantage of not perturbing the treatment beam but generally require much
more advanced imaging setups and image processing. The data presented here
was collected using cameras costing approximately $1,500 as compared with an
minimum cost of $10,000 for the cameras needed to perform air scintillation or
Cherenkov imaging. EPID based techniques measure the beam aperture exiting
the patient, but interpreting the data relative to patient anatomy is non-trivial.
The proposed system enables high-resolution images of the beam in a context
that is immediately interpretable. It also offers the potential for gathering beam
dosimetry data at beam entry based on the intensity of emitted optical signal
from the film. A combined use of EPID and the RT-BV system may be valuable
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Fig. 6. The results of the collimator location algorithm.

and allow us to harness the strengths of both systems to provide a complete
view of therapy.

In summary, the RT-BV system has demonstrated the capability of obtaining
high CNR images of therapeutic beams and treatment context in real time.
Processing of these images resulted in accurate, sub-millimeter identification of
collimator locations. It is envisioned that the proposed system could be used
to provide a real-time view/recording of the patient treatment delivery process.
While further developments leading to a quantitative, automated system for
assessing treatment validity would be ideal and are currently being explored,
the availability of qualitative information on beam intensity, shape and location
in the context of the patient’s anatomical contours offers a valuable, high level
view of treatment.
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Fast processing of CBCT to improve delivered
dose assessment
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Abstract. In a previous work we developed an algorithm to improve
the Hounsfield Unit accuracy of CBCT images based on prior informa-
tion from a CT scan. However, the processing time required to run the
algorithm may be a barrier to clinical implementation. Here we describe
work to speed up two key processing steps: 3D binary morphological
operations and image interpolation.
Efficient binary morphological operators have been implemented in three
dimensions using C++, extending the open source leptonica image pro-
cessing library. Processing time comparisons have been made to imple-
mentations of three dimensional binary morphology available in ITK,
MATLAB and IDL. The efficient implementations presented in this re-
port have been found to require processing times up to three orders of
magnitude shorter than the alternatives.
Image downsampling has also been investigated as a method to enable
faster processing. Downsampling images by a factor of 2.0 (4.0) can pro-
duce a speedup of 1.8x (3.4x) in a processing step that interpolates into
masked regions of an image. Preliminary studies of the effect of down-
sampling on the quality of final processed images suggest that downsam-
pling by a factor of 2.0 produces a negligible decrease in final processed
image quality. When used together these two developments can allow
significantly faster processing of CBCT images.

1 Introduction

In recent years Cone Beam CT (CBCT) imaging systems have been integrated
in the majority of linear accelerators used for radiation therapy. The kilovoltage
(kV) x-ray source results in images with better soft tissue detail than those pro-
duce by megavoltage (MV) portal imaging or cone beam imaging systems. The
kV-CBCT images are important for ensuring that patients are set up accurately
prior to treatment. Since the images are acquired multiple times over the course
of a treatment they also allow the possibility for adaptive radiotherapy. Deliv-
ered dose could be computed using the CBCT images, to assess whether the
planned treatment remained optimal as tumour and patient reacted. It is often
necessary, however, to apply image processing techniques to the CBCT image
volumes, to restore accurate calibration before use in radiation therapy dose as-
sessment. However given their large size – up to tens of millions of voxels per
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image volume – even conceptually simple image processing operations such as
binary erosion and dilation can be slow. Slightly more complex operations such
as smoothing with a Gaussian kernel or interpolating into masked regions of an
image can increase processing time considerably. The aim of the work presented
here was (i) to produce an efficient implementation of three dimensional binary
morphological operators and (ii) investigate the use of image downsampling, to
allow CBCT image volumes to be processed as quickly as possible.

2 CBCT and Adaptive Radiotherapy

If significant changes in patient anatomy are observed in the CBCT images,
current clinical practice often requires the acquisition of an additional fan-beam
CT image. This enables the patient’s treatment to be re-planned to take into
account the altered anatomy, but is an expensive and time-consuming process
and results in the patient receiving a larger dose of radiation.

A preferable solution would be to re-plan the treatment directly using the
CBCT image. However, the wide cone-beam of x-rays results in larger amounts of
scatter than in conventional fan-beam CT scans, and produces artefacts that can
make identification of anatomical structures difficult. The CBCT image voxels
must also be corrected so that their values accurately represent x-ray attenua-
tion. Dose calculations based on uncorrected CBCT images are prone to error,
and can result in large dose inaccuracies when compared to doses calculated
using fan-beam CT scans.

Several techniques have been proposed that aim to correct the CBCT images.
One such correction procedure, proposed in [1], uses the information contained
in the CT scan acquired prior to treatment to correct the overall normaliza-
tion of the voxel values in the CBCT image, producing an image calibrated in
Hounsfield units. The uniformity of the voxel values is also greatly improved by
the correction procedure1. In order to get maximum value out of the information
contained in the CT images and to avoid degrading the quality of the CBCT
images, the correction algorithm is applied to the large three-dimensional (3D)
image volumes wherever possible. The resulting high quality CBCT image aides
clinicians with tissue visualisation, and allows for the assessment of the deliv-
ered dose. In cases where large anatomical changes occur between CT and CBCT
scans, this procedure is expected to be more robust than techniques such as de-
formable image registration. It is important that such a correction procedure
can be performed quickly. If it is to have a large impact on clinical workflow the
aim should be to correct the image volumes in as close to real-time as possible.

At various stages of the correction procedure 3D binary masks are created to
select anatomical regions of the image (i.e. bone, soft tissue, gas). Fig. 1(a) shows
an example of one slice of the image produced in a CT scan of a male pelvis. In
Fig. 1(b) a threshold has been applied to separate the soft tissue (grey areas of

1 An artefact present in CBCT images results in the voxels representing, for example,
soft tissue such as muscle or fat having different values depending on their location
in the image.
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the mask) from the regions of bone and gas (black areas). Column (c) shows the
binary mask after it has been eroded in three dimensions using a structuring el-
ement of size 5x5x3 voxels. Binary erosion can be performed to prevent artefacts
arising at the boundaries between the soft tissue and bone or gas when per-
forming subsequent image processing techniques. The implementations of three

(a) (b) (c)

Fig. 1: (a): One slice of the image volume produced in a CT scan of a male pelvis.
(b): A binary mask created after applying a threshold to separate soft tissue.
(c): The result of eroding the binary mask in (b) using a 3D structuring element
of size 5x5x3.

dimensional binary morphology currently available in the Insight Toolkit (ITK)
have been found to require processing times upwards of 1s (cf. Sect. 3.2). Given
that binary morphological operations are performed many times over the course
of the image correction procedure, the total time spent on binary morphology
can become several seconds. Therefore, given the nature of the algorithm and
the aim that images be processed in as little time as possible, work was under-
taken on producing a more efficient implementation of three-dimensional binary
morphology and is discussed in Sect. 3.

In a subsequent step of the correction algorithm, the masked regions of the
image are interpolated into based on data from surrounding regions (i.e. image
inpainting). This process is computationally intensive and must be performed for
multiple masks. The interpolation of one image volume can take several seconds,
depending on the size of the image. In an attempt to reduce the time taken to
perform the interpolation downsampling was used. The amount of downsampling
and the effect on the final corrected images is described in Sect. 4.

3 Efficient 3D binary morphology

3.1 Implementation

The three-dimensional binary morphological operations are implemented as an
extension to the open-source image processing library leptonica [2], which pro-
vides efficient implementations of binary morphology in two dimensions. Full
details of the two-dimensional implementations can be found in [3], though a
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brief summary will be repeated here to aid in the discussion of the extension to
three dimensions.

The basic binary morphological operations of dilation and erosion can be
expressed in several ways. A standard definition given here lends itself well to
demonstrating the low-level implementation. Let A represent an N-dimensional
binary image, and B represent an N-dimensional binary structuring element
(Sel). The dilation, ⊕, and erosion, 	, of an image A by Sel B are given,
respectively, by

A⊕B =
⋃

b∈B

Ab (1)

A	B =
⋂

b∈B̄

Ab (2)

where Ab is the image A after translating it by pixel vector b. If the Sel is
considered as a set of pixels with locations b = (i, j) relative to an origin, typically
at its centre, then the pixel vector b is the vector pointing from the origin to
pixel b. B̄ represents the inversion of B about its origin, i.e. B̄ = {−b | b ∈ B}.

In order to increase CPU and memory efficiency the binary images are packed
such that each horizontal 32-pixel line segment is represented by a single 32-bit
integer. I.e., each bit of the integer represents a single on/off pixel of the binary
image. In this way the union and intersection operations can be implemented
using bitwise OR and AND operators, and the required image translations can
be implemented using the bit-shift operators available in C++. After packing the
binary image each application of the bit-shift and bitwise logical operators can
perform the necessary translate and logical OR/AND operations on 32 pixels at
once.

Within the leptonica framework a packed two-dimensional image is repre-
sented by a Pix object. In the extension to three dimensions, each slice of the
image is packed individually and the image volume is stored as an array of Pix.
The object representing the structuring element must also be extended to take
into account an additional dimension. Shifts in the z-direction are performed by
selecting the corresponding slices of the volume from the array of Pix. The 3D
morphological operations are then performed by looping over the required shifts
defined by the Sel, selecting the necessary slices from the array of Pix, and
taking the logical OR/AND of all corresponding pairs of 32-bit integers.

Boundary conditions are handled by padding the input image by an appro-
priate amount in each dimension prior to the application of the morphological
operations. This padding must be performed by the user and is not implemented
internally in the algorithm presented here2.

The morphological operations presented here have been implemented in such
a way that arbitrary-shaped structuring elements can be used. When the Sel is
separable the morphological operations can be performed in the z-direction in-

2 Padding must also be performed by the user when using the ITK, MATLAB and
IDL binary morphology functions.
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dependently, before applying two-dimensional morphological operations to each
slice of the volume.

3.2 Performance

The performance of the algorithm implemented here, referred to as “Fast” in the
following, is compared to the implementations of three dimensional binary mor-
phology available in ITK3 (itkBinaryDilateImageFilter), IDL4 (DILATE) and
MATLAB5 (imdilate). A binary mask is created from a CT scan of a male pelvis
and dilated using separable, cube-shaped structuring elements with a range of
sizes. The CPU time taken to perform the dilation is isolated from that taken
to create the test image volume. For a given structuring element size the test
is repeated multiple times to obtain an average dilation time. All tests are per-
formed using a single core of a 3.33 GHz Intel Core i7 CPU in a machine with
16 GB of RAM.

Figure 2 shows the average times taken to dilate the image volume using
cube-shaped structuring elements of various sizes. CPU times taken to perform
a binary erosion show the same trends as those shown in Figure 2.
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Fig. 2: Average CPU times spent performing binary dilation on a 512x512x31
voxel binary mask created from a CT scan, using structuring elements of various
sizes. The structuring element radius is the distance, in voxels, from the centre
of the structuring element to the outer faces. A Sel of radius 1 is therefore a
3x3x3 cube. The fast implementation presented in this report (red, dot-dashed)
is compared to the implementations available in ITK (blue, dashed), IDL (green,
solid) and MATLAB (orange, dotted). The fast implementation is typically two
to three orders of magnitude faster than the alternatives.

3 ITK v.4.7.2, The Insight Software Consortium
4 IDL v7.1, Exelis Visual Information Studio, Boulder, Colorado, USA
5 MATLAB v6.5 Release 13, The Mathworks, Inc., Natick, Massachusetts, USA
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Despite the ITK implementation making use of the techniques presented
in [4] it is only able to perform binary morphological operations in times longer
than 1s.

The IDL implementation runs in times an order of magnitude shorter than
ITK when using very small structuring elements. However the processing time
increases rapidly as the Sel radius increases.

Binary dilation implemented in MATLAB has approximately the same per-
formance as ITK, with average processing times varying between 1.8s and 14.7s.

The fast binary morphological operators implemented in this report typically
run several hundreds of times faster than the functions available in ITK, IDL
and MATLAB. When dilating the CT mask using very small Sels the processing
time required is just 0.002s, compared to 0.06s with IDL and 1.1s with ITK.

The resulting dilated masks produced by each of the algorithms were com-
pared by subtraction, and were found to be identical.

4 Image downsampling

Interpolation into masked regions of the image volumes is performed on each
slice of the image volume separately, often referred to as “2.5D”, and takes
place prior to the creation of a correction map that is subsequently applied
to the CBCT image. The temporary images used to create the correction map
are downsampled using the ITK ResampleImageFilter, with linear interpolation
used to compute pixel values at non-grid locations of the full-sized images. The
original CBCT and CT images themselves are not downsampled at any point.

Since the interpolation is performed in 2.5D, the downsampling is only per-
formed in the x- and y- directions; the number of slices in the volume is kept
fixed. For example, a downsample factor of 2.0 implies that an image slice of size
410x410 pixels becomes 205x205 pixels. The computation time taken to perform
the interpolation after different amounts of downsampling is shown in Table 1.
Downsampling the images by a factor of 2.0 results in a speed increase of 1.8x,

Downsample factor Mean time/image [s]

1.0 1.29
2.0 0.70
4.0 0.38

Table 1: Variation of 2.5D interpolation speed with downsampling factor.

and downsampling by a factor of 4.0 results in a 3.4x speedup.
The effect of the downsampling, and subsequent upsampling, on the final

corrected CBCT images was estimated using two methods: by assessing the uni-
formity of the various CBCT images corrected after downsampling by different
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amounts, and by subtracting the CBCT images corrected after downsampling
from the CBCT image corrected without downsampling.

The image uniformity was assessed by defining small regions of muscle tissue
which were expected to have similar densities. Examples of some of the regions
are shown in Fig. 3(a)-(c). The same set of regions were used when analysing
all images. The mean pixel value in each of the regions was calculated and
the average and standard deviation of these means was used to quantify the
uniformity. As well as the corrected CBCT images, the uniformity was calculated
using a CT image of the same patient. A comparison of the uniformity in each
of the images is show in Table 2.

(a) (b) (c) (d) (e)

Fig. 3: (a)-(c): Small regions containing similar types of muscle tissue, in different
parts of the image, were used to estimate image uniformity. (d), (e) CBCT images
corrected using downsampling factors of 2.0 and 4.0, respectively subtracted from
that corrected without downsampling.

Image Average ± std. dev.

CT 1011.8 ± 16.3
Uncorrected CBCT 1044.2 ± 47.8

Corrected CBCT 1010.0 ± 16.6
Corrected CBCT, Downsample 2.0 1008.6 ± 17.7
Corrected CBCT, Downsample 4.0 1006.9 ± 18.5

Table 2: Comparisons of image uniformity estimates.

Little difference is observed between the uniformities of the corrected CBCT
images. The average of the mean pixel values in the muscle tissue regions remains
approximately constant, while the standard deviation (non-uniformity) increases
slightly as the amount of downsampling increases.

The result of subtracting the CBCT image corrected using a downsampling
factor of 2.0 (4.0) from the CBCT image corrected without downsampling is
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shown in Fig. 3d (e). When downsampling by a factor of 2.0 the differences are
typically small. Differences in pixel values of around 10 are observed across the
majority of the image. In regions near the edges of bones, and around the outer
edge of the patient, the differences are slightly larger with maximum differences
of approximately 70 appearing in isolated areas. When downsampling by a factor
of 4.0 the differences are increased. Across the majority of the image differences
in pixel value are approximately 15-20, with maximum differences of around 150.

Whether differences of this size can be tolerated is unclear. The ultimate test
of the effect of downsampling will be to use the various corrected CBCT images
to calculate the dose delivered by a radiotherapy plan.

5 Summary

Two methods have been investigated to speed up processing of CBCT images for
delivered dose assessment. The efficient implementation of 3D binary morpho-
logical operators has been presented and their performance compared with the
implementations available in ITK, IDL and MATLAB. The algorithms are im-
plemented as an extension to the leptonica image processing library and have
been found to run up to three orders of magnitude more quickly than commonly
available alternatives. It is likely that these fast 3D operators could be of use in
a wide range of applications.

Image downsampling has also been investigated as a method for enabling
faster image processing. Downsampling by a factor of 2.0 or 4.0 can significantly
reduce overall processing times. The effect on the final corrected images has been
estimated by directly comparing corrected images and assessing image unifor-
mity. Preliminary results suggest that downsampling by a factor of 2.0 has a
negligible impact on the quality of the corrected image, though further work will
be performed by using corrected CBCT images to calculate dose delivered by a
radiotherapy plan.

The combination of these techniques produces an overall speedup of 3x and
allows CBCT images to be corrected in under 10s.

This research is funded by UK MRC grant MR/L023059/1.
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