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A B S T R A C T

Ultraviolet-C (UV-C) radiation is used as a postharvest treatment to prolong the shelf life of fruit.

However, this stressful process may also affect ethylene production and, consequently, the expression of

genes encoding ethylene response factors (ERFs). To test this hypothesis, MicroTom tomatoes harvested

at the breaker stage were subjected to: 1 – application of 3.7 kJ m�2 UV-C radiation, 2 – application of

2 mL L�1 1-methylcyclopropene (1-MCP) followed by UV-C radiation; and 3 – without 1-MCP or UV-C

(control treatment). After treatment all fruit were stored for 12 d at 21   2 !C and 80   5% relative

humidity (RH). Although UV-C radiation increased ACC oxidase transcripts and stimulated ethylene

production, the ripening evolution was delayed. Fruit treated with UV-C showed lower accumulation of

lycopene, b-carotene, lutein + zeaxanthin and d-tocopherol; but retained higher levels of chlorogenic

acid, r-coumaric acid and quercetin after 6 d. Additionally, UV-C treated fruit had higher contents of

polyamines (putrescine and spermidine). Among the 14 ERFs studied, 11 (Sl-ERF A.1, Sl-ERF A.3,Sl-ERF B.1,

Sl-ERF B.2, Sl-ERF B.3, Sl-ERF C.6, Sl-ERF D.1, Sl-ERF D.3, Sl-ERF E.1, Sl-ERF F.5, Sl-ERF G.2) exhibited increased

transcript accumulation, 2 ERFs (Sl-ERF E.2 and Sl-ERF E.4) showed decreased transcript accumulation and

only 1 ERF (Sl-ERF E.3) was not significantly affected by UV-C treatment. As expected, the transcript

profiles of 1-MCP and/or UV-C-treated tomatoes demonstrate that ethylene plays an important role in the

expression of ERFs. The delay in fruit ripening may be caused by the activation of ERFs that could act as

regulators of metabolic pathways during ripening. However, this hypothesis needs to be better tested. In

conclusion, a relationship has been established between UV-C treatment and ripening delay, correlated

to changes in 13 ERF transcripts evaluated during postharvest treatment.

      

1. Introduction

UV-C radiation (100–280 nm) is a treatment with germicidal

capabilities that has been used to prevent postharvest rot in fruits

and vegetables (Stevens et al., 1998; Liu et al., 2011; Syamaladevi

et al., 2014). Because it is a stressor, UV-C can also accelerate

ethylene production and therefore activate the expression of

ethylene response factor (ERFs) genes. Altering the expression of

ERF, either through hormonal induction or abiotic stress, can

induce secondary metabolic pathways; these pathways may

activate pathogenesis-related (PR) genes related to the synthesis

of phytoalexins, phenols and terpenoids (Maharaj et al., 1999;

Charles et al., 2008a,b; Liu et al., 2011; Pombo et al., 2011). Pombo

et al. (2011) reported that UV-C treatment of strawberries helps

prevent rot not only by direct inoculum reduction, but also by

activating genes encoding enzymes involved in plant defense. The

beneficial effects of the application of UV-C can vary between

species, cultivars and time of application. Bu et al. (2013)

previously reported that UV-C maintained the firmness of Cherry

tomatoes (Solanum lycopersicum L. cv. Zhenzhu1.), with decreased

expression of cell wall degrading enzymes. In comparison, Tiecher

et al. (2013) observed delay in fruit maturation without a

commensurate prolongation of tomato firmness (S. lycopersicum

cv. Flavortop). Obande et al. (2011) reported maintained the
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firmness of preharvest UV-C treatment of tomatoes (S. lycopersi-

cum L. cv. Mill.) with varying results depending on the applied

dose.

It is widely known that the phytohormone ethylene controls

many events related to growth and development in plants, and is

expressed in response to abiotic and biotic stressors (Cara and

Giovannoni, 2008; Bapat et al., 2010). 1-Methylcyclopropene (1-

MCP) is a potent inhibitor of ethylene perception, which has been

used successfully in studies to understand the action of ethylene in

ripening process and consequently the expression of related genes

(Hoeberichts et al., 2002; Opiyo and Ying, 2005).

Ethylene is formed from the amino acid methionine by S-

adenosyl-L-methionine (AdoMet) and 1-carboxylic acid-1-amino-

cyclopropane. The enzymes that catalyze the conversion of

AdoMet to ACC and ACC to ethylene are ACC synthase (ACS) and

ACC oxidase (ACO), respectively. During ripening of climacteric

fruit, this biosynthesis pathway is autocatalytically regulated by

ethylene (Barry et al., 1996; Cara and Giovannoni, 2008). In

response to ethylene, the expression profile of several transcription

factors may be altered, which results in the activation of pathways

that induce or delay senescence (Ohme-Takagi and Shinshi, 1995;

Chen et al., 2008; Erkan et al., 2008; Liu et al., 2009, 2011).

After synthesis, ethylene is recognized by receptors (ETRs)

located in the membrane of the endoplasmic reticulum. A signaling

cascade which includes positive and negative regulators, modu-

lates the expression of ERF, which are subsequently responsible for

changes in the metabolic pathways involved in ripening and plant

defense (Barry et al., 1996; Bapat et al., 2010). This process

culminates in biochemical and physiological responses such as

chlorophyll degradation, carotenoid accumulation, softening, and

changes in tomato aroma and flavor. In addition, there are changes

in the levels of L-ascorbic acid, tocopherols and phenolic

compounds (Stevens et al., 1998; Cara and Giovannoni, 2008).

The ERFs belong to the AP2/ERF family of transcription factors that

are characterized by the presence of a DNA binding domain called

AP2/ERF, which is present exclusively in plants. This family of

transcription factors has a 58-59 amino acid conserved domain

(ERF binding domain) that can bind to two cis-elements: (i) GCC-

box, which is present in the promoter region of PR-genes that

confer a response to ethylene, and (ii) C-repeat (CRT)/dehydration-

responsive element (DRE), which is involved in the expression of

genes related to dehydration and response to low temperatures

(Singh et al., 2002; Xu et al., 2008, 2011). Whereas some of these

transcription factors bind to only one of these cis elements (Gu

et al., 2002; Singh et al., 2002), others may modulate responses to

stress tolerance through interactions with both (GCC-box and DRE)

cis elements (Huang et al., 2004; Zhang et al., 2004; Xu et al., 2007,

2011).

Since the first ERF binding domain was identified in four

tobacco proteins (Ohme-Takagi and Shinshi, 1995), new ERF genes

have been identified in other plant tissues (Zhou et al., 1997;

Tournier et al., 2003; Wang et al., 2007; Xu et al., 2007; Zhang et al.,

2010; Yin et al., 2012; Girardi et al., 2013). Several studies have

sought to relate the influence of biotic and abiotic stressors to the

expression of these transcription factors (Singh et al., 2002;

Gutterson and Reuber, 2004; Xu et al., 2007, 2011; Yin et al., 2012).

In general, studies that have modified ERF expression in plants

have demonstrated an increased tolerance to salinity (Huang et al.,

2004; Wang et al., 2004; Zhang et al., 2004; Pan et al., 2010),

drought (Chen et al., 2008; Zhang et al., 2010), temperature (Chen

et al., 2008; Zhang and Huang et al., 2010) and/or pathogen

infection (He et al., 2001; Pan et al., 2010). Yin et al. (2012) showed

that 13 ERFs sequences are differentially expressed during

postharvest abiotic stresses (low temperature, high temperature,

high CO2 and high water loss) in Kiwifuit. Liu et al. (2011), using

microarray techniques, determined that UV-C irradiation induced

the expression of defense response genes (such as PR related

proteins, b-1,3-glucanase and chitinase), signal transduction

genes (such as ethylene related genes, IAA receptor protein and

calmodulin) and protein metabolism genes. At the same time,

some genes related to cell wall disassembly (such as expansin,

pectinesterase and endo-b-1,4-D-glucanase), photosynthesis

(such as chlorophyll a/b binding protein precursor) and lipid

metabolism (such as lipoxygenase) seem to be suppressed in the

tomato fruit after UV-C radiation.

The tomato is one model for the study of the relationships

between stress, hormonal responses and fruit quality. Tomatoes

are a good model because their structural genomics are well-

known, their transcriptome and proteome databases are relatively

rich, and because they are a species of great economic importance

(Cara and Giovannoni, 2008; Bapat et al., 2010; Barsan et al., 2010).

The goal of this research was to understand how UV-C affects

the transcriptional profiles of ACO1 and ERFs as well as levels of the

major secondary metabolites in tomatoes. The application of 1-

MCP prior to UV-C treatment was used to distinguish if the effect of

UV-C treatment on gene expression was mainly dependent on

ethylene.

2. Material and methods

2.1. Plant material

Tomato plants (S. lycopersicum Mill., “MicroTom”) were

cultivated in pots with peat substrate (Klasmann-Deilmann, R.H.

P. 15). Growing conditions were: a 14:10 h light/dark cycle with

temperatures of 25 !C during the day and 20 !C overnight, 70%

relative humidity (RH) and a light intensity of 250 mmol m�2 s�1.

Tomato fruit were harvested at the breaker stage of the ripening

process and transported at room temperature (RT) for treatment.

The average time between harvest and treatment was 30 min.

2.2. UV-C treatment

For UV-C treatment, the harvested tomatoes were packed in

trays and placed under UV-C lamps (TUV G30T8, 30 W, Philips).

Four lamps were placed at a distance of 30 cm from the fruit,

providing a UV-C dose of 3.7 kJ m�2 as measured by a digital

radiometer (Model MRUR-203, Instrutherm1). To achieve the total

dose, 4 min of exposure were required on each of the four sides of

the fruit, totaling 16 min of treatment. To isolate the effect of

ethylene, a treatment of 1-MCP was applied to the fruit in the 1-

MCP + UV-C group at a concentration of 2 mL L�1 before UV-C

treatment. These conditions were previously optimized by Tiecher

et al. (2013). Thus, the experimental design contained the

following treatments: 1 – UV-C: fruit were harvested and treated

with UV-C at 3.7 kJ m�2 and stored at RT (20   3 !C and 80   5% RH)

for 12 d. 2 – 1-MCP + UV-C: fruit were harvested and treated with

1-MCP at 2 mL L�1 for 12 h, followed by treatment with UV-C as

described above and stored at RT for 12 d. 3 – Control (untreated

fruit): fruit were harvested and immediately placed at RT for 12 d.

2.3. RNA extraction, cDNA synthesis and real time PCR (qPCR)

The exocarps of the harvested tomato fruit were used to study

the transcriptional expression of ACO1 and ERF genes by

quantitative PCR (qPCR). The samples described in Section 2.2

were collected after 6 h of storage. Total RNA was extracted using

Pure LinkTM reagent (Invitrogen1) according to the manufacturer’s

instructions. The quality and concentration of RNA extracts were

evaluated using an Agilent 2100 Bioanalyzer1 (Agilent Technolo-

gies, CA), in which only RNA samples that had RIN (RNA integrity)

values greater than 6 were used for cDNA synthesis. For RT-PCR,



Fig. 1. Effects of UV-C treatment on relative accumulation of ACO1 (A) and ERF (B–O) gene transcripts in “MicroTom” tomato fruit after 6 h of storage. The relative

quantification of transcripts (RQ) is relative to control fruit and normalized with b-actin transcripts. Vertical bars represent the standard deviation.



2 mg of RNA extract was treated with DNase (Qiagen, Valencia, CA,

USA). Reverse transcription of mRNA was completed using the

Omniscript Reverse Transcription kit (Qiagen, Valencia, CA, USA),

resulting in a total volume of 20 mL. For qPCR, 2 mL of cDNA was

added to 25 mL of reaction agent - SYBR GREEN PCR Master Mix

(PE-Applied Biosystems, Foster City, CA, USA), and an ABI7900ht

sequence-detection system was used. The Sl-ACO1 gene (Barry

et al., 1996) and 14 ERF genes (Sl-ERF A.1 – Pirrello et al., 2012; Sl-
ERF A.3 – Zhou et al., 1997; Sl-ERF B.1 – Pirrello et al., 2012; Sl-ERF

B.2 – Pirrello et al., 2012; Sl-ERF B.3 – Tournier et al., 2003; Sl-ERF
C.6 – Zhou et al., 1997; Sl-ERF D.1 – Pirrello et al., 2012; Sl-ERF D.3 –

Pirrello et al., 2012; Sl-ERF E.1 – Tournier et al., 2003 Sl-ERF E.2 –

Zhang et al., 2004; Sl-ERF E.3 – Wang et al., 2004; Sl-ERF E.4 –

Pirrello et al., 2012; Sl-ERF F.5 - Tournier et al., 2003; Sl-ERF G.2 -

Zhou et al., 1997) were used. Primers were used at a concentration

of 50 nM, and the qPCR conditions were as follows: 50 !C for 2 min,

95 !C for 10 min, 40 cycles at 95! C for 15 s, 60 !C for 1 min,1 cycle of

95 !C for 15 s and 1 cycle of 60 !C for 15 s. Analyses were performed

in triplicate on plates with a capacity of 384 reactions. The Ct

(threshold cycle) values were calculated for each sample. The

relative quantification (RQ) was calculated with the method

proposed by Livak and Schmittgen (2001), using b-actin (Pirrello

et al., 2006) as an internal standard (non affected by 1-MCP + UV-C,

UV-C, fruit growth and development) and control fruit for

calibration.

2.4. Ethylene production and fruit color

Fruit ethylene production was quantified by gas chromatogra-

phy 1 h, 6 h, and 12 h, and daily (up to 12 d) after the UV-C

application. The fruit in each group was placed in a 100 mL screw-

cap glass vial. After 30 min of incubation, 1 mL of headspace was

collected to determine the rate of ethylene production, and the

results were expressed in ng kg�1 s�1.

The color of all each of the six fruit in each group was measured

daily (up to 12 d) on 4 sides with a colorimeter (Minolta CR-

300 TM), and the results were expressed as the hue angle “H”

[H = tan�1 (b/a) when a > 0 and b > 0 or h = 180 + tan �1 (b/a) when

a < 0 and b > 0].

2.5. Levels of lycopene, b-carotene, lutein and zeaxanthin

Extraction techniques and chromatographic analysis were

performed following methods described by Rodriguez-Amaya

(2001) followed by saponification of the ether extract. Levels of

lycopene, b-carotene, lutein and zeaxanthin were quantified using

a high performance liquid chromatography (HPLC) system from

Shimadzu equipped with an automatic injector, UV–vis detector at

450 nm, a RP-18CLC-ODS (5 mm, 4.6 mm " 150 mm, Shimadzu)

reverse-phase column and CLC-GODS (5 mm, 2 mm " 4 mm,

Supelco) guard column. Separation was performed using a gradient

elution system with methanol (solvent A), acetonitrile (solvent B)

and ethyl acetate (solvent C) as the mobile phase at a flow rate of

16.7 mL s�1 (i.e. 1 mL min�1). The initial phase consisted of 30% A

and 70% B; after 10 min the composition was changed to 10% A, 80%

B and 10% C; after 35 min the composition was changed again to 5%

A, 80% B and 15% C; the initial composition was repeated at 40 min

and maintained for 2.5 min to rebalance the system. The peaks

were identified by comparison with the retention times of

standards and quantified by comparison with external calibration

curves for lycopene, b-carotene, lutein and zeaxanthin (Sigma–

Aldrich1) standards. The HPLC results are expressed as mg kg�1 of

fresh material.

2.6. d-tocopherol levels

Tocopherol extraction was performed as described by Rodri-

guez-Amaya (2001), using a method similar to that used for

carotenoid extraction. The tocopherols were separated and

quantified using HPLC in a manner identical to that described in

item 2.5. The separation was performed by a gradient elution

system with a mobile phase of: methanol (solvent A), isopropanol

(solvent B), and acetonitrile (solvent C) at a flow rate of 16.7 mL s�1

(i.e. 1 mL min�1). The gradient began with a ratio (A/B/C) of

40:50:10 (v/v/v), which was changed linearly to 65:30:5 over

10 min, then decreased to 40:50:10 over another 2 min and held

constant for 15 min. The peak was identified by comparison with

the retention time of the standard and quantified by comparison

with an external calibration curve for d-tocopherol (Sigma–

Aldrich1). Results on a fresh weight basis are expressed as mg kg�1.

2.7. Levels of p-hydroxybenzoic acid, p-coumaric acid and quercetin

The extraction and identification of individual phenolic

compounds was performed following the methods described by

Häkkinen et al. (1998). Phenolic compounds were extracted with

methanol acidified with 6 M HCl and separated and quantified

using an HPLC process identical to that described in item 2.5. The

mobile phase consisted of an elution gradient with acetic acid in

water (99:1) (solvent A) and methanol (solvent B) at a flow rate of

15 mL s�1 (i.e. 0.9 mL min�1). The starting percentage of 100% A was

gradually changed to 60% A and 40% B over a period of 25 min, held

constant at this ratio for a further 2 min, gradually changed to 95%

A and 5% B at 37 min, held constant for an additional 5 min and

then returned to the starting proportion for a total run time of

45 min. The phenolic compounds were identified by comparison

with the retention time of standards and quantified based on

calibration curves of external standards for p-hydroxybenzoic acid,

p-coumaric acid and quercetin (Sigma–Aldrich1). The results are

expressed on a fresh weight basis as mg kg�1.

2.8. Polyamine levels

Polyamine extraction and quantification was carried out

following Vieira et al. (2007) with minor changes. Polyamines

were extracted with trichloroacetic acid (5% in water) and analyzed

by HPLC separated in a C18 column (30 cm " 3.9 mm i.d. "10 mm,

Waters). Polyamine analyses used an elution gradient program in

which mobile phase A was acetate buffer (0.1 M) containing 1-

octanesulfonic sodium salt (10 mM), adjusted to pH 4.9 with acetic

acid and eluent B was acetonitrile, at a flow rate of 11.7 mL s�1(i.e.

0.7 mL min�1. After separation, the amines were derivatized with

o-phthalaldehyde (OPA) and detected fluorometrically at 340 nm

excitation and 445 nm emission. Results were expressed on a fresh

weight basis as mg kg�1.

2.9. Experimental design and statistical analysis

The experimental design was completely randomized, consist-

ing of 3 UV-C treatment groups (control, 1-MCP + UV-C, UV-C) with

3 analytical replicates. Data was verified for normality using

Shapiro–Wilks’ test and for homoscedasticity using Hartley’s test.

Results were analyzed using ANOVA, with a P # 0.05 considered

significant. Post-hoc analysis was performed using Tukey’s test

(p # 0.05). SAS software was used for all statistical analysis (Sas

Institute, 2002).



3. Results

3.1. The effects of UV-C treatment on the transcriptional accumulation

of ACO1 and ERF genes

As revealed by the relative accumulation of ACO1 and ERF
transcripts, UV-C treatment affected the expression of most genes

investigated (Fig. 1). There was an increase in the accumulation of

ACO1 gene transcripts when fruits were treated with UV-C

(Fig. 1A), and the application of 1-MCP prior to UV-C treatment

reduced levels of ACO1 transcripts compared to UV-C treatment

alone; however, levels were still above those observed in the

control fruit.

Among the 14 ERF genes studied (Fig. 1B–O), 11 ERFs (Sl-ERF A.1,
Sl-ERF A.3, Sl-ERF B.1, Sl-ERF B.2, Sl-ERF B.3, Sl-ERF C.6, Sl-ERF D.1, Sl-

ERF D.3, Sl-ERF E.1, Sl-ERF F.5, Sl-ERF G.2) increased with UV-C

treatment, 2 ERFs (Sl-ERF E.2 and Sl-ERF E.4) had decreased

transcript accumulation and 1 ERF (Sl-ERF E.3) was not affected by

UV-C treatment. When the ethylene action inhibitor (1-MCP) was

applied prior to UV-C treatment, there was less transcript

accumulation compared to UV-C treatment alone for all of the

ERFs studied, with the exception of Sl-ERF G.2.

3.2. The effects of UV-C treatment on ethylene production and color

The fruit subjected to UV-C treatment showed high ethylene

production in the first hour after treatment. The evolution of

ethylene production in all treatments followed a classic climacteric

pattern, with increased ethylene production corresponding to the

climacteric peak. However, the maximum climacteric peak was

delayed by 1 d with UV-C treatment (Fig. 2A), and 3 to 4 d with the

application of 1-MCP prior to UV-C, as compared with control

tomatoes (Fig. 2A).

The application of UV-C helped to maintain the green color of

the fruit, and 1-MCP + UV-C treatment further inhibited color

change, and retained a higher !Hue value (Fig. 2B), despite the

increased ethylene production of this fruit (Fig. 2A). Additionally,

better visual appearance in UV-C treated fruit was observed after

12 d of storage (Fig. 2C).

3.3. Effect of UV-C on secondary metabolite levels

The UV-C treatment delayed the ripening evolution, with lower

levels of lycopene, b-carotene, lutein and zeaxanthin and

d-tocopherol observed, after six days of storage. Slower accumu-

lation was observed when 1-MCP was applied before UV-C

treatment (Table 1). The treatment also resulted in higher levels

of all measured phenolic compounds (Table 1, chlorogenic acid, p-

coumaric acid and quercetin).

Putrescine and spermidine were predominant among the

polyamines detected in treated fruit (Table 1). It was clear that

the application of UV-C promoted a greater accumulation of

putrescine and spermidine after 6 d of treatment. In fruit that was

previously subjected to treatment with 1-MCP before UV-C,

polyamine levels were lower than in fruit treated only with UV-

C but higher than control.

4. Discussion

There is a large body of research demonstrating the beneficial

effects of UV-C radiation treatment on fruit (Maharaj et al., 1999;

González-Aguilar et al., 2007; Charles et al., 2008a,b; Erkan et al.,

2008; Liu et al., 2009; Pombo et al., 2011; Stevens et al., 1998; Liu

et al., 2011; Tiecher et al., 2013; Maharaj et al., 2014; Syamaladevi

et al., 2014). The results observed in this work have confirmed that

UV-C treatment stimulates ethylene production, especially in the

first few hours after treatment (Fig. 2A, Maharaj et al., 1999).

Additionally, UV-C treatment causes an increase in ACO1 gene

transcripts (Fig.1A) that code for the enzyme ACC oxidase, which is

active during the last step of ethylene biosynthesis (Barry et al.,

1996; Cara and Giovannoni, 2008). This physiological response is

consistent with the fact that UV-C is a stressor and that plants

Fig. 2. Effects of UV-C treatment on ethylene production (A), !Hue (B) and tomato fruits (C): (i) control, (ii) 1-MCP + UV-C, (iii) UV-C, in “MicroTom” tomato fruits stored for

12 d. Vertical bars represent the standard deviation.



generally increase ethylene production under stress, likely by

acting on system 2 autocatalytic ethylene (González-Aguilar et al.,

2007; Liu et al., 2011; Van de Poel et al., 2012; Tiecher et al., 2013).

UV-C delayed ripening in tomato fruit, in despite of the increase

in ethylene production (Fig. 2A) and ACO1 transcriptional

expression (Fig. 1A). In fact, in fruit treated with UV-C radiation

the development of coloration was slower than in the control fruit,

and the treated fruit showed the fewest senescence signals (Fig. 2

B, C). This finding is consistent with Stevens et al. (1998), Maharaj

et al. (1999), Liu et al. (2009) and Tiecher et al. (2013) who also

found that UV-C treatment led to a reduction in ripening and

delayed the onset of red coloration in tomatoes. The effect of UV-C

on the development of fruit coloration may be due to its

interference with carotenoids (Table 1), which are the predomi-

nant pigments in tomatoes (Stevens et al., 1998; Maharaj et al.,

1999; Liu et al., 2009). Liu et al. (2011) reported a change in the

profile carotenoids genes expressions in tomatoes treated with UV-

C. A change in color is one of the most obvious transformations that

takes place during tomato fruit ripening and involves the ethylene-

dependent transition of chloroplasts to chromoplasts (Opiyo; Ying,

2005; Barsan et al., 2010). Moreover, UV-C treatment may cause

changes in other antioxidant pathways, such as the production of

antioxidant enzymes (Erkan et al., 2008) and synthesis of phenolic

compounds (Charles et al., 2008b) and/or bioactive amines

(Stevens et al., 1998; Maharaj et al., 1999; González-Aguilar

et al., 2004; Tiecher et al., 2013). These compounds may prevent

the degradation of chlorophyll and/or slow carotenoid degradation

(Maharaj et al., 1999; Liu et al., 2009; Tiecher et al., 2013).

The effects of UV-C treatment on the levels of compounds

derived from plant secondary metabolism, previously reported by

several authors (Charles et al., 2008a,b; Erkan et al., 2008;

González-Aguilar et al., 2004; Liu et al., 2009; Pombo et al.,

2011; Tiecher et al., 2013) were partially confirmed by this work

(Table 1). The UV-C slows the accumulation of lycopene and

b-carotene in fruit, which explains the lower intensity of the

characteristic red color (Fig. 2B). When applying 1-MCP prior to

UV-C, this physiological response was strengthened (Fig. 2B).

Variations in the fruit profile of these compounds according to

differences in variety, ripening stage, growth, and postharvest

conditions is widely reported (Charles et al., 2008a,b; Erkan et al.,

2008; Liu et al., 2009; Pombo et al., 2011). UV-C radiation induced

the accumulation of at least three of the phenolic compounds

investigated (Table 1), which is in agreement with Charles et al.

(2008b), who also found higher concentrations of phenolic

compounds, an accelerated lignification process and the formation

of suberin in tomatoes treated with UV-C.

The fact that UV-C radiation stimulated the accumulation of

these compounds is interesting not only for prolonging shelf-life,

but also for increasing plant defenses, and for increasing

potentially bioactive compound levels (Stevens et al., 1998;

González-Aguilar et al., 2004; Charles et al., 2008; Erkan et al.,

2008; Tiecher et al., 2013). It is plausible that the ERFs influenced

by UV-C (Fig. 1) control the biosynthesis of these compounds

because the tomato is a climacteric fruit, and ethylene is involved

in the control of several of its biosynthetic pathways (Cara and

Giovannoni, 2008).

The delay of senescence signals (Fig. 2) may be correlate to the

levels of polyamines (Table 1). These results support what has been

reported in the peach by González-Aguilar et al., (2004) and by

Maharaj et al. (1999) and Tiecher et al. (2013) in tomatoes. These

authors suggested that by acting as a stressor, UV-C initiates the

synthesis of polyamines that may be involved in the regulation of

ripening.

Because ethylene can activate different transcription factors,

including regulators of metabolic pathways involved in fruit

ripening and those related to the stress response, theT
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transcriptional expression of ERFs was also evaluated. UV-C was

found to have different effects on the expression of these genes

(Fig.1B–O). Ohme-Takagi and Shinshi (1995) characterized the first

four ERFs in tobacco demonstrating that they respond differently

to ethylene. Chen et al. (2008) reported that in tomatoes ERFs may

be differentially regulated during ripening and in response to

stress.

Most of the ERFs studied here (Sl-ERF A.1, Sl-ERF A.3, Sl-ERF B.1,
Sl-ERF B.2, Sl-ERF B.3, Sl-ERF C.6, Sl-ERF D.1, Sl-ERF D.3, Sl-ERF E.1, Sl-

ERF F.5, Sl-ERF G.2) showed higher transcript accumulation when

the tomatoes were treated with UV-C suggests that these genes are

strong candidates for explaining the UV-C response, and its

relationship to ethylene. The delay in the ripening process, despite

the increase in ethylene production, ACO1 level, and ERFs

transcription level, could be due to activation of metabolic

pathways of antioxidant protection for these ERFs (Liu et al.,

2011; Erkan et al., 2008; Tiecher et al., 2013). In general, when 1-

MCP was applied prior to UV-C, reduced accumulation of ERFs

transcripts was observed, thus confirming that the expression of

these transcription factors can be regulated by ethylene (Zhang

et al., 2004; Pirrello et al., 2006; Wang et al., 2007). Moreover this

data suggests that regulation of ERF transcripts by UV-C is ethylene

dependent.

In this work, the classification proposed by Pirrello et al. (2012),

who classified tomato ERFs into 8 sub-classes (A, B, C, D, E, F, G, H)

was used; however, members of sub-class H were not evaluated. Of

the 14 ERFs assessed in the present study, 6 (Sl-ERF A.1, Sl-ERF B.1, Sl-

ERF B.2, Sl-ERF D.1, Sl-ERF D.3 and Sl-ERF E.4) were isolated and

characterized by Pirrello et al. (2012), who was the first to relate

these ERFs to other types of plant stress.

Zhou et al. (1997), who studied ERFs Sl-ERF A.3, Sl-ERF C.6 and Sl-

ERF G.2, (described in his work as pti4, pti5 and pti6, respectively),

reported the ability of these ERFs to bind specific regions of EREBR’s

(ethylene-responsive element-binding proteins), also known as the

GCC-box of PR-genes, increasing the tolerance of plants to biotic

stress. The regulation of these ERF genes through phosphorylation

may also influence the interaction of these transcription factors

with the GCC-box regions of PR-genes (Gu et al., 2000; Xu et al.,

2008, 2011). In the present study, these ERFs were strongly

influenced by the abiotic stress generated by UV-C treatment,

showing a significant increase in the accumulation of transcripts,

especially Sl-ERF C.6, which showed an approximately 250-fold

increase in expression relative to control fruit. This indicates that

the induction of ERFs may contribute to the acquisition of tolerance

to adverse conditions (He et al., 2001; Gu et al., 2002; Chen et al.,

2008). Liu et al. (2011) also reported a significant increase in the

expression of these three genes, especially Sl-ERF C.6, which

corresponds to pti5. By over-expressing Sl-ERF C.6 in tomatoes, He

et al. (2001) reported increased levels of GluB and catalase gene

transcripts, which are associated with resistance to diseases such

as Pseudomonas syringae pv. Tomato. Likewise, Gu et al. (2002),

observed that in Arabidopsis thaliana plants the ERFs Sl-ERF A.3, Sl-

ERF C.6 and Sl-ERF G.2 interact with the GCC-box regions of PR-
genes, resulting in pathogen defense. Chen et al. (2008) reported

that water stress and low temperatures reduce the levels of Sl-ERF
A.3 transcripts. However, mechanical damage also increased the

expression of this gene, which suggests that there may be different

regulatory mechanisms depending on the stimulus.

The increase of transcript accumulation of Sl-ERF B.3 agrees

with the results published by Liu et al. (2011), which showed the

relationship of this gene to the ripening tomatoes process and, Liu

et al. (2014) that also reported delay of the onset of ripening caused

for over-expression of Sl-ERF B.3-SRDX (a climacteric dominant

repressor reversion).

Results from the present study on Sl-ERF E.1, previously

characterized by Tournier et al. (2003) as LeERF2, reveal the

strong impact of ethylene on ERF expression, in agreement with

the results of Pirrello et al. (2006), Liu et al. (2011), Zhang et al.

(2009) and Zhang and Huang (2010) who also related the

expression of this transcription factor to the hormone ethylene

in tomato and tobacco plants.

Sl-ERF E.2 and Sl-ERF E.4 showed significantly reduced

accumulation of transcripts after UV-C treatment. Zhang et al.

(2004), who described Sl-ERF E.2 as JERF1, demonstrated that

expression of this ERF in tomatoes was induced by a number of

factors: ethylene, methyl jasmonate (MeJA), abscisic acid (ABA)

and salt treatment. In rice, plants over-expressing JERF1 show

increased drought tolerance (Zhang et al., 2010). In contrast, the

results presented herein suggest that Sl-ERF E.3 is not significantly

involved in the response to UV-C, although Wang et al. (2004)

reported that Sl-ERF E.3 responds to jasmonic acid, ethylene, cold,

salt stress and abscisic acid by binding to GCC-box and DRE regions

of target genes.

In this study, Sl-ERF F.5 also showed increased transcription as a

result of UV-C treatment. Chen et al. (2008), studying Sl-ERF F.5

(which they refer to as LeERF3b), related the expression of this ERF
to stress generated by drought and low temperatures. This ERF

possesses a amphiphilic repressor binding domain (EAR) (Xu et al.,

2008; Pan et al., 2010; Pirrello et al., 2012). Pan et al. (2010) deleted

the EAR of Sl-ERF F.5 (referred to as Sl-ERF3 in their study) and

observed the induction of PR-gene expression, with increased

tolerance to salt stress and reduced lipid peroxidation in Ralstonia
solanacearum.

Herein, a relationship between UV-C treatment and ripening

delay was established, and correlated with changes in 13 ERF

transcripts evaluated during postharvest treatment. The ethylene

action in response to UV-C treatment was confirmed with 1-MCP

application before UV-C. It is clear that although UV-C promotes an

increase in ethylene production, the concomitant increases in the

ACO1 expression profile, and virtually all of the ERFs evaluated,

result in extended fruit preservation. The delay in fruit ripening

may be caused by the activation of ERFs that could act as regulators

of metabolic pathways during ripening. However, this hypothesis

needs to be better tested.
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